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Abstract

Seismological models of the mantle are routinely developed using a range of techniques applied to different data types. For
quite some time, it has been recognised that on long wavelengths models of shear-wave velocity variations show a large degree
of consistency. More recently, the same has been suggested for models that describe compressional-wave velocity variations.
However, controversy remains regarding models of lower mantle density variations, which provide important constraints on the
nature of mantle structures, e.g. whether they are caused by thermal variations or whether additional chemical heterogeneity
is required. The imaging of density structure is difficult due to a small effect on seismic observables and a strong trade-off with
core-mantle boundary (CMB) topography. In addition, no consistent model of CMB topography variations exists with current
models differing both in amplitude and pattern. Here, I review models of lower mantle density structure and core-mantle
boundary topography from the literature, with the aim to identify which structures are consistent and what we can already

learn from these models. In addition, I discuss ways in which differences between existing models may be resolved in future.
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Analysis: This work is submitted as: Koelemeijer, P. Towards consistent seismological models of the core-mantle boundary landscape. AGU monograph "Mantle upwellings and their surface expressions”, ed. Cottaar et al. Average models are
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overall fit to the mode data.

computed similarly to Becker & Boschi (G-cubed, 2002), while vote maps are computed following Shephard et al. (Scientific Reports, 2017). Geodynamic model predictions are taken from DRT2018 (Deschamps et al., GJI, 2018) and DL2019
(Deschamps & Li, JGR, 2019). Figures have been produced using the Generic Mapping Tools (GMT) version 5 software (Wessel et al., 2013). Please ask for references of individual models included for the average models and vote maps.
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