Coupled Modeling of Hydro-Sedimentary Transfer Processes and Socio-Economic Dynamics Evaluating Public Policies to Control Runoff and Erosion: Case Study in Normandy (France)

Edouard Patault¹, Jérôme Ledun², Valentin Landemaine³, Arnaud Soulignac⁴, Jean-Baptiste Richet², Fanny Ramaekers¹, Boris Cabaz⁴, Natacha Cikowski¹, Matthieu Fournier¹, Jean-François Ouvry², Jean-Daniel Rinaudo⁴, Olivier Cerdan³, and Benoit Laignel¹

November 22, 2022

Abstract

Watersheds are complex systems with multiple interactions between physical processes and human-induced socio-economic dynamics. Since the 2000s, numerous flooding and mudslide events have affected the territory in Normandy (France), leading to significant damages. Therefore, a public policy was adopted with the aim to reduce runoff and erosion, it includes: (i) the building of 4,000 hydraulic infrastructures (dams, fascines, hedges, etc.), (ii) the creation of turbidity water-treatment plants and, (iii) the conduction of animation and protection programs on soil and water resources. These investments are co-funded by several local authorities. This original research project aims evaluating the effectiveness of the above-mentioned public policy. Therefore, two complementary approaches are applied: (i) at the regional scale, the investments and damages between 2000 and 2017 were assessed and, (ii) for a pilot small scaled watershed (la Lézarde, 212 km²) a coupled modeling was conducted, taking hydro-sedimentary processes (flood envelopes, diffuse and concentrated erosion, karstic transfers) and associated socioeconomic dynamics into account. Our results suggest that over the study period, at the regional scale 500 M\euro were invested to reduce erosion/runoff impacts and, 300 M\euro of damage were caused. Nevertheless, the effectiveness of the public policy since 2000s must be evaluated at the watershed scale using a Cost-Benefit Analysis (CBA) according to two main scenarios: S1 = pre-development (2000), and S2 = post-development (2017). The processes that govern the surface transfer are modeled for different design floods (Q10-50-100) coupling two semi-dynamic models (MikeSHE and Watersed), and the karstic transfer using a deep learning algorithm (Tensorflow). Additionally, three long-term scenarios (until 2050) are modeled taking into account the effects of climate change (RCP scenarios), the change in land use (-33% of grassland areas), and the modification of agricultural practices that limit runoff. These projections provide key elements for decision-makers to guide future public policies controlling runoff and erosion in this territory.

¹Normandie UNIV, UNIROUEN, UNICAEN, CNRS, M2C, FED-SCALE, Rouen, France

²AREAS, 2 avenue Foch, F-76460 Saint-Valéry-en-Caux, France

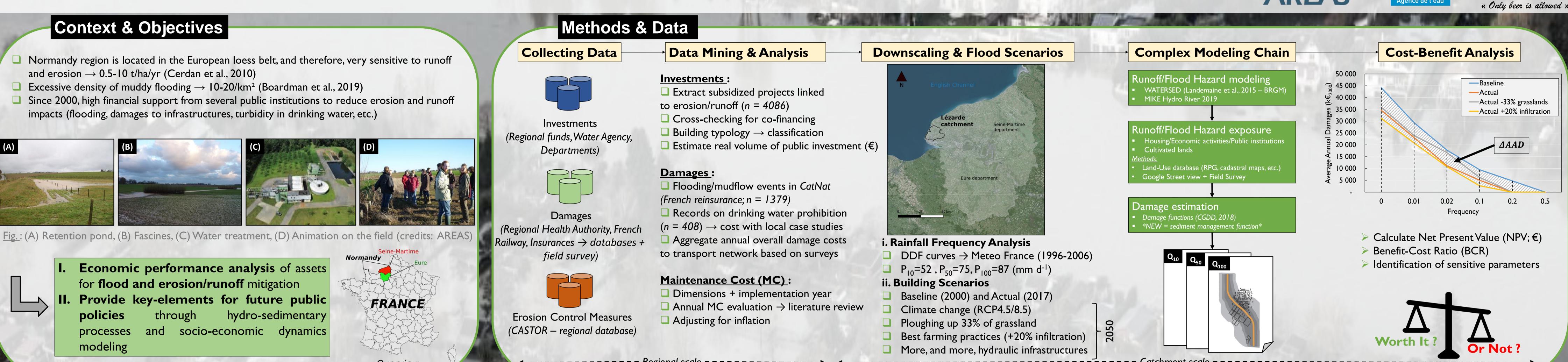
³BRGM, 3 avenue Claude Guillemin, BP6009, F-45060 Orléans Cedex 2, France

