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Abstract

From interpreting data to scenario modeling of subduction events, numerical modeling has been crucial for studying tsunami

generation by earthquakes. Seafloor instruments in the source region feature complex signals containing a superposition of

seismic, ocean acoustic, and tsunami waves. Rigorous modeling is required to interpret these data and use them for tsunami

early warning. However, previous studies utilize separate earthquake and tsunami models, with one-way coupling between them

and approximations that might limit the applicability of the modeling technique. In this study, we compare four earthquake-

tsunami modeling techniques, highlighting assumptions that affect the results, and discuss which techniques are appropriate

for various applications. Most techniques couple a 3D Earth model with a 2D depth-averaged shallow water tsunami model.

Assuming the ocean is incompressible and that tsunami propagation is negligible over the earthquake duration leads to technique

(1), which equates earthquake seafloor uplift to initial tsunami sea surface height. For longer duration earthquakes, it is

appropriate to follow technique (2), which uses time-dependent earthquake seafloor velocity as a time-dependent forcing in the

tsunami mass balance. Neither technique captures ocean acoustic waves, motivating newer techniques that capture the seismic

and ocean acoustic response as well as tsunamis. Saito et al. (2019) propose technique (3), which solves the 3D elastic and

acoustic equations to model the earthquake rupture, seismic wavefield, and response of a compressible ocean without gravity.

Then, sea surface height is used as a forcing term in a tsunami simulation. A superposition of the earthquake and tsunami

solutions provides the complete wavefield, with one-way coupling. The complete wavefield is also captured in technique (4),

which utilizes a fully-coupled solid Earth and ocean model with gravity (Lotto & Dunham, 2015). This technique, recently

incorporated into the 3D code SeisSol, simultaneously solves earthquake rupture, seismic waves, and ocean response (including

gravity). Furthermore, we show how technique (3) follows from (4) subject to well-justified approximations.
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One-Way Coupled Techniques Utilize Shallow Water Equations
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One-Way Coupled Techniques Utilize Shallow Water Equations
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Within shallow water limit? 
No if:

𝐻
𝜎!
≫ 1

Tsunami propagates over source duration? 
No if: 

𝜎!
𝜎" 𝑔𝐻

≫ 1

Acoustic waves significant?
No if: 

𝑐𝜎"
𝐻

≫ 1

Where, the ocean depth is 𝐻 = 4km, tsunami wave 
speed is 𝑔𝐻, and acoustic wavespeed 𝑐

• We want to examine how 
long duration rupture and 
compressibility affect wave 
generation in the four 
modeling techniques 

• We vary source width (𝜎!) 
and duration (𝜎") in the 
earthquake simulation to test 
different scenarios setups
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Problem setup

(modified from Saito et al., 2019)

Source
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no gravity 
(permanent 

deformation)

Problem setup

(modified from Saito et al., 2019)
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Earthquake 
Simulation

Applied as a 
boundary 
condition

no gravity (leaves 
static sea surface 

deformation)
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Static                
Initial condition 
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Time-dependent 
Sea Surface 
Velocity as 

Forcing
no gravity 

(permanent 
deformation)

Problem setup

(modified from Saito et al., 2019)

Source

Tsunami 
Simulation

Earthquake 
Simulation

one-way 
information 

flow

no gravity (leaves 
static sea surface 

deformation)



27

no gravity 
(permanent 

deformation)

Problem setup

(modified from Saito et al., 2019)
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static sea surface 

deformation)
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Example 1:
Source Width :     𝜎! = 12.5 km
Source Duration : 𝜎" = 500 s

Within shallow water limit? 

Yes:        #
$"
= 0.32 < 1

Tsunami propagates over source duration? 
Yes:  $"

$# %#
= 0.13 < 1

Acoustic waves significant? 
No:    &$#

#
= 187.5 > 1
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Method 1.        
Static  Initial 

condition 

Method 2.        
Time-dependent 
Seafloor Velocity    

as Forcing

Method 3.      
Time-dependent 

Sea Surface 
Velocity as 

Forcing

Method 4.     
Fully Coupled 

Method

We can anticipate 
method 1 (using a 

static initial 
condition) will be 

incorrect



Seafloor displacement as initial conditions
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Source Width :     𝜎! = 12.5 km
Source Duration : 𝜎" = 500 s
Yes:  Within shallow water limit?
Yes:  Tsunami propagates over source duration?
No:    Acoustic waves significant?

Method 1.        
Static  Initial 

condition 

Method 2.        
Time-dependent 
Seafloor Velocity    

as Forcing

Method 3.      
Time-dependent 

Sea Surface 
Velocity as 

Forcing

Method 4.     
Fully Coupled 

Method

Tsunami wave speed 𝑔𝐻



Seafloor displacement as initial conditions Seafloor velocity as forcing
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Source Width :     𝜎! = 12.5 km
Source Duration : 𝜎" = 500 s
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Yes:  Tsunami propagates over source duration?
No:    Acoustic waves significant?

