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Abstract

The isotopic composition of organic sulfur (334Sorg) is a potential recorder of past biogeochemical conditions that has, thus far,
received relatively little attention in comparison to the pyrite sulfur isotope record (834Spyr). This study presents continuous
organic and pyrite 534S records from three basins of the organic-rich Miocene Monterey Formation, deposited over a similar
time interval of ¢.14.5-6 Ma but under varying depositional conditions. In the San Joaquin basin, 834Sorg and 834Spyr
average Oconstant pyrite-organic sulfur isotopic offset of c. 5Basin exhibits 834Sorg values that are >10coeval San Joaquin
basin intervals, with average 8634Sorg of c. 24the upper siliceous member the highest yet reported for marine organic sulfur and
roughly 2-3consistently c¢. 12lower phosphatic member of the Santa Maria Basin, but an abrupt enrichment in both 834Spyr and
834Sorg coincident with a sharp lithostratigraphic transition at c. 11 Ma reduces this offset to <4Basin shows a sulfur isotope
record intermediate between the San Joaquin and Santa Maria Basins, with average 0634Spyr and 834Sorg of 3respectively,
and relatively consistent c. 10offset. Records for all three basins demonstrate a close correlation between coeval 834Spyr and
834Sorg values which we attribute to derivation from an equivalent, or at least similar, source of sedimentary or water column
sulfide. However, marked offset in the isotopic composition of coexisting pyrite and organic sulfur, of variable magnitude within
and between basins, implies some contrast in the diagenetic processes underlying sulfur incorporation into the two phases. We
argue that the prominent 834Spyr and 834Sorg isotopic differences between broadly coeval basin sections are largely the result
of differences in sedimentation regime and the associated balance of iron and sulfide supply during diagenesis. A likely factor
of additional importance to this iron-sulfide balance is basin-specific sedimentary and water column redox. These findings
illustrate the importance of determining independent constraints on the nature of a sedimentary system before conclusions are
made relating the sulfur isotope composition of sedimentary species to paleoenvironmental conditions. Additionally, we suggest
that records of 834Spyr have a strong dependence on interaction with organic sulfur during formation, and thus that existing

834Spyr records are more effectively interpreted in combination with 834Sorg records.
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Introduction

The isotopic composition of organic sulfur (6°*S_ ) is a potential recorder of past biogeochemical conditions that has, thus far, received relatively little attention in comparison to the pyrite sulfur isotope
record (834Spyr). This study presents continuous &° S and 834801rg records from three basins of the Miocene Monterey Formation. We suggest that strongly contrasting 1sotopic records between coeval basin
sections result from differences in sedimentation regime and the associated balance of 1ron and sulfide supply during diagenesis, as well as differences 1n the locus of sedimentary or water column sulfate
reduction. Intervals of marine 634Smg significantly in excess of Miocene seawater sulfate 6°*S'* may reflect episodic deposition and deviation from 'steady state' diagenesis. Our results illustrate the importance
of determining independent constraints on the nature of a sedimentary system before conclusions are made relating the sulfur 1sotope composition of sedimentary species to paleoenvironmental conditions.
Additionally, we suggest that records of 834Spyr have a strong dependence on interaction with organic sulfur during formation, and thus that existing 834Spyr records are more effectively interpreted 1n
combination with 3*S_records.
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Conclusions

1. We present the first continuous organic sulfur 1sotope
records for any interval of the Cenozoic using three basins
of the Monterey Fm. They are the first to show 8*S_ and
6™S . as significantly covariant in stratigraphic section,

and also record the highest known marine 6**S _ .

2. We 1dentify basin-specific depositional effects, such as
sedimentation and local redox conditions, as most
significant in determining 6*'S_ , 8>S . and A&™S.

3. If these findings are more widely applicable, they may
place strong limitation on the extent to which sulfur
1sotope records can be used to interpret global
perturbation to the sulfur cycle in the absence of
independent constraints on the nature of their associated
depositional systems.

4. Additionally, we propose that 634Smg 1S a potential new
proxy for depositional and environmental conditions,
although details of what 1t records are yet to be fully

understood.
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