
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
93
23
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Spatio-temporal generation of morphological Plant features for

yield prediction before harvest from Visual Image input using

Progressively Growing GANs

Dhruv Sheth1,1

1EdgeImpulse Inc.

November 30, 2022

Abstract

Recent Innovations in Precision Agriculture (PA) are driven by Computer Vision and Data Processing systems to quantify

plant parameters. Quantitative analysis of Plant Phenotyping in PA and monitoring morphological traits is a protracting

process, precluding the objective and phenotyping pipeline. Greenhouses growing Genetically Modified (GM) crops need to

be maintained at constant environmental and simulated conditions. Multiple parameters have to be controlled and regulated

inside a greenhouse for effective growth of crops and yield maximisation. Not at all times are these factors derived and so,

yield maximisation in greenhouse is an experimental approach to new varieties. For deduced environmental parameters and

conditions for certain crops, few other biotic and abiotic factors can hinder or affect growth in certain ways that are not always

factored in during calculating parameters conducive for plant growth. Such factors may not always be affecting parametral

calculations, but transpose visual cues on plant growth environment such as spectral change in soil values, or minute changes like

leaf reflectance or visible changes in plant stimuli to biotic factors. Plant growth is inclusive of multiple environmental variables,

and yield maximisation approaches are experimental to finding the optimum derived value for these variables. Computer Vision

provides a catalytic approach to predicting optimum parameters for yield maximization in phenomics. Computer Vision and

Generative Adversarial Networks (GAN)’s offer a catalytic approach to the time-consuming process, providing a solution to

the phenotyping bottleneck. This research proposes a concept of curating data of plant growth over time to predict conditional

growth and responsive stimuli of the plant under different situations and how this can affect crop yield. The method proposed

here is a non-invasive approach to the existing destructive biomass estimation methods and Frameworks. This methodology of

the research focuses on utilizing image parameters modelled using a time series Progressively Growing Generative Adversarial

Networks PGGAN to map plant growth patterns and progressive variance in biomass of plant in the Spatio-Temporal Domain.

These Generative networks evaluate and predict based on merely raw pixel input excluding dependence on further constraints,

feature vectors or parameters influencing data.
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1 Abstract

Recent Innovations in Precision Agriculture (PA) are driven by Computer Vision and Data Process-
ing systems to quantify plant parameters. Quantitative analysis of Plant Phenotyping in PA and
monitoring morphological traits is a protracting process, precluding the objective and phenotyping
pipeline. Greenhouses growing Genetically Modified (GM) crops need to be maintained at constant
environmental and simulated conditions. Multiple parameters have to be controlled and regulated
inside a greenhouse for effective growth of crops and yield maximisation. Not at all times are these
factors derived and so, yield maximisation in greenhouse is an experimental approach to new varieties.
For deduced environmental parameters and conditions for certain crops, few other biotic and abiotic
factors can hinder or affect growth in certain ways that are not always factored in during calculating
parameters conducive for plant growth. Such factors may not always be affecting parametral calcula-
tions, but transpose visual cues on plant growth environment such as spectral change in soil values, or
minute changes like leaf reflectance or visible changes in plant stimuli to biotic factors. Plant growth
is inclusive of multiple environmental variables, and yield maximisation approaches are experimental
to finding the optimum derived value for these variables. Computer Vision provides a catalytic ap-
proach to predicting optimum parameters for yield maximization in phenomics. Computer Vision and
Generative Adversarial Networks (GAN)’s offer a catalytic approach to the time-consuming process,
providing a solution to the phenotyping bottleneck. This research proposes a concept of curating data
of plant growth over time to predict conditional growth and responsive stimuli of the plant under
different situations and how this can affect crop yield. The method proposed here is a non-invasive
approach to the existing destructive biomass estimation methods and Frameworks. This methodology
of the research focuses on utilizing image parameters modelled using a time series Progressively Grow-
ing Generative Adversarial Networks PGGAN to map plant growth patterns and progressive variance
in biomass of plant in the Spatio-Temporal Domain. These Generative networks evaluate and pre-
dict based on merely raw pixel input excluding dependence on further constraints, feature vectors or
parameters influencing data.

1.1 Fast-Forward Session Slide
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Recent Innovations in Precision Agriculture (PA) are driven by Computer Vision and Data Processing sys-
tems to quantify plant parameters. Quantitative analysis of Plant Phenotyping in PA and monitoring mor-
phological traits is a protracting process, precluding the objective and phenotyping pipeline. Computer
Vision and Generative Adversarial Networks (GAN)’s offer a catalytic approach to the time-consuming
process, providing a solution to the phenotyping bottleneck. This research proposes a concept of curating
data of plant growth over time to predict conditional growth and responsive stimuli of the plant under
different situations and how this can affect crop yield. The method proposed here is a non-invasive ap-
proach to the existing destructive biomass estimation methods and Frameworks. This methodology of the
research focuses on utilizing image parameters modelled using a time series Progressively Growing Gener-
ative Adversarial Networks PGGAN to map plant growth patterns and progressive variance in biomass of
plant in the Spatio-Temporal Domain. These Generative networks evaluate and predict based on merely
raw pixel input excluding dependence on further constraints, feature vectors or parameters influencing
data.

1. INTRODUCTION

A. Problem Statement and discussion

Phenomics is the systematic study of phenotypes coined by
Steven A. Garan et al.[1] as emerging transdisciplinarity dedi-
cated to the systematic study of phenotypes on a genome-wide
scale. From decades quantifiable phenotyping and assessing
parameters presented invasive methods and techniques. This
task to a lot extent, was manual and hindered accurate as well
as time-efficient measurement and assessment. All these ap-
proaches arguably present one common interdisciplinary goal,
i.e increasing phenotyping throughput and maximizing yield
quantitatively. However such approaches survey crops and
present data analysis delayed enough to not procure any room
for yield maximization. Multiple different approaches have
claimed to observe and analyze crop parameters over complete
growth period and establish a fine relation between temporal
and yield estimation patterns, but such proposed methods ob-
tain results over a large set of data points, generalized over a
specific factor.

