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Abstract

Seismological models of the mantle are routinely developed using a range of techniques applied to different data types. For

quite some time, it has been recognised that on long wavelengths models of shear-wave velocity variations show a large degree

of consistency. More recently, the same has been suggested for models that describe compressional-wave velocity variations.

However, controversy remains regarding models of lower mantle density variations, which provide important constraints on the

nature of mantle structures, e.g. whether they are caused by thermal variations or whether additional chemical heterogeneity

is required. The imaging of density structure is difficult due to a small effect on seismic observables and a strong trade-off with

core-mantle boundary (CMB) topography. In addition, no consistent model of CMB topography variations exists with current

models differing both in amplitude and pattern. Here, I review models of lower mantle density structure and core-mantle

boundary topography from the literature, with the aim to identify which structures are consistent and what we can already

learn from these models. In addition, I discuss ways in which differences between existing models may be resolved in future.
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SEISMIC	VELOCITY	
	
Both	VS	and	VP	show	strong	consistency	across	recently	
developed	(since	2010)	models	of	lower	mantle	structure,	
with	LLSVPs	imaged	consistently	for	structure	up	to	l=12.		
	
	
	
	

DENSITY	
	
Most	density	models	consistently	image	two	areas	of	dense	
anomalies	beneath	South	Africa	and	the	North	Pacific,	though	
their	exact	locaIon	and	relaIonship	to	seismic	velocity	differs.		
	
CMB	topography	strongly	influences		
the	retrieved	density	structure	(model		
KDR2017-pos	vs	KDR2017-neg),	which		
helps	to	resolve	differences	between	
recent	studies	based	on	Stoneley	modes		
and	Idal	data,	parIcularly	for	l=2	only.	
	
	
	
	

CMB	TOPOGRAPHY	
	
Average	models	and	vote	maps	do	not	agree,	indicaIng	that	
parIcular	models	dominate	results.	A	disparity	(evident	as	low	
overall	vote)	also	exists	between	models	based	on	body-wave	
and	normal-mode	data,	which	show	consistently	elevated	
topography	in	the	South	Pacific	and	Central	Africa.		
	
As	exisIng	models	feature	elevated	topography	below	the	
LLSVPs,	strongly	thermochemical	models	(heavy	piles)	may	be	
ruled	out.		
	
	
	
	

FUTURE	
	
•  To	achieve	similar	consistency	for	density	and	CMB	

topography	as	is	observed	for	VS	and	VP,	studies	have	to	
combine	mulIple	data	sets	to	break	exisIng	trade-offs.		

•  Important	consideraIons	in	these	studies	should	be	the	
choice	of	theoreIcal	approximaIon	and	parameterisaIon.	

•  Efforts	to	develop	CMB	topography	models	consistent	with	
body-wave	and	normal-mode	data	should	be	intensified.	

•  This	will	aid	in	narrowing	down	possible	explanaIons	for	
the	LLVPs	and	provide	more	insights	into	mantle	dynamics.	
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The	seismological	landscape	of	the	CMB	

Seismological	models	of	the	mantle	are	rouGnely	developed	using	
a	range	of	techniques	applied	to	different	data	types.	While	
models	of	S-	and	P-wave	velocity	show	a	large	degree	of	
consistency,	controversy	remains	regarding	models	of	lower	
mantle	density	and	core-mantle	boundary	(CMB)	topography,	
which	are	vital	for	determining	the	nature	of	mantle	structures.		
	
ExisGng	models	of	CMB	topography	and	lower	mantle	density	are	
reviewed,	with	a	focus	on	seismological	models.	Average	models	
and	vote	maps	are	presented,	which	aid	in	finding	model	
consistencies.	A	discussion	on	what	these	may	teach	us	about	
lower	mantle	structure	and	dynamics	is	included.		
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Data	and	methodology	
1)  Take	exisIng	models	of	mantle	density	and	CMB	topography	
2)  Expand	consistently	in	spherical	harmonics,	cut	at	degree	l	=	6	
3)  Calculate	power	spectra,	correlaIon	and	correlaIon	matrices	
4)  Compute	average	models,	vote	maps	and	combined	models	
5)  Compare	to	predicIons	from	geodynamic	simulaIons	

Fig	1	(top).	Exis&ng	models	of	CMB		
topography	(hCMB)	and	lower	mantle	density	
(ρ)	taken	from	the	literature.	Note	that	the	
maximum	degree	varies	between	models.		
	
Fig.	2	(le6).	Models	from	KDR2017	
(Koelemeijer	et	al.,	2017)	who	found	two	
model	classes	with	opposite	rela&onship	
between	density	and	CMB	topography.	
	
Both	model	classes	show	a	good	fit	to	
normal	mode	data,	but:	
•  KDR2017-pos	is	characterised	by	

dense	LLVPs	and	large	topography	
amplitudes	

•  KDR2017-neg	is	characterised	by	
light	LLVPs	and	small	topography	
amplitudes	

•  KDR2017	is	the	model	with	the	best	
overall	fit	to	the	mode	data.	
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Data	for	vote	maps:		
•  VS	models	include	GYPSUM-S	(Simmons	et	al.,	2010),	SAW642ANb	(Panning	et	al.,	2010),	S40RTS	(Ritsema	et	al.,	2011),	METAL12-S	(Mosca	et	al.,	2012),	

S362ANI+M	(Moulik	and	Ekstr¨om,	2014),	SAVANI	(Auer	et	al.,	2014),	SEMUCB-WM1	(French	and	Romanowicz,	2014),	SGLOBErani	(Chang	et	al.,	2015),	SPani-S	
(Tesoniero	et	al.,	2015),	SP12RTS-S	(Koelemeijer	et	al.,	2016),	TX2015	(Lu	and	Grand,	2016)	and	SEISGLOBE2	(Durand	et	al.,	2017).		