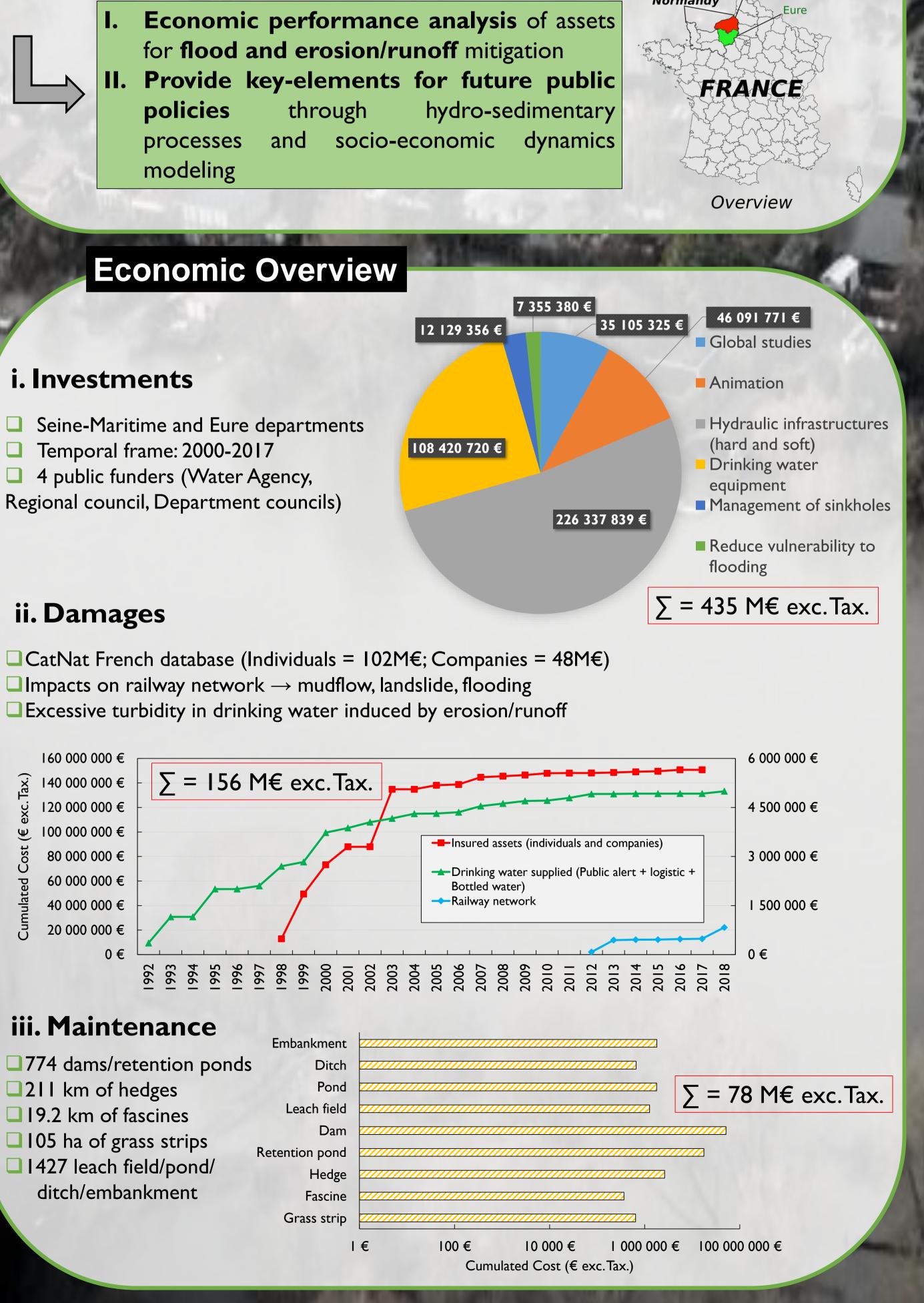
⁴BRGM, 1039 rue de Pinville, F-34000 Montpellier, France

Coupled Modeling of Hydro-sedimentary Transfer Processes and Socio-Economic Dynamics Evaluating Public Policies to Control Runoff and Erosion: Case Study in Normandy (France)

Patault, E.^{1,*}, Ledun, J.², Landemaine, V.³, Soulignac, A.⁴, Richet, JB.², Ramaekers, F.¹, Cikowski, N.¹, Cabaz, B.⁴, Fournier, M.¹, Ouvry, JF.², Rinaudo, JD.⁴, Cerdan, O.³, Laignel, B.¹

Paper number: PA41D-1141


¹University of Rouen, UMR CNRS 6143 M2C, Normandy, France ²AREAS, 76460 Saint-Valéry-en-Caux, France ³BRGM, 45060 Orléans, France ⁴BRGM, 34000 Montpellier, France