Fig. 1. An example of GM greenhouse with monitored and
controlled environmental and spatial conditions source - The
Independent

https://www.independent.co.uk/news/science/future-gm-greenhouses-where-monsanto-plays-god-future-planet-10128968.html
https://www.independent.co.uk/news/science/future-gm-greenhouses-where-monsanto-plays-god-future-planet-10128968.html
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B. Importance and Relevance
Greenhouses growing Genetically Modified (GM) crops need to
be maintained at constant environmental and simulated condi-
tions. Multiple parameters have to be controlled and regulated
inside a greenhouse for effective growth of crops and yield max-
imisation. Not at all times are these factors derived and so,
yield maximisation in greenhouse is an experimental approach
to new varieties. For deduced environmental parameters and
conditions for certain crops, few other biotic and abiotic factors
can hinder or affect growth in certain ways that are not always
factored in during calculating parameters conducive for plant
growth. Such factors may not always be affecting parametral
calculations, but transpose visual cues on plant growth environ-
ment such as spectral change in soil values, or minute changes
like leaf reflectance or visible changes in plant stimuli to biotic
factors. Plant growth is inclusive of multiple environmental
variables, and yield maximisation approaches are experimen-
tal to finding the optimum derived value for these variables.
Computer Vision provides a catalytic approach to predicting
optimum parameters for yield maximization in phenomics.

Fig. 2. An example of High Tunnel farming of crop under
controlled environmental conditions source - Robin et al.

Another example to enabling high throughput phenotyp-
ing under controlled conditions is through high tunnel farming
systems. Such systems allow all year farming of crops under
controlled environmental conditions so crops can be grown later
into fall, or earlier in spring and throughout the year as well.
However while growing year around, the environmental vari-
ables need to be precisely maintained and contained to yield
high throughput in crop harvest. As mentioned by Elizabeth
et al. [2] in her research, Environmental conditions like tem-
perature, relative humidity and light as well as other external
factors affect crop growth, and tunnels under controlled condi-
tions can affect the factors, but require adequate and optimum
environmental values for high throughput phenotyping. In cur-

rent greenhouse and high tunnel environments, environmental
variables are measured using hygrometer (humidity) and tem-
perature sensors, which are not scalable across multiple plants,
as well as do not incorporate visual traits possessed by plants
that hinder growth such as leaf reflectance, temporal evaluation
of LAI and inflorescence anthesis, and phenotyping stress effect
on stems and foliage. Visual telemetry monitoring systems as
proposed in this approach help solve the existing limitations to
maximising yield, enabling autonomous modes of monitoring
and comply to meet the second UN’s Sustainable Development
Goal (SDG), to implement resilient agricultural practices to increase
productivity and production

C. Approach to the Method and Methodologies
Many of these proposed approaches are observed to be inva-
sive/destructive and not testable over Real world factors. Com-
puter Vision based phenomics has yielded significantly favor-
able results studied in several papers and it’s objectively iterated
to solutionise phenotyping bottlenecks. Various Deep Learn-
ing Methods and Convolutional Networks, Frameworks have
claimed to procure high accuracy and efficiency in Fruit Detec-
tion, and occlusion based identification in different environmen-
tal conditions and plant types. Data analysis and Feature Ex-
traction as well as Feature Engineering are integral components
of phenomics. Early detection of plant diseases using GAN’s
presented by Ahmed A. Gomaa et al.[3] present a classification
system based on real-time images for early identification of plant
infection prior of onset of severe disease symptoms using Cy-
cleGAN networks which use Pix to Pix conversion to overlay
predicted diseases on plant. However, the CycleGAN network
solely predicts the generative description of disease on plant
and does not factor-in other parameters influencing diseases, as
well as is unable to predict a growth pattern on arbitrary images
and latter disease formation outcome. This method does not
produce descriptive outcome while evaluating Leaf Area Index
(LAI), and hence a Progressively Growing GAN (introduced
later) is used. Another Deep Neural Network (DNN) method
proposed by Inkyu et al. [4] involves subsampling cultivars us-
ing UAV for weed sampling and vegatation monitoring, which
was accurate and reliable, however expensive and unscalable.
Few other research methods imposed constriction in Real-time
Yield Estimation, Predction, and Analysis. A small sample of Re-
search papers [5–7] offer highly efficient phenotyping research
and algorithms individually, but in discrete forms.

Klukas et al.[8] in his research accurately points out that Phe-
notyping tools in common use are labor-intensive, time-consuming
and costly, and require destruction of plants at fixed times or at par-
ticular phenological stages. The goal of current plant phenotyping
is to raise the accuracy, precision, and throughput of phenotype in-
ference at all levels of biological organization, while reducing costs
and labor through mechanization, remote sensing, improving data
integration, and experimental design. Research in phenomics is
yet to explore all the aspects of Temporal Generative prediction
of plant growth. While Spatial evaluation of plant parameters
have been proposed in various research models, temporal pre-
diction of time-frame of plants in visual context is to be fully
explored. Generative prediction of plant growth presents an
outline of the different factors contributing to selective growth
and environmental stresses hindering growth. Collectively, this
technology enables crop improvement in response to future and
present climatic conditions and demographics. Some constraints
and stresses affect the plant phenotype in a specific manner, and
such conditional variances if generatively modelled can help in

https://alifeinthewild.com/growing-corn-in-a-high-tunnel/
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early understanding of factors involved in growth. Unmanned
autonomous agricultural units can employ the use of such a
methodological approach understand stress on plant preceding
harvest, to inoculate biostimulants which influence phenotypic
traits and improve yield by enhancing crop stress-tolerance.