•  VP	models	include	GYPSUM-P	(Simmons	et	al.,	2010),	LLNL	G3Dv3	(Simmons	et	al.,	2012),	METAL12-P	(Mosca	et	al.,	2012),	GAP-P4	(Obayashi	et	al.,	2013),	
SPani-P	(Tesoniero	et	al.,	2015),	SP12RTS-P	(Koelemeijer	et	al.,	2016),	MIT2016	(Burdick	et	al.,	2017)	and	H2016	(Hosseini,	2016).		

•  CMB	topography	models	include:	MD1987	(Morelli	and	Dziewonski,	1987),	DH1989-M6	(Doornbos	and	Hilton,	1989),	SV2003	(Sze	and	van	der	Hilst,	2003),	
T2010	(Tanaka,	2010),	SBF2012-T	and	SBF2012-TGppv	(SoldaI	et	al.,	2012),	LGW1991-SAF	and	LGW1991-SAT	(Li	et	al.,	1991),	IT1999	(Ishii	and	Tromp,	1999)	
and	KDR2017,	KDR2017-pos	and	KDR2017-neg	(Koelemeijer	et	al.,	2017).		

•  Density	models	include:	IT1999	(Ishii	and	Tromp,	1999),	Tetal2004	(Trampert	et	al.,	2004),	Metal2012	(Mosca	et	al.,	2012),	ME2016	(Moulik	and	Ekstrom,	
2016),	KDR2017,	KDR2017-pos	and	KDR2017-neg	(Koelemeijer	et	al.,	2017),	and	Letal2017	(Lau	et	al.	(2017).	
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(f) hCMB
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(b) CMB topography from normal modes
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(c) Lowermost mantle density
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(b) Peak−to−peak CMB topography up to l = 4
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Fig	3	(right).	Overview	of	normal	
mode	measurements	through	&me,	
showing	(a)	number	of	modes	
measured,	(b)	their	integrated	
sensi&vity	to	lower	mantle	structure,	
and	total	sensi&vity	to	different	
parameters	(Vs,	Vp,	ρ	and	hCMB)	for	
modes	(c-f)	measured	up	to	1999	or	
(g-j)	measured	up	to	2013.	
	
•  Early	measurements	are	

primarily	sensiIve	to	Vs,	thus	
providing	good	constraints	on	
Vs	structure	(a-b,	c).		

•  Current	data	sets	also	contain	
sufficient	Vp	sensiIvity	(a-b,	h).	

•  However,	sensiIvity	to	density	
and	CMB	topography	remains	
much	smaller	making	it	harder	
to	constrain	(a-b,	i-j).	

Fig	4	(le6).	Proper&es	of	CMB	topography	and	
density	models,	showing	(a–c)	power	spectra	of	
individual	models	and	(d–f)	the	correla&on	
between	different	model	proper&es,	which	is	only	
computed	when	both	proper&es	are	provided	in	a	
consistent	manner.		
	
•  CMB	topography	models	derived	from	

body	waves	have	larger	amplitudes	the	
older	the	model	(a).		

•  The	IT2001	CMB	topography	model	has	
larger	power	in	l=4	than	other	models	(b).		

•  For	density,	amplitudes	vary	significantly,	
with	small	power	in	l=4	for	ME2016	and	
Letal2017	(c).		

•  The	CMB	topography	–	Vs	correlaIon	is	
negaIve	for	l=2	except	for	IT1999	(d).	

•  Only	few	models	provide	CMB	
topography	and	density	structure	in	a	
consistent	way,	with	the	two	KDR2017	
models	showing	a	clear	opposite	
relaIonship	for	l=2	(e).		

•  All	exisIng	density	models	negaIvely	
correlate	with	Vs	at	l=2	&	l=4,	except	for	
KDR2017-neg	(f).			

Fig	5	(right).	Correla&on	matrices	for	(a-b)	
lowermost	mantle	density	and	(c-d)	CMB	
topography	for	structure	(a,c)	at	l=2	and	
(b,d)	up	to	l=6.	Thin	black	lines	in	(c-d)	
separate	out	body-wave	and	normal-mode	
models.	
	
•  For	l=2	(a),	there	is	a	strong	agree-

ment	between	density	models,	
except	KDR2017	and	KDR2017-neg.		

•  Note	that	Letal2017	and	KDR2017-
pos	show	a	correlaIon	of	0.96.		

	
•  Body-wave	CMB	topography	models	

do	not	show	much	consistency	(c-d).	
•  Normal-mode	models	correlate	well	

with	each	other	(correlaIon	larger	
than	0.60),	except	for	IT1999.		

Fig	6	(le6).	Comparison	between	
seismic	constraints	and	geodynamic	
predic&ons,	showing	(a–b)	l=2	and	l=4	
peak-to-peak	CMB	topography	
amplitudes	and	(c)	correla&on	of	CMB	
topography	with	velocity.		
	
•  For	l=2	(a),	several	geodynamic	

scenarios	can	reproduce	
seismological	amplitudes.		

•  For	l=4	(b),	most	seismological	
models,	parIcularly	normal-
mode	ones,	have	smaller	
amplitudes	than	predicted.		

•  The	CMB	topography	–	Vs	
correlaIon	varies	(c),	but	most	
consistent	models	of	Fig.	5	have	
a	correlaIon	lower	than	-0.4,	
which	would	rule	out	strongly	
thermochemical	models.	

CMB	topography	

Density	

CMB	topography	

Density	

NegaIve	vote	map														Combined	vote	map																						Average	

	PosiIve	vote	map																Combined	vote	map																						Average	
	

PosiIve	vote	map															Combined	vote	map																						Average	
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