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Abstract

The use of geophysical methods to characterize subsurface properties has significantly grown in the last decade. Although

geophysics can bring relevant spatial and temporal information on subsurface processes, the quantitative interpretation and

integration in models remain difficult. Indeed, standard deterministic solutions suffer from (excessive) smoothing and spatially

variable resolution, whereas joint or coupled inversions remain difficult to apply in complex cases. Hermans et al. (2016)

proved using cross-borehole ERT that physical properties distribution could be directly retrieved from data using Bayesian

Evidential Learning (BEL). BEL uses a series of prior models to derive a direct relationship between data and forecast in a

reduced dimension space. This can be challenging when the prediction becomes more complex with higher dimensions. In this

contribution, we extend the work of Hermans et al. (2016) to a full 4D experiment (3D + time). We demonstrate that the shape

and amplitude of the temperature plume can be retrieved, with uncertainty quantification, during a push-pull experiment using

surface ERT. We analyze the robustness of the solution using a synthetic benchmark. The results indicate that the median

of the posterior is very close to the true temperature distribution. The relative error increases at the edge of the temperature

plume where the change of temperature is limited. This is related to the limited resolution of geophysics and the process of

dimension reduction. We also investigate how discrete cosine transform can improve the dimension reduction process without

altering the final prediction. Finally, we show that BEL is able to retrieve the spatio-temporal variability of the plume, while

the smoothness constraint inversion fails to accurately image the corresponding contrast, largely underestimating the amplitude

of the temperature change. BEL is therefore a well-suited framework for the interpretation of 4D geophysical data avoiding the

drawbacks of standard deterministic solutions. Hermans, T., Oware, E., & Caers, J. (2016). Direct prediction of spatially and

temporally varying physical properties from time-lapse electrical resistance data. Water Resources Research, 52, 7262-7283.
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Conclusion and perspectives
• We demonstrate the ability of Bayesian Evidential Learning to derive the temperature distribution in an alluvial aquifer

during a heat storage experiment monitored by 3D surface ERT

• The framework allows to generate the posterior distribution without any explicit inversion

• Compared to standard methods, this approach yields more geologically realistic samples, avoiding smoothing due to

regularization and enables to assess uncertainty by generating many possible solutions consistent with the data

• The approach only requires independent forward runs and can be parallelized

• The method has a huge potential for hydrogeophysical predictions, but more generally to any prediction problems.

• We are planning to apply the method to field data and further investigate the influence of noise on the results

The objective of Bayesian Evidential Learning (BEL) is to
find a direct relationship between data and predictions
without explicit inversion [1]. BEL relies on a realistic prior
distribution of subsurface realizations, accounting for any
uncertain component, to derive this relationship by
forward modeling of both data and predictions. The
method can be divided into 6 main steps (Fig. 1):
1. Definition of the prior and generation of samples
2. Forward modeling of the prediction and the data
3. Reduction of the dimension of the data and prediction

variables (e.g., PCA).
4. Linearization of the relationship between reduced

data and prediction (e.g., CCA, regression trees)
5. Sampling of the posterior distribution in the low

dimension space (e.g., Gaussian regression, Kernel
density)

6. Back-transformation in the original space
The method has been demonstrated for 2D cross-borehole
time-lapse ERT [2,3]. We extend it to 3D surface time-lapse
ERT (4D).
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1. Introduction to Bayesian Evidential Learning 4. Validation and improvement

Fig. 1: Bayesian Evidential learning framework applied to time-lapse geophysical interpretation

The objective of the study is to derive the temperature
distribution during a heat storage experiment using
time-lapse electrical resistance data (Fig. 2). 6 parallel
profiles of 21 electrodes are used to collect resistance
data during the experiment.. It consists in the injection
of heated water (Δ𝑇 = 28.6 𝐾) at a rate of 3 m³/h
during 6 hours in the upper aquifer followed by a
storage period (91 h), a pumping period (15.5 h at 3
m³/h) and a final resting period [see 4].

The alluvial aquifer is modeled using 250 sequential
Gaussian simulations based on our prior knowledge of
the site (Table 1). The heat storage experiment is
simulated using HydroGeoSphere for each simulation.
The temperature distribution (prediction h) at 106
time-steps is extracted and transformed into
resistivity variations using a petrophysical
relationship [2] to simulate the change in resistance
data d.

To validate the approach, we select the data set of one of the 250 models that we
consider as our ground truth and we use the other 249 models to predict the
temperature distribution. The original data set contains 1948 quadrupoles and the
prediction is the temperature in a volume composed of 3808 cells, both for 106 time-
steps. We first reduce the dimensions of both variables using PCA. (Fig. 3)

Then, we apply canonical correlation analysis (CCA) (Fig. 4). This process yields a set
of independent linearized relationship between the reduced dimensions of the data
(d) and the prediction (h). We use 30 dimensions for both.

Once the relationship is
known, it is straight-forward
to sample the posterior
distribution 𝑝(ℎ|𝑑) in the
low dimensional space and
back-transform it to the
original space (Fig. 5).
We use Kernel density
estimation in the CCA space to
derive 𝑝(ℎ|𝑑)

We validate the temperature distribution by comparison with the true temperature around the well (Fig. 6). We see that
the median sample of the posterior is very close to the reference. The 5%-95% interval indicates the range of uncertainty
on the temperature from ERT. Spatially, most model cells with a true temperature outside the 5%-95% interval for at least
one time-step (Fig. 7) lie in areas at the edge of the model with very low temperature (see Fig 5), so that the absolute
error on temperature is very limited. Therefore, BEL does not create artifacts.

Uncertain Parmeter Range of value Uncertain Parmeter Range of value

log𝐾𝑚𝑒𝑎𝑛 Uniform [-1 to -4], 𝐾 in m/s Anisotropy ratio Uniform [0.1 to 0.5]

𝜎log 𝐾
2 Uniform [0.05, to 2], 𝐾 in m/s Orientation of main range to

flow direction
Uniform [0 to 𝜋]

Porosity Uniform [0.05 to 0.3]

Variogram main range Uniform [1 to 10 m] Natural gradient Uniform [0.05 to 0.167 %]

Fig. 2: Experimental set-up
Table 1. Simulation parameters
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Fig. 3. Dimension reduction of the prediction with PCA and discrete cosine transform
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Fig. 4. Statistical relationship between d and h using CCA (first 16 dimensions)

3. Results

Fig. 5. True, one predicted and 
smoothness-constraint 
temperature distribution for 2 
different time-steps

The comparison of the predicted and true temperature shows the excellent
ability of BEL to predict the temperature in the aquifer from time-lapse ERT,
without explicit inversion and thus without smoothing (FiG. 5).

The results can be further improved by using alternative procedures in BEL. In Fig. 8, we reduce the dimension of the
prediction using discrete cosine transform (DCT) instead of PCA. DCT is more performant to reduce the dimension (Fig. 3) and
yield a reduced uncertainty range. Similarly, the uncertainty range can be reduced by noticing that the correlation coefficient
in CCA for the 6 first dimensions is above 99% (Fig. 4). It means that a narrower bandwidth can be used when estimating the
posterior. In that case, the uncertainty range becomes smaller than 1.5°C in the area around the well (Fig. 9).
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Fig. 7. Spatial distribution of cells for which the 5%-95% 
prediction interval does not contain the true temperature

Fig. 8. Average temperature around the well when using 
discrete cosine transform to reduce the prediction
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Fig. 6. Average temperature around the well

Fig. 9. Average temperature around the well when 
adapting the Kernel bandwidth to the correlation 
coefficients in CCA
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