D. Proposition and Introduction to solution
To enable spatio-temporal prediction of growth frames of in-
put plant data, spatio-temporal 3d convolutions are used in all
encoder and decoder modules in the GAN network. GANs,
introduced by Goodfellow et al is indisputably one of the fastest
emerging Network in Agricultural Domain. As elaborately dis-
cussed above, GANs entail an important task in Spatial and Tem-
poral ingestion and objective prediction of plant traits to assess
plant growth and conditional stimuli on different indices such
as Leaf fresh weight (LFW), leaf dry weight (LDW), leaf area
Index (LAI), Stem Diameter Variation(SDV). Biomass and other
genotypic and phenotypic traits of plants under environmental
stress or constraints. Current conventional approaches to GAN
in precision agriculture were circumscribed to Synthetic data
generation applications proposed by Ibis Prevedello et al.[9]
or Pixel transpose approaches in disease prediction. Current
systems and GAN architectures proposed by Marco Körner et
al.[10] have enabled Temporal as well as spatial Convolution
types with the help of Progressively Growing GANs otherwise
known as PGGAN’s to accelerate highly accurate, detailed Gen-
erative predictions. The aim of the proposed research is to enable
adapting to the crop setup sample according to the observed
predictions objectively through predicted spatial and temporal
predictions for further crop frames. Subsequently, this system
helps in prediction of further plant traits generatively for testing
Genetically Modified (GM) crops under simulated conditions
to get a predictive outcome comparable to established outcome
couple of weeks prior to yield harvest. While the current system
has been limited to development on different genotypes of Ara-
bidopsis Thaliana plant species, such a concept can be used in
quantitative prediction of multiple varieties of GM crops. GM
crops have been developed with the objective of maximizing
yield and also making the plant sustainable to various biotic and
abiotic environmental constraints and stresses keeping in mind
biotechnology practices. While such a system has been widely
adopted, multiple crops fail to reproduce traits of crop origin
under certain environmental conditions and such a cultivar is
of no use. This testing system is a long exhaustive process and
simulating environmental conditions for a long period solely for
testing plant optimum to be produced under GM is not always
sustainable. An autonomous system, similar to what is proposed
above can not only help in predicting visual generative models
of the plant in the form of temporal and spatial analysis, but
also helps in reducing human intervention and maximize yield
through prediction.

With the integration of autonomous data collection ap-
proaches such as motorized plates for translational data collec-
tion approach 3 and another robot navigation system in green-
houses by M. Pattinson et al. [11] (intially developed for pest
monitoring) are efficient solutions for data collection systems to
be ingested in GAN’s to model yield growth, as proposed in the
next few sections.

2. RELATED WORK

Recent Innovations in precision agriculture are devised with the
use of multiple technological frameworks or Machine Learning

Fig. 3. Translation autonomous phenotyping methodology for
data collection source - Paula Ramos et al.

Fig. 4. Autonomous telemetry system for data collection using
high precision GNSS geolocationing system by M. Pattinson et
al. [11]

and Robotic approaches. In the past decade, a boom in use of
Computer vision approaches to DNN’s and CNN’s observed
high accuracy in classification and object detection approaches.
Temporal approaches to Plant parameters prediction were ob-
served to base their approach on numerical time series data
arrays. While these temporal predictions yielded accurate re-
sults, these approaches have been limited to prediction upon
numerical data observed, measured and ingested, impeding
the objective of autonomous precision agriculture and self sus-
taining systems. Observations on research methods proposed
previously demonstrate numerical temporal data predictions
influenced by factors such as Climate or Temperature(Degree
Day Predictions), soil constituents [12], growth influenced by
different stresses such as Nitrogen deficiency or water/weed
stress. Few Raw methods propose predictions based on Change
in Leaf Area or parameters like LFW, LDW, SDV et al. Such
methods were followed by multiple different applications with
Computer Vision. Frameworks such as Recurrent Convolu-
tional Neural Networks(R-CNN), Mask R-CNN, Deep Neu-
ral Networks(DNN), Convolutional Neural Networks(CNN),
Long Short term Memory Cells(LSTM) and Support Vector Ma-
chines(SVM) and Regression(SVR) have achieved commendable
accuracy in object detection approaches in precision agriculture.
Such applications include fruit detection and counting methods,
plant disease classification and other similar applications(eg -
My research on Apple plant disease estimation using Yolov4
framework) for Spatial Classification. PGGAN’s propose gener-
ative combined method of Spatial and Temporal prediction from
previous two methods. Compared to the previous methods,
which used temporal analysis on one dimensional input data
values and singular parameters, PGGAN’s are 3 Dimensional

https://arxiv.org/abs/1406.2661
https://github.com/precision-sustainable-ag/OpenCV_Competition2021/wiki/2.-Data-Collection
https://www.hackster.io/dhruvsheth_/hydra-openvino-dl-based-remote-plant-monitoring-feeding-84737e
https://www.hackster.io/dhruvsheth_/hydra-openvino-dl-based-remote-plant-monitoring-feeding-84737e
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Convolutional Networks without relying on input parameters,
take in raw pixel values and other exposed plant traits to predict
future frames.

A. Previous Approaches to Spatial and Temporal GAN’s
Time Series Generative Adversarial Networks or TGAN’s was
introduced in 2019 to generate sequential time series data.

Fig. 5. An example of 1 Dimensional Temporal TGAN Net-
work with ingested sequential IMU data points

An equation to describe the supervised loss function of
TGAN in the figure 5 described can be written as,

Lsupervised = Es,x1:T∼p

[
∑

t
‖ht − gX (hS , ht−1, zt)‖2

]
(1)

where the equation and functions in TGAN are elaborately
explained by Eoin et al.[13] in his paper.

TGAN’s can predict discrete or sequential data points (exam-
ple - Acoustical Data) while respecting ingested data pattern.
These TGAN’s for a long time were applied to numerical data
points and with PGGAN, as 3D convolutional networks to gen-
erate combined image pixels, with 2 Dimensional Generated
Image data and another dimension addressed to Temporal pre-
diction. Spatial GAN’s are making their way into precision
agriculture, with one core benefit that they learn and generate in
an unsupervised manner which means that they do not require
reference or evaluation data points or values to test and predict
upon. Reference data, which available upon harvest is limited
and GAN’s offer meaningful generated predictions without the
evaluation data points in an unsupervised manner. CycleGAN’s
consistently used in agriculture applications such as visual gen-
eration of plant disease spread on leaves or modelling spread
or decay of bacteria on plants use pix2pix transpose methods to
convert original pixels to generated pixels on a confined parame-
tral region.

These Generative methods are also useful in creating near-
identical but distinguishable image data points to help create
synthetic data in the form of multi-modal output for model train-
ing. Such methods also help translate pixels in visual images
to highlight certain pixels useful in calculation of certain plant
indices through solely visual RGB inputs. However such GAN’s
are limited and confined to Spatial Generation without the vari-
able of time, i.e fail to generate progressive variance in images
temporally.

