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Abstract

The isotopic composition of organic sulfur (δ34Sorg) is a potential recorder of past biogeochemical conditions that has, thus far,

received relatively little attention in comparison to the pyrite sulfur isotope record (δ34Spyr). This study presents continuous

organic and pyrite δ34S records from three basins of the organic-rich Miocene Monterey Formation, deposited over a similar

time interval of c.14.5-6 Ma but under varying depositional conditions. In the San Joaquin basin, δ34Sorg and δ34Spyr

average 0constant pyrite-organic sulfur isotopic offset of c. 5Basin exhibits δ34Sorg values that are >10coeval San Joaquin

basin intervals, with average δ34Sorg of c. 24the upper siliceous member the highest yet reported for marine organic sulfur and

roughly 2-3consistently c. 12lower phosphatic member of the Santa Maria Basin, but an abrupt enrichment in both δ34Spyr and

δ34Sorg coincident with a sharp lithostratigraphic transition at c. 11 Ma reduces this offset to <4Basin shows a sulfur isotope

record intermediate between the San Joaquin and Santa Maria Basins, with average δ34Spyr and δ34Sorg of 3respectively,

and relatively consistent c. 10offset. Records for all three basins demonstrate a close correlation between coeval δ34Spyr and

δ34Sorg values which we attribute to derivation from an equivalent, or at least similar, source of sedimentary or water column

sulfide. However, marked offset in the isotopic composition of coexisting pyrite and organic sulfur, of variable magnitude within

and between basins, implies some contrast in the diagenetic processes underlying sulfur incorporation into the two phases. We

argue that the prominent δ34Spyr and δ34Sorg isotopic differences between broadly coeval basin sections are largely the result

of differences in sedimentation regime and the associated balance of iron and sulfide supply during diagenesis. A likely factor

of additional importance to this iron-sulfide balance is basin-specific sedimentary and water column redox. These findings

illustrate the importance of determining independent constraints on the nature of a sedimentary system before conclusions are

made relating the sulfur isotope composition of sedimentary species to paleoenvironmental conditions. Additionally, we suggest

that records of δ34Spyr have a strong dependence on interaction with organic sulfur during formation, and thus that existing

δ34Spyr records are more effectively interpreted in combination with δ34Sorg records.
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Introduction
The isotopic composition of organic sulfur (δ34Sorg) is a potential recorder of past biogeochemical conditions that has, thus far, received relatively little attention in comparison to the pyrite sulfur isotope
record (δ34Spyr). This study presents continuous δ

34Spyr and δ
34Sorg records from three basins of the Miocene Monterey Formation. We suggest that strongly contrasting isotopic records between coeval basin

sections result from differences in sedimentation regime and the associated balance of iron and sulfide supply during diagenesis, as well as differences in the locus of sedimentary or water column sulfate
reduction. Intervals of marine δ34Sorg significantly in excess of Miocene seawater sulfate δ34S10may reflect episodic deposition and deviation from 'steady state' diagenesis. Our results illustrate the importance
of determining independent constraints on the nature of a sedimentary system before conclusions are made relating the sulfur isotope composition of sedimentary species to paleoenvironmental conditions.
Additionally, we suggest that records of δ34Spyr have a strong dependence on interaction with organic sulfur during formation, and thus that existing δ34Spyr records are more effectively interpreted in
combination with δ34Sorg records.
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Figure 5. Isotopic
record of each
basin alongside
estimation of
sedimentation
rates3,4. No
quantitative
sedimentation
rates are known
for the SMB
UL51-18 core but
rates are
suggested to be
comparable to
SBB.
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Figure 6 (above). A possible mechanism
producing change in δ34S.5

Figure 7 (top L). Average FePy/FeHR against
average δ34Sorg. Averages over intervals of
constant sedimentation rate (fig. 5).
Figure 8 (bottom L). FePy/FeHR against δ

34Sorg for
individual depth intervals within each basin.
(SJB: grey; SMB: blue; SBB: green).

(II) Locus of Microbial Sulfate Reduction (MSR)
Hypothesis:
Expansion of
euxinia is
associated with
reduction in
δ34Sorgand δ

34Spyr

Figure 13a and 13b. δ34Sorgvs. TOC and TOS for SJB: grey; SMB: blue; SBB: green.
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(IV) MSR Rate
Hypothesis: Increased MSR rate leads to enriched δ34Sorgand δ

34Spyr and is associated with
elevated TOC

1.We present the first continuous organic sulfur isotope
records for any interval of the Cenozoic using three basins
of the Monterey Fm. They are the first to show δ34Sorg and
δ34Spyr as significantly covariant in stratigraphic section,

and also record the highest known marine δ34Sorg.
2.We identify basin-specific depositional effects, such as

sedimentation and local redox conditions, as most
significant in determining δ34Sorg, δ

34Spyr, and ∆δ
34S.

3. If these findings are more widely applicable, they may
place strong limitation on the extent to which sulfur

isotope records can be used to interpret global
perturbation to the sulfur cycle in the absence of

independent constraints on the nature of their associated
depositional systems.

4. Additionally, we propose that δ34Sorg is a potential new
proxy for depositional and environmental conditions,
although details of what it records are yet to be fully

understood.
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(III) Iron Limitation
Hypothesis: Excess of total sulfur (TS)
over highly reactive iron (FeHR) wrt.
pyrite stoichiometry is associated with
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