Tsunami wave speed 𝑔𝐻

Tsunami wave speed 𝑔𝐻

Method 1.        
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Method 2.        
Time-dependent 
Seafloor Velocity    

as Forcing

Method 3.      
Time-dependent 

Sea Surface 
Velocity as 

Forcing

Method 4.     
Fully Coupled 

Method



Sea surface velocity as forcing Seafloor velocity as forcing
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Source Width :     𝜎! = 12.5 km
Source Duration : 𝜎" = 500 s
Yes:  Within shallow water limit?
Yes:  Tsunami propagates over source duration?
No:    Acoustic waves significant?

Method 1.        
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condition 

Method 2.        
Time-dependent 
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Method 4.     
Fully Coupled 
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Source Width :     𝜎! = 12.5 km
Source Duration : 𝜎" = 500 s
Yes:   Within shallow water limit?
Yes:   Tsunami propagates over source duration?
No:     Acoustic waves significant?

Method 1.        
Static  Initial 

condition 

Method 2.        
Time-dependent 
Seafloor Velocity    

as Forcing

Method 3.      
Time-dependent 

Sea Surface 
Velocity as 

Forcing

Method 4.     
Fully Coupled 

Method



Example 2:
Source Width :     𝜎! = 12.5 km
Source Duration : 𝜎" = 1.25 s

Within shallow water limit? 

Yes:       #
$"
= 0.32 < 1

Tsunami propagates over source duration? 
No:   $"

$# %#
= 50.5 > 1

Acoustic waves significant? 
Yes:      &$#

#
= 0.47 < 1
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Method 1.        
Static  Initial 

condition 

Method 2.        
Time-dependent 
Seafloor Velocity    

as Forcing

Method 3.      
Time-dependent 

Sea Surface 
Velocity as 

Forcing

Method 4.     
Fully Coupled 

Method

Method 1 and 2 do 
not model 

acoustic wave 
generation, we 
anticipate the 

results will differ 
compared to 

methods 3 and 4



Seafloor displacement as initial conditions Seafloor velocity as forcing
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Full wavefield No acoustic waves
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Full wavefield (one-way coupling) Full wavefield (fully coupled)
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Source Width :     𝜎! = 12.5 km
Source Duration : 𝜎" = 1.25 s
Yes:  Within shallow water limit?
No:    Tsunami propagates over source duration?
Yes:   Acoustic waves significant?
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Source Width :     𝜎! = 12.5 km
Source Duration : 𝜎" = 1.25 s
Yes:  Within shallow water limit?
No:    Tsunami propagates over source duration?
Yes:   Acoustic waves significant?

Method 1.        
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Time-dependent 
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as Forcing
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Example 3:
Source Width :     𝜎! = 1.25 km
Source Duration : 𝜎" = 1.25 s

Within shallow water limit? 

No:        #
$"
= 3.20 > 1

Tsunami propagates over source duration? 
No:   $"

$# %#
= 5.05 > 1

Acoustic waves significant? 
Yes:      &$#

#
= 0.47 < 1
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Method 1.        
Static  Initial 

condition 

Method 2.        
Time-dependent 
Seafloor Velocity    

as Forcing

Method 3.      
Time-dependent 

Sea Surface 
Velocity as 

Forcing

Method 4.     
Fully Coupled 

Method

Method 1 and 2 do not model 
acoustic wave generation, we 

anticipate the results will differ 
compared to methods 3 and 4

*Note, in this study         
Method 1, 2, and 3 all use a 

linear shallow water solver not 
accounting for dispersion 

affects



Seafloor displacement as initial conditions Seafloor velocity as forcing
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With short wavelengths Without short wavelengths
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Sea surface velocity as forcing Sea surface displacement as initial 
condition, without short wavelengths
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Source Duration : 𝜎" = 1.25 s
Yes:  Within shallow water limit?
No:    Tsunami propagates over source duration?
No:    Acoustic waves significant?

Ti
m

e 
(s

)

Ti
m

e 
(s

)

Method 1.        
Static  Initial 

condition 

Method 2.        
Time-dependent 
Seafloor Velocity    

as Forcing

Method 3.      
Time-dependent 

Sea Surface 
Velocity as 

Forcing

Method 4.     
Fully Coupled 

Method



Full wavefield (one-way coupling) Full wavefield (fully coupled)

44

Source Width :     𝜎! = 12.5 km
Source Duration : 𝜎" = 1.25 s
Yes:  Within shallow water limit?
No:    Tsunami propagates over source duration?
No:    Acoustic waves significant?