3. MATERIALS AND METHODS

This study comprised of experiments to dynamically utilize a
State-of-the-art Generative Adversarial framework for spatio-

Fig. 6. An implementation of CycleGAN in the form, Leaf-
GAN by Quan Huu et al. [14]

temporal generative mapping of plant phenomics and evaluate
the efficacy of the generated data on series of Vegetative Indices,
Structural Similarity Index Measures, Fréchet inception distance
(FID) scores of the generated data under multiple environmental
stresses. The deduced correlation will be used in evaluating the
optimum stresses and environmental variables conducive for
maximizing yield in temporally predicted frames.

A. Datasets
In the proposed paper, I use two phenotyping datasets differ-
ing in throughput and quantitatively using PGGAN’s to gen-
erate predicted crop yields for the frames. With the pandemic
widespread during research, it wasn’t favorable to collect data
from plant phenotyping specimens in the school laboratory un-
der different controlled environments. Hence, choosing evalu-
ated and properly curated datasets under monitored conditions
from Open Access research papers made available for academic
purposes was the best choice. The first dataset used in the re-
search was of Arabidopsis Thaliana plants in a high throughput
environment. The second dataset, were of Beta vulgaris (sugar
beet plants) of the variety ’Samuela’ in KWS Suisse SA, Basel,
Switzerland under different stresses.

A.1. Arabidopsis Thaliana Dataset

Arabidopsis Thaliana is an annual weed which has been used
in multiple research methods for phenotyping over the past
decade and is an important plant model. One of the reasons for
the growing interest in Thale Cress, Arabidopsis thaliana is due
to the fact that it grows, reproduces and responds to external
environments or stresses similar to other commercial plants and
crops. This plant can easily be cultivated in a small confined
lab or greenhouse, and is inexpensive as well as allows simu-
lating conditional growth as observed in multiple other crops.
With the ability to mutagenize easily and possessing a compara-
tively small genome, enables extensive genetic experiments and
covariance in genotype-phenotype correlations.

Despite being recognized as a non-commercial crop and hav-
ing a low economic value, it has proven to be a sustainable plant
model to simulate phenotype and genotype growth patterns
across multiple crops. Arabidopsis contains a diploid genome
with under 30,000 protein encoding genes distributed over 5
chromosomes to enable scalable research over different genome
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Fig. 7. (Left) Figure displays entropy in Arabidopsis Thaliana phenotype with variance in genome type and multiple genome
discovery facilitated. (Right) Data Acquisition Method for capturing images of Arabidopsis Thaliana under controlled environment
and Interference of light [15]

and phenotypical patterns[16]. For a a particular environmen-
tal condition and under different stresses, if the Arabidopsis
Thaliana phenotype performs effective under these conditions
and a corresponding genotype can be derived. With the high
covariance in genotypical similarity, a similar gene can be found
in other plant accelerating research in maximizing yield.

In this research paper, to accomplish the objective of proposed
method, I utilize the Arabidopsis Thaliana Dataset curated by
Hannah et al. [15] under the background of the EPSRC funded
project “Dynamic Modelling of Plant Growth with Computer
Vision”. The dataset is acquired in a top-down view format
in visual RGB imagery, in a high throughput growth environ-
ment. The dataset includes segmented area for the correspond-
ing leaves and plant.

These Arabidopdis Thaliana plants, accession Columbia (Col-
0) were grown in 180ml compost (Levington F2 + 205 grit sand)
in PSI 6cm square pots, as described in Open Access Dataset.
These plants were grown to 75% field capacity (region extent
covering the field/pot) with gravimetric watering in a 10 hour
day in a glasshouse regime maintained at 15°C to 20°C on the PSI
platform. The seeds were sown and the plants were pricked after
10 days into weighted pots. 80 plants were grown, split between
4 trays. To lessen the probability of plants overlapping adjacent
plants in trays at a later stage of growth, certain neighbouring
plants were removed between 30 to 53 days after sowing and the
plants were harvested at 56 days after sowing. Imaging for each
plant started at 21 days after sowing and continued for a total of
35 days. The top-view image of the plant was captured each at
an interval of 15 minutes, which started at 9am and continued
till 8pm daily.

Since this dataset is curated such, and plants are grown in a
high throughput phenotyping environment, no environmental
constraints or stresses were introduced in growing the plant. The
plant was intended to grow in ideal conditions, and the intent of
the dataset used for the GAN model was to replicate growth in
high throughput environment while simultaneously also testing
the efficacy of another dataset under environmental and biotic
stresses to ensure Generated temporal and spatial sequences
maintain high accuracy even in biased, or continuously varying,
data with introduced anomalies as well as in ideal conditions.

Table 1. Attributes and data of annotated plant images from
Tray 31

Plants
per

image

Images Total
plants

Ecotype

20 12 240 Col-0

18 9 162 Col-0

16 8 128 Col-0

14 7 98 Col-0

12 4 48 Col-0

10 3 30 Col-0

Total 43 706

Table 2. Attributes and data of annotated plant images from
Tray 32

Plants
per

image

Images Total
plants

Ecotype Days
after

sowing

20 4 80 Col-0 21,22,25,28

18 2 36 Col-0 31,34

16 2 32 Col-0 37,40

14 2 28 Col-0 43,46

12 2 24 Col-0 49,52

10 1 10 Col-0 55

Total 13 210
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Fig. 8. Growth of different Arabidopsis Thaliana plant pots under different Temporal sequences

Fig. 9. Images of Segmented leaves, plant and RGB Visual
image in the Dataset

Training GAN’s require an upwards of 100k images in general,
but this solution maintains generation of high resolution images
for training dataset under 700 and 500 images respectively for
each dataset. Acquisition of images for plant phenotyping is
usually limited for training of Neural Networks. Under this
constraint, developing a GAN Network capable of generating
similar images from small dataset has been one of the challenges,
but also one of the aims of the project.

