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Abstract

Bayesian Evidential Learning 1D Imaging (BEL1D) has been recently introduced as a new computationally efficient tool for the

interpretation of 1D geophysical datasets in a Bayesian framework. Applications have already been demonstrated for Surface

Nuclear Magnetic Resonance (SNMR) data and surface waves dispersion curves. The case of SNMR is particularly relevant

in hydrogeophysics, as it directly sounds the water content of the subsurface. BEL1D relies on the constitution of statistical

relationships in a reduced dimension space between model parameters and simulated data using prior model samples that

replicate the field experiment. In BEL1D, this relationship is deduced through Canonical Correlation Analysis (CCA). When

using large prior distributions, CCA may lead to numerous poorly correlated distributions for higher dimensions. Those poorly

correlated distributions are resulting in a low reduction of uncertainty on some parameters, even if the experiment is supposed

to be sensitive to them. This phenomenon is related to the aggregation of multiple parameters in the same dimension, hence

the possible aggregation of sensitive and insensitive parameters. However, arbitrarily reducing the extent of the prior will lead

to biased estimations. To overcome this impediment, we introduce an iterative procedure, using the posterior model space of

the previous iteration as prior model of the current iteration. This approach frequently reveals higher correlations between the

datasets and the model parameters, while still using large unbiased priors. It enables BEL1D to produce better estimations of

the posterior probability density functions of the model parameters. Nonetheless, iterating on BEL1D presents several challenges

related to the presence of insensitive parameters, that will always mitigate the capacity to reduce at once the uncertainty on the

whole set of parameters describing the models. On noise-free synthetic datasets, this method leads to near-exact estimation of

the sensitive parameters after few (two to three) iterations. On noisy datasets, the resulting distributions bear some uncertainty,

arising directly from the presence of noise, but to a lesser extent than the non-iterative approach. The procedure remains more

computationally efficient than McMC.
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Iteration 1 Iteration 2

Find the BEL1D codes on Github:
github.com/hadrienmichel/BEL1D

4. Results
Prior resampling is applied to a simple 2-layers model (Fig. 4):
   - As expected, we obtain a better estimation of the model parameters
   - Trends in the model are discovered (increasing T2

*)
   - RMSE are lower

Fig. 4: Prior resampling results

Prior resampling applied to BEL1D:
   - Benefits from better correlation between the parameters and 
the data (Fig. 5)

   - Enables a better estimation of the models parameters 
(espacially in the case of large priors)
   - Permits to discriminate low probability modes in posterior 
distribution
   - The McMC software DREAM (Vrugt, 2016) took about half an 
hour to converge towards an acceptable level of uncertainty 
whereas BEL1D needed about 3 minutes.

   

Fig. 5: Exemple of correlation at iteration 1 (left) and 2 (right)

3. SNMR
 Surface Nuclear Magnetic Resonance (SNMR) benefits from the 
quantum properties of protons (H+) contained in water, hence is directly 
sounding water in the subsurface. Current is injected/received in an 
antenna on the ground and interacts with the protons spins as 
illustrated in Fig. 3. The received signal depends on the water content 
(amplitude) and the way water is linked to the soil particules (relaxation 
time).
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Fig. 3: Principle of NMR (FID pulse sequence)
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2. Iterative prior resampling

Fig. 2: Illustration of prior resampling

Iterative prior resampling (e.g. Cheng et al., 2019) is relatively simple 
and may contribute to better estimate the uncertainty. The algorithm 
(Fig. 2) is:
Iteration 0: Build the initial prior model space (prior0)
Iteration 1: Run BEL1D with prior0 → post1

Iteration 2: Run BEL1D with prior1=post1 → post2

Etc.
It enables to better constrain models since higher correlations between 
models parameters and data may be observed.
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Uncertainty appraisal is a key concern to geophysicists when 
imaging the subsurface. This issue is classically handled by 
stochastic inversion (costly CPU) or by error propagation 
(unrealistic uncertainty). 
Bayesian Evidential Learning 1D imaging (BEL1D) is a Bayesian 

method that enables the stochastic interpretation of 1D 
geophysical data, with a reasonable CPU cost and realistic 
uncertainty estimations. The framework is based on Bayesian 
Evidential Learning (e.g. Scheidt et al., 2018; Hermans et al., 
2016).
The method relies on the constitution of statistical relationships 

between model parameters and the associated data-sets from 
prior realizations (Fig. 1). It offers the advantage not to require 
the input of biasing information through regularization 
parameters as is often the case in classical inversion processes. 
However, the consistent definition of a prior model space is still 
required. Nonetheless, the method handles efficiently large priors, 
the impediment being the difficulty to properly constitute 
representative correlations.
Above all, the method enables the quantification of uncertainty 

for the model parameters.

1. Bayesian Evidential Learning 1D imaging 
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2 and 3

Fig. 1: Schematic illustration of BEL1D

Fo
rw

a
rd

m
o
d

e
lin

g

Set of p models

CCA

PCA and CCA

PCA and CCA

Improving Bayesian Evidential Learning 1D 
imaging (BEL1D) accuracy through 

iterative prior resampling (H43F-2039)

Hadrien MICHEL (1,2,3) (hadrien.michel@uliege.be), Frédéric NGUYEN (1) and Thomas HERMANS (3) 

(1) University of Liège, Faculty of Applied Sciences, Urban and Environmental Engineering Departement, Liège, Belgium, (2) F.R.S.-FNRS (Fonds 
de la Recherche Scientifique), Brussels, Belgium, (3) Ghent University, Faculty of Sciences, Department of Geology, Ghent, Belgium

Hermans et al. (2016). Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data. Water Resources Research, 52(9), 7262–7283.
Scheidt et al. (2018). Quantifying Uncertainty in Subsurface Systems (Wiley-Blackwell).
Cheng et al. (2019). An iterative Bayesian filtering framework for fast and automated calibration of DEM models. Computer Methods in Applied Mechanics and Engineering, 350, 268–294.
Vrugt, J.A (2016). Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB Implementation. Environmental Modelling & Software, 75, 273-316.