Ti
m

e 
(s

)

Ti
m

e 
(s

)

Method 1.        
Static  Initial 

condition 

Method 2.        
Time-dependent 
Seafloor Velocity    

as Forcing

Method 3.      
Time-dependent 

Sea Surface 
Velocity as 

Forcing

Method 4.     
Fully Coupled 

Method
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Source Width :     𝜎! = 1.25 km
Source Duration : 𝜎" = 1.25 s
No:    Within shallow water limit?
No:    Tsunami propagates over source duration?
Yes:    Acoustic waves significant?

Method 1.        
Static  Initial 

condition 

Method 2.        
Time-dependent 
Seafloor Velocity    

as Forcing

Method 3.      
Time-dependent 

Sea Surface 
Velocity as 

Forcing

Method 4.     
Fully Coupled 

Method
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Static Initial Conditions 

Final earthquake seafloor or 
sea surface uplift recorded

Set initial tsunami sea 
surface height

Time-dependent 
Seafloor Velocity              

as Forcing

Record earthquake seafloor 
velocity 

Set time-dependent forcing 
in the tsunami mass 

balance

Time-dependent Sea 
Surface Velocity as 

Forcing

Solves earth and ocean 
response without gravity

Use sea surface velocity as a 
forcing term in a tsunami 

simulation

Fully Coupled Method         
(SeisSol)

Simultaneously solves 
earthquake rupture, 

seismic waves, and ocean 
response (including 

gravity)

http://www.seissol.org/

Requires:
Shallow water limit (if short 
wavelength are not filtered) 

"
#!
≪ 1

Tsunami waves do not propagate 
over source duration 

#!
#" $"

≫ 1
And acoustic waves are not 
generated

%#"
"
≫ 1

Requires:
Shallow water limit

"
#!
≪ 1

And acoustic waves are not 
generated

%#"
"
≫ 1

If non-dispersive shallow 
water solver, requires:
Shallow water limit

"
#!
≪ 1

If Boussinesq tsunami solver:
We expect valid in more cases

Valid in all cases

In Summary

http://www.seissol.org/
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Static Initial Conditions 

Final earthquake seafloor or 
sea surface uplift recorded

Set initial tsunami sea 
surface height

Time-dependent 
Seafloor Velocity              

as Forcing

Record earthquake seafloor 
velocity 

Set time-dependent forcing 
in the tsunami mass 

balance

Time-dependent Sea 
Surface Velocity as 

Forcing

Solves earth and ocean 
response without gravity

Use sea surface velocity as a 
forcing term in a tsunami 

simulation

Fully Coupled Method         
(SeisSol)

Simultaneously solves 
earthquake rupture, 

seismic waves, and ocean 
response (including 

gravity)

http://www.seissol.org/

Requires: 
Shallow water limit (if short 
wavelength are not filtered) 

"
#!
≪ 1

Tsunami waves do not propagate 
over source duration 

#!
#" $"

≫ 1
And acoustic waves are not 
generated

%#"
"
≫ 1

Requires:
Shallow water limit

"
#!
≪ 1

And acoustic waves are not 
generated

%#"
"
≫ 1

Valid in all cases

In Summary

If non-dispersive shallow 
water solver, requires:
Shallow water limit

"
#!
≪ 1

If Boussinesq tsunami solver:
We expect valid in more cases

http://www.seissol.org/
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Static Initial Conditions 

Final earthquake seafloor or 
sea surface uplift recorded

Set initial tsunami sea 
surface height

Time-dependent 
Seafloor Velocity              

as Forcing

Record earthquake seafloor 
velocity 

Set time-dependent forcing 
in the tsunami mass 

balance

Time-dependent Sea 
Surface Velocity as 

Forcing

Solves earth and ocean 
response without gravity

Use sea surface velocity as a 
forcing term in a tsunami 

simulation

Fully Coupled Method         
(SeisSol)

Simultaneously solves 
earthquake rupture, 

seismic waves, and ocean 
response (including 

gravity)

http://www.seissol.org/

Requires:
Shallow water limit (if short 
wavelength are not filtered) 

"
#!
≪ 1

Tsunami waves do not propagate 
over source duration 

#!
#" $"

≫ 1
And acoustic waves are not 
generated

%#"
"
≫ 1

Requires:
Shallow water limit

"
#!
≪ 1

And acoustic waves are not 
generated

%#"
"
≫ 1

Valid in all cases

In Summary

If non-dispersive shallow 
water solver, requires:
Shallow water limit

"
#!
≪ 1

If Boussinesq tsunami solver:
We expect valid in more cases

http://www.seissol.org/
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