A.2. Sugar Beet plants (Beta vulgaris) Dataset

Contrary to the initial Dataset of Arabidopsis Thaliana Col-0
Ecotype grown under high throughput conditions, this dataset
aims to replicate Real world multivariate environmental fac-
tors affecting crop growth in a controlled environment. The
plant cultivars grown in this dataset are grown under multiple
stress factors such as weeds, drought and nutrient deficiency,
and other multiple combinations of such constraints containing
weed induced nitrogen contraint or weed induced hydration
deficiency. Such multiple environmental constraints on crops
in controlled environment intend to simulate real conditions of
crops where certain environmental variables and parameters
aren’t conducive for crop growth or prevent maximization of
yield. This dataset also visually replicates the real world scenario
under multiple aspects with distorted varied geometry in each
image, varying illuminance, varying dimensions for Region of
Interest (ROI) and certain measured errors in distance of cap-
tured images, and a smaller dataset compared to the first one
with under 500 images. The dataset generated spatio-temporal
outputs can be used to predicted the optimum growth environ-
ment from visual traits as well as deriving the soil pattern with
optimum use of bio-fertilizers or other inputs to plants enabling
Variable Rate Application (VRA) methodology on plant culti-
vars. All such visual, and environmental constraints make this
a perfect dataset to replicate the Real world scenario and test
the efficacy of the model in adverse conditions claiming the ro-
bustness of the utilized novel Generative Adversarial Network
(GAN) architecture in training the model in a simulated setting.

The curated dataset consists of prevalent Spatio-temporal
visual, Infrared and Spectral data, each of the same set of plant
cultivar captured of sugarbeet growth under optimal condi-
tions, high throughput singleton condition with surplus Nitro-
gen fertilization and abundantly under varying environmental
stresses, Nitrogen deficiency, low/medium/high weed stress
and also covarying weed stress with Nitrogen and Water defi-
ciency. Compared to the previous approach consisting of two
trays and multiple plant arrays with images acquired every 15
minutes, this approach consists of 30 trays, with single plant
and image acquired biweekly, reducing the overall set of im-
ages twice to a total of 432 images of different plants captured
and 16 Spatio-temporal images of the same plant. The curated
dataset contains over two months of data, wherin visual, stereo
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Fig. 10. Dataset of Sugar Beet (Beta Vulgaris) used in training of PGGAN model. The image order in rows represents different
periods of plant growth, in the order frame 3, frame 6, frame 9 and frame 16 (pre-harvest) respectively.

Fig. 11. Example of Sugar Beet grown in optimum conditions
in a greenhouse to maximize yield. source - Agritech Portal

infra-red and multispectral images are biweekly collected. The
Multispectral and infra-red pairs do not contribute to training
of the PGGAN Neural Network, due to the reduced raw image
features available. However, these multispectral and Infra-red
images can be used to evaluate generated visual images of dif-
ferent parameters. During the time of the harvest, the dataset
also provides images of obtained sugarbeet crop and the yield
of sugarbeet. The proposed research will also establish correla-
tion in Projected Leaf Area (PLA), deduced maximum yield for
Optimum Environmental Variables and PLA Yield Contraction,
Optimum Nitrogen Nopt, Optimum Hydration Hopt, Yield Con-
traction through Weed Stress Wsyc generated by the PGGAN.

Plant Phenotyping and Dataset acquisiton was conducted
at ETH research station for plant sciences in Lindau Eschikon,
Switzerland by Raghav Khanna et al. [17] under Creative Com-
mons License. These Sugar beet plants (Beta Vulgaris) of the
specific variety Samuela from (KWS Suisse SA, Basel, Switzer-
land) were grown in a greenhouse chamber under simulated,
but controlled environmental conditions with Temperature vary-
ing from 24°C to 12°C from day to night respectively, and the
relative humidty varying from 50% to 80% with an average ob-
served 60% throughout the day for a period of 2 months. 6 sugar
beet plant cultivars each, were sown in 30 trays for a period of
2 months, using a peat substrate (Klasmann substrate 1 and 2).
Depending on the allocated hydration levels to each plant under
different stresses, regular watering was volume controlled, and
applied manually. After the period of 2 months, the plants were
harvested. Different stresses were introduced in these plants
as discussed above, with severity increasing from low to high
and weed induced secondary stresses were also introduced in
selected samples. Table 3 elaborately explains corresponding
constraints and their severity with crop samples and soil types
and number of boxes being affected by each constraint.

Induced Weed Stress Wscstr : Replicating the climatic and en-
vironmental conditions or real world to test robustness of the
PGGAN has been one of the aims of the project, and hence,
a Weed Stress introduced in the dataset has been beneficial in
testing systematic responsive generation by identification of
anomalies in plant growth as weeds and systematically generat-
ing morphological traits was evaluated. The weed constraints
introduced in Beta Vulgaris are two different monocytyl and di-

agritech.tnauc.ac.in
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Table 3. Environmental constraints corresponding to box number and severity of constraint induced in Beta Vulgaris

Description n(Boxes) Soil
Type

Water
Input
Hprov

Nitrogen
Input
Nprov

Weed
Pressure
Wscstr

Box Numbers

Control 3 2 Sufficient High None 1,2,3

Low N 3 1 Sufficient Low None 19,20,21

Med N 3 2 Sufficient Medium None 4,5,6

Med weeds 3 2 Sufficient High Medium 7,8,9

High weeds 3 2 Sufficient High High 10,11,12

Dry 3 2 Low Medium None 13,14,15

Weed Only Dicot 1 2 Sufficient High High NaN

Weed Only Monocot 1 2 Sufficient High High NaN

Weed Only Mixed 1 2 Sufficient High High NaN

Low N - Med Weed 3 1 Sufficient Low Medium 22,23,24

Drying - Med N - High Weed 3 2 Low Medium High 16,17,18

Drying - Low N 3 1 Low Low None 25,26,27

cytyl weeds. For monocyte weeds, three different grass species
were used - Poa pratensis L., Lolium perenne L. and Festuca
rubra agg. L., in variable combinations.

Fig. 12. Left shows Dicot weeds, Centre shows monocot
weeds and Right shows a mixture of dicot and monocot
weeds at intervals 4 weeks apart inducing stress on the plant
growth. These weeds grown individually for representation,
are planted in plant trays during the actual cycle.

