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Abstract

From interpreting data to scenario modeling of subduction events, numerical modeling has been crucial for studying tsunami
generation by earthquakes. Seafloor instruments in the source region feature complex signals containing a superposition of
seismic, ocean acoustic, and tsunami waves. Rigorous modeling is required to interpret these data and use them for tsunami
early warning. However, previous studies utilize separate earthquake and tsunami models, with one-way coupling between them
and approximations that might limit the applicability of the modeling technique. In this study, we compare four earthquake-
tsunami modeling techniques, highlighting assumptions that affect the results, and discuss which techniques are appropriate
for various applications. Most techniques couple a 3D Earth model with a 2D depth-averaged shallow water tsunami model.
Assuming the ocean is incompressible and that tsunami propagation is negligible over the earthquake duration leads to technique
(1), which equates earthquake seafloor uplift to initial tsunami sea surface height. For longer duration earthquakes, it is
appropriate to follow technique (2), which uses time-dependent earthquake seafloor velocity as a time-dependent forcing in the
tsunami mass balance. Neither technique captures ocean acoustic waves, motivating newer techniques that capture the seismic
and ocean acoustic response as well as tsunamis. Saito et al. (2019) propose technique (3), which solves the 3D elastic and
acoustic equations to model the earthquake rupture, seismic wavefield, and response of a compressible ocean without gravity.
Then, sea surface height is used as a forcing term in a tsunami simulation. A superposition of the earthquake and tsunami
solutions provides the complete wavefield, with one-way coupling. The complete wavefield is also captured in technique (4),
which utilizes a fully-coupled solid Earth and ocean model with gravity (Lotto & Dunham, 2015). This technique, recently
incorporated into the 3D code SeisSol, simultaneously solves earthquake rupture, seismic waves, and ocean response (including

gravity). Furthermore, we show how technique (3) follows from (4) subject to well-justified approximations.
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Static Initial Conditions

Final earthquake seafloor or
sea surface uplift recorded

Set initial tsunami sea
surface height

Requires:
Shallow water limit (if short
wavelength are not filtered)

H

— K1

Oy
Tsunami waves do not propagate
over source duration

g
— > 1
Gt\/ﬁ

And acoustic waves are not
generated

Cot

—>1
H

Time-dependent
Seafloor Velocity
as Forcing

Record earthquake seafloor
velocity

Set time-dependent forcing
in the tsunami mass
balance

Requires:
Shallow water limit
H
—<K1
Or
And acoustic waves are not

generated
COt

—>1
H

Time-dependent Sea
Surface Velocity as Fully Cz)sue[?g%lll;/lethod

Forcing

Simultaneously solves

Solves earth and ocean
earthquake rupture,

response without gravity seismic waves, and ocean
response (including
gravity)
Use sea surface velocity as a
forcing termin a tsunami
simulation http://www.seissol.org/
. J
If non-dispersive shallow Valid in all cases

water solver, requires:
Shallow water limit

2«1

Or
If Boussinesq tsunami solver:
We expect valid in more cases

In Summary
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