Flood & Runoff Modeling

Affected buildings

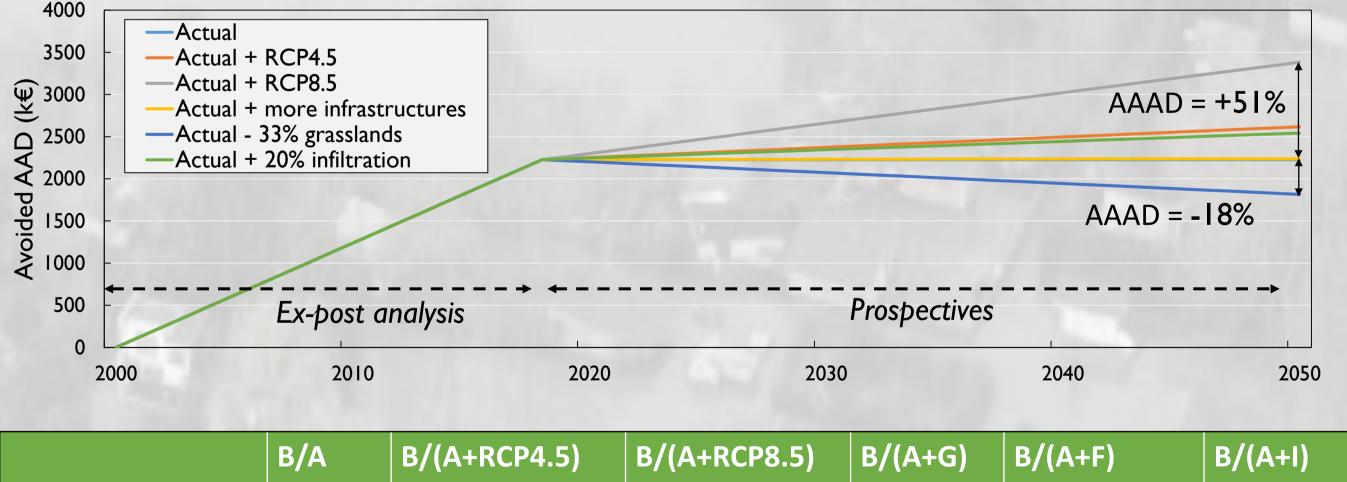
COS SEINE-MARITIME LE DE ROUEN Géosciences pour une Terre durable CAREAS GEOSCIENCES POUR UNE TERRE DE LA CONTROLLE DE L'ÉTAT CONTROLLE CO

AGU FALL MEETING

@: edouard.patault1@univ-rouen.fr

*Corresponding author

Coupled modeling: WATERSED (Erosion/Runoff) + MIKE (Flood) □ Damages cost is influenced by both the surface of asset flooded and the height of water Damages Cost = 32M€2000 □ Damages Cost = 32M€2000 □ Damages Cost = 32M€2000 □ Damages Cost = 23M€2000 □ Damages Cost = 32M€2000 □ Damages Cost = 32M€20


institution

Damages cost (k€₂₀₀₀)

management

Economic Analysis of Scenarios

- ☐ Temporal analysis of Avoided Average Annual Damages (AAAD) Evolution
- \square NPV calculation \rightarrow Economic flows discounted at 2.5%
- \square All costs adjusted for inflation $\rightarrow \in_{2000}$

	B/A	B/(A+RCP4.5)	B/(A+RCP8.5)	B/(A+G)	B/(A+F)	B/(A+I)
ΔAAD (M€ ₂₀₀₀)	44.2	46.2	50.1	42.1	45.8	44.3
NPV (M€ ₂₀₀₀)	15.7	17.7	21.7	13.6	17.4	11.4
BCR	1.554	1.624	1.763	1.479	1.611	1.347

*B=baseline; A=actual; G=ploughing up grasslands; F=best farming practices, I = More infrastructures

Conclusions & Perspectives

- I. Hydraulic asset's BCR significantly positive \rightarrow High contribution of dam/retention pond
- Cost valuation less sensitive to sediment load reduction
- Climate Change tends to increase the relevance of 'past' investments (RCP8.5 = +51% AAAD in 2050)
- 4. High sensitivity to farming practices (+20% infiltration = +14%AAAD; -33% grasslands = -18%AAAD)
- . Farming practices improvement highly encourage by upcoming Climate Change
- a. Improving the assessment of sediment load in each asset
- b. Refining the cost function of sediment management
- c. Integrating and Modeling sediment discharge to water treatment plant with Deep Learning algorithm (Patault et al., 2020, In prep)