The Dicot weeds used in the experiment are locally collected
in the form, Stellaria media (L.) Vill. (common chickweed).
During the experimentation, as mentioned in Table 3, differ-
ent severity levels of weed stresses were used which affected
yield contraction in different manners. Three different levels of
weed density used were low weed stress, having few or none
weeds affecting the crop, medium weed stress having 2 to 4
dicotyledonous weeds, and high weed stress having 4 to 8 di-
cotyledonous weeds and 2 to 4 monocotyledonous weeds, sig-
nificantly higher. It was observed that Medium weed stress
have almost negligible effect on the crop growth, and high weed
stress to some extent had an effect but not on a deeper extent, as
compared to Water constraint.

Fig. 13. Explaining environmental stresses in dataset and their
temporal impact on visual traits

Drought Stress/Water constraint Hcstr : This stress constraint im-
poses the most visually observable contraction on plant and is
on a higher severity scale compared to the Weed Stress. Two
levels of severity of the water constraint were added to the plant,
with limited (drying) plant boxes and the other one with rela-
tively sufficient hydration, being irrigated on a regular interval
of 2 to 3 days. The cultivars with water constraint did not have
continuous long duration constraint which would cause wilting,
rather alternative irrigation was carried out, where the plant
was watered regularly for a duration of about 2-3 weeks and
only after that was the water constraint imposed, which was
continued for a specific period, after which proper irrigation
was provided for 2 weeks preceding senescence.

Nitrogen Stress Hcstr: Following drought stress, Nitrogen stress
had a high magnitude of contribution in inducing Yield Contrac-
tion (Ycntrn). Plot 14 provides data that Medium Nitrogen levels
in cultivar has nearly the same Ycntrn as much as by Medium
Weeds, but Lower Nitrogen levels in soil has significantly higher
Ycntrn as compared to high weeds in cultivar which explains
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Fig. 14. Visual plot comparing Leaf Fresh Weight, Beet Fresh Weight, Leaf Dry Weight and Beet Dry Weight of the dataset of 30
samples with 3 samples corresponding to environmental stresses imposed on each cultivar curated in the experiment.

the magnitude of Ycntrn of Nitrogen level co-variation propor-
tionality with Fresh Weight of Leaves and Beet. 3 conditions for
Nitrogen stress, deficient, medium and surplus were imposed on
cultivars simulating conditions of 2, 4 and 8 x 10−3 kg/m2. The
low Nitrogen soil cultivar had bare-minimum supply to initiate
initial plant growth, the medium Nitrogen cultivar had Nitrogen
supply to intiate 1-2 months of growth and the surplus Nitrogen
supply cultivar received additional Nitrogen each week.

There were also cultivars where multiple constraints were im-
posed. Example in containers from 16 to 18, High Weed Induced,
Medium Nitrogen stress and drying were the constraints. With
Drought Stress, Nitrogen Stress and Weed Stress as Hcstr, Ncstr,
Wscstr respectively, Yield Contraction Ycntrn can be expressed
as a function of these variables. The maximum and minimum
values of Fresh Leaf Weight LeafFrWt can be expressed in upper
limit and lower limit of the observed values in cultivar 16-18
under same environmental stresses.

Y16−18
cntrn = f (Wshigh , Nmed , Hlow) 249.75g ≤ LeafFrWt ≤ 274.54

(2)
The Geometric mean for the LeafFrWt is calculated from the

obtained three discrete values observed in cultivars 16 -18, which
is then used for calculation of the approximate Y16−18

cntrn , consider-
ing the Leaf Fresh Weight in Optimal condition to have a Ycntrn
= 0

LeafFrWt :

(
c=18

∏
c=16

LeafFrWt

) 1
3

= 3
√

L16
FrWtL

17
FrWtL

18
FrWt = 261.54g

(3)
The Yield Contraction, measured with respect to Fresh Leaf

Weight in Control cultivar (Tray 1 to 3). The Yield Contraction
as a function of Environmental stresses 2, is a difference of Fresh
Leaf weight measured (Tray 16 to 18) and Fresh Leaf Weight
under Optimum Environmental parameters(Tray 1 to 3)

Y16−18
cntrn = Leafopt

FrWt − Leafmeas
FrWt (4)

The optimum Fresh Leaf Weight was found out to be
1557.418g using the Geometric Mean of tray 1, 2 and 3 from
3.

Hence the Yield Contraction for Tray 16 to 18 was derived
to be 1295.878g under the constraints of three environmental
stresses of low, medium and high severity. Yield Contraction
would serve as an important index for comparing the optimum
Projected Leaf Area (PLA) affected by different stresses and
n(stresses) for generated frames by the PGGAN through Visual
traits.

For comparison of the generated visual models by the PG-
GAN of the dataset, initial and exhaustive visualization of the
available data in the dataset is important. This helps to get a
thorough understanding of the correlation and covariance of
different feature vectors or ground truth observations with pre-
dicted generated traits in performance evaluation. Presenting a
visual representation of different indices curated here, presents
a benchmark for comparing indices and metrics evaluated in
generated frames. Covariance in different ground truth feature
vectors and predicted feature vectors were established using
multivariant regression as well as linear regression models pre-
sented in further sections for evaluation. Certain anomalies in
clusteral data points of different environmental stresses were
observed in the ground truth biomass dataset. Such data points
increase the overall loss functions in linear regression models
which are solely dependent on feature vectors predictions. Such
anomalies in data points are also visualised in tabulated clus-
teral plots to test the efficacy of the GAN model as discussed in
the next section.

Figure 16 explains covariance in ground truth feature vectors
extracted from the plant during the harvest. The Leaf Fresh
Biomass and Box Numbers were used as input features in the
sample linear regression model for the sole purpose of establish-
ing correspondence in non-visual traits of plants. The output
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Fig. 15. Left X axis corresponding to Leaf Dry Weight, Y axis
as Box no. and Z axis as Beet Dry Weight. Right 3 dimen-
sional plot with 3 axes, X axis corresponding to Leaf Fresh
Weight/Biomass, Y axis as Box No. and Z axis as Beet Fresh
Weight.

feature vector was Beet Fresh Weight which was used to demon-
strate covariance between the other features. Multiple Anoma-
lies in feature correlation were observed and linear regression
models could not explain correlation between non-visual traits
of plants. These feature vectors were calculated by invasive
and destructive means, but did not prove to make an impact in
successful prediction of plant growth and correlation between
different Biomass samples and environmental stresses in boxes.

Fig. 16. Left X axis corresponding to Dry Leaf Yield Contrac-
tion, Y axis as Box no. and Z axis as Dry Beet Yield Contrac-
tion. Right 3 dimensional plot with 3 axes, X axis correspond-
ing to Fresh Leaf Yield Contraction, Y axis as Box No. and Z
axis as Fresh Beet Yield Contraction.

Similar to the Ground Truth Biomass Measurements, Yield
Contraction Index 4 was used to evaluate decrease in yield of
sample measurement in box with environmental stress com-
pared to Geometric Mean of the plant cultivars in the ’control’
Environmental sample to understand the impact of the Yield
Contraction under different environmental stresses. Equation 3
was used to derive Mean Yield Contraction in the sample 16-18,
under Wshigh, Nmed, Hlow. The same approach was applied over
all other samples during harvest and the leaf contraction was ob-
served for all. To understand the covariance between Fresh Leaf
Yield Contraction and Fresh Beet Yield Contraction, a statistical
coefficient, coefficient of determination also known as R2 was
used. The covariance in Dry Yield Contraction was merely 0.52,
indicating that the linear regression model was able to establish
relation between 50% of the data points, while it was measured
to be 0.79 in Fresh Yield Contraction.

R2 = 1− SSR
TSS

= 1− ∑
(
e2

i
)

∑ (yi − ȳ)2 (5)

The reference index point to measure Yield Contraction in
other samples was set by the Geometric Mean of the plant culti-
var with controlled Environmental variables and the Geometric
Mean of the reference samples were calculated in the form -

LeafFrWt :

(
c=3

∏
c=1

LeafFrWt

) 1
3

= 3
√

L1
FrWtL

2
FrWtL

3
FrWt = 1557.4g

(6)

BeetFrWt :

(
c=3

∏
c=1

BeetFrWt

) 1
3

= 3
√

B1
FrWtB

2
FrWtB

3
FrWt = 484.3g

(7)

LeafDryWt :

(
c=3

∏
c=1

LeafDryWt

) 1
3

= 3
√

L1
DryWtL

2
DryWtL

3
DryWt = 115.5g

(8)

BeetDryWt :

(
c=3

∏
c=1

BeetDryWt

) 1
3

= 3
√

B1
DryWtB

2
DryWtB

3
DryWt = 62.06g

(9)
The Geometric Mean of the Control cultivar samples were

used as reference data points to measure the yield contraction of
other cultivars.

Fig. 17. Anomaly trends in Yield Contraction observed as clus-
ter outliers. Negative Yield Contraction observed in certain
samples indicating better performance of crops than Reference
crops.

An overall trend comparison indicated that the sample of
cultivar 17, with Low Hydration, Medium Nitrogen and High
Weed stress seemed to perform the worst and had a high Yield
Contraction Index. General comparative trends provided an
outcome that cultivars following Box 16 tended to perform poor
and the Yield Contraction Ycntrn remained high in these samples.
Certain Anomalies were also observed. Certain samples mea-
sured a negative Yield Contraction, indicating they performed
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Fig. 18. Humdity measurement graph of greenhouse humidity maintained constant throughout cultivars

Fig. 19. Temperature measurement graph of Temperature conditions inside greenhouse kept constant during plant growth measure-
ment

better than the cultivar under controlled environmental con-
ditions.These Anomalies brought forward through these plots
helps in assessing overall robustness of the PGGAN during eval-
uation, by observing performance on such samples showcasing
anomalies in trends. Surprisingly a subset with two sample culti-
vars, Box Number 4 and 9 with Medium Nitrogen and Medium
Weeds showed higher Fresh Leaf Biomass than Reference sam-
ples under optimum conditions.

These Anomalies in the form of feature vectors contribute
in increasing the loss of a single dimensional linear regression
model, but in the form of visual traits, these visual traits are
generated with high accuracy in the PGGAN model explained
elaborately in the proceeding subsection.

Multiple different metrics such as correlation of growth with
Temperature and Humidity and Box Weight measurements tem-
porally correlating with induced stress; were visualized before
model training to thoroughly examine how the plant responds
to environmental stimuli and responsiveness action to visual
traits. On this basis, the robustness and efficacy was deduced
and metrics such as 18, 19, 20 were further calculated.

B. Data Preprocessing

Data preprocessing is one of the least time-consuming sections of
the model training section, yet considered to be one of the most
important. The sequential and topological order in which data
is fed to the Neural Network, determines the type of generated
output of the model. For the first dataset (Arabidopsis Thaliana),
not a lot of data preprocessing had to be carried out because, the
images in the dataset were organized and categorically sorted
before made available to researchers. However the intial dataset
was too large (61.6 GB) in size, and the aim of the project was to
create a robust PGGAN model, which performs well on dataset
with sample size below 1000 images. To meet this goal, the
dataset was intially downloaded on Google Colaboratory ( A
Virtual Machine (VM) service offered by Google Research to

Fig. 20. SPAD Measurement covariance with Box Number
and Days. With increasing days, The SPAD index also used to
measure chlorophyll and Nitrogen content in plants depicted
a smooth incremental trend, however some plants performed
exceedingly well while some performed just average
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enable Researchers carry computationally expensive tasks over
the cloud ). The downloaded Dataset was manually analyzed
and a python script was later constructed to arbitrarily, but
sequentially select random samples of Arabidopsis plant from
the dataset and this dataset, with merely 619 plant images was
used in the training of the model. The size of the images was
reduced to a total of 128x128 using a python script and the size
was truncated to 160 MB to train a light, and efficient GAN
model.

Fig. 21. Data preprocessing for Beta Vulgaris Dataset and ROI
extraction

The second dataset, of Beta Vulgaris required some additional
preprocessing to ensure the model trains on an accurate set of
temporal dataset and does not learn the gratuitous features in
the dataset. The Raw dataset consisted of plant growth with
significant amount of overlap of background. These background
features were unnecessary for the model, and would also be a
causation for model overfitting. To esnure extraction of relevant
foreground of the plant including Vegetation and overlapping
soil samples as well as Box Border as an indication of relative
growth, a Region of Interest (ROI) had to be constructed around
the images to ensure just the right amount of Area of images is
used in the training process. A manual analysis method was
used to determine prominent edges with high edge point density
and rough co-ordinates were derived statistically measured over
different samples. These co-ordinates were used to appropriately
crop the 1920x1080 dimension images to 870x590. These images
were squished to 128x128 by ’fitting the shortest width’ image
squash method. These images were then sorted into respective
box types temporally finally ready for training.

4. PGGAN ARCHITECTURE AND MODEL TRAINING

A. Proposed Architecture
The most crucial part of this research was to understand the
Network Architectures most suitable to fulfill the aim of the
project. This research required the use of a Spatio-Temporal
3 Dimensional Generative Adversarial Network Architecture
suitable under multiple settings and generates accurate and re-
alistic predictions of Visual RGB images with a small dataset
< 700 images. For this purpose the GAN constructed for the
research was adopted from one of the initially proposed Progres-
sively Growing Spatio-Temporal GANs (PGGAN) for generating
Future Frames by Marco et al. [10]. Generative Adversarial Net-
works are an extension of Convolutional Neural Networks and
are composed of two diverse Networks, Generator and Discrimi-
nator. Given a training set, initial approaches to standard GANs

learn to generate new data with statistical reference from train-
ing set. GANs initially were proposed to generate new data in
unsupervised learning, however the rate of application of GANs
in different domains has evolved this network to be utilized
in supervised, semi-supervised and in reinforcement learning
approaches. Two networks in a GAN, the Generator,as the name
indicates Generates new, but statistically similar images as in
the training set and the Discriminator evaluates the Generations
in an unsupervised adversarial setting. These networks func-
tions simultaneously, and the Generator maps data distributions
in the constrained interest from the latent space and the gen-
erations are evaluated to test the analogous similarities in the
generations to the training set in the latent space.

A developed approach to the same concept of GANs, a PG-
GAN was introduced in this research to effectuate the goal of
Spatio-Temporal 3 Dimensional data point generations. The pro-
posed framework is based on the idea of training the Generator
in an adversarial setting to predict sequential video frames based
on input past frame. The discriminator is trained to distinguish
between the generated realistic and fake samples. The proposed
network employs discriminator in a way such that it is trained
to discriminate between the generated sequence by the gener-
ator as well as from training dataset alternatively for a given
set of temporal frames. Discriminator distinguishes between
samples with a score ranging from 0 to 1, with 0 representing
fake samples and 1 close to realistic. Based on the output score
feedback representing the generated samples as realistic or fake,
the Generator updates it’s model weights after a given set of
iterations to generate better samples with the feedback from the
sample scores.

Training the GAN function model from features in latent
space is broadly defined as,

V(D, G) = ExPdata (x)[log D(x)] + EzPz(z)[log(1− D(G(z)))] (10)

where D and G are Discriminator and Generator respectively,
and Pdata(x) represents distribution of real data and P(z) repre-
sents distribution of generator. This network learns the visual
traits pixel-by-pixel based on solely raw pixel input 2 Dimen-
sional feature points and temporally predicts 3 Dimensional
Frames with the third dimensional corresponding to time.

The Framework adopted from [10], the Discriminator Net-
work D receives ( eqn 11) no. of input frames from the ground
Truth Training set and the Generator takes ( eqn 12) no. of input
and output frames.

x = (xt−tin +1, . . . , xt+tout ) (11)

x̃ = (z, G(z)) = (xt−tin+1, . . . , x̃t+tout ) (12)

These input and output values are variables before the train-
ing process, but allotted a constant value right before initiation
of the model training. These variable x and x̃ were set to 6 for
the first dataset (Arabidopsis Thaliana) Training and 4 for Beta
Vulgaris dataset. This difference was set due to the difference
in the training datasets, the first having 619 images and the
second having 332 images to avoid underfitting of the model.
This means that the first network took an input of 6 frames and
generated 6 frames, while the second network took an input of
4 frames and generated 4 frames.

The proposed Architecture is a modification of the existing
PGGAN network to scale the existing 2 Dimensional Convolu-
tional Layers to 3 Dimensional Convolutional Layers to enable

https://www.geeksforgeeks.org/generative-adversarial-network-gan/
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Fig. 22. Proposed PGGAN Generator Network Architecture. The model is initialized with an input and output of 4 x 4pixels. Dur-
ing the training, layers are added progressively to the Network Architecture to sequentially increase resolution. The Network
Architecture resolution always corresponds to the input and Output node resolution. The first image architecture displays 64 x
64px, second 16x16px and third, 4x4px resolution nodes respectively. The model takes in 6 frames and generates temporal 6 frames
for the First dataset. Same Architecture is followed for both datasets.
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encoding and decoding of spatio-temporal components of the
dataset. The PGGAN network replaces GANs and cGAN net-
works in sequential upsampling of spatial resolution of frames.
Spatial upsampling initially starts with a lower resolution frame
by learning the features from the latent space and thereby in-
creasing resolution Geometrically to higher resolution capped at
128x128 as in the figure 22.

Encoder part of the Architecture is symmetrical with the de-
coder part except that the spatial upsampling layers replace the
spatial downsampling layers. Spatial downsampling of layers
is performed with the help of 3D convolutions of asymmetrical
kernel sizes and stride layers. 2 Convolutional layers are further
added in the encoder and decoder part to increase the Network
resolution on top of the existing PGGAN Network. Generally
in Generative Networks, Batch Normalization is used after Con-
volutional layers. But in Progressively Growing GANs, feature
vector normalization is applied to each pixel to Normalize it to
unit length before the convolutional network in order to restrict
the arbitrarily changing value nature of training between the
Generator and Discriminator. However there are no Feature
Vector Normalization layers used in the proposed architecture,
in contrast a mini-batch standard deviation layer is added to
the end with the core intent of increasing variation in genera-
tors output and prevent mode collapse. This methodology is
adopted since this PGGAN is built on top of concatenated 3D
convolutional layers instead of 2D in PGGANs and is suited for
highly accurate generations for datasets with < 700 images. This
feature vector normalization layer is modified to be applied on
Spatial as well as Temporal components of the generation and
can be described as,

bx,y,z = ax,y,z/

√
1
nf

a>
x,y,zax,y,z + ε (13)

ε = 10−8, n f corresponds to the number of feature maps,
ax,y,z is the original feature vector and bx,y,z is the Normalized
feature vector, calculated for pixels(x,y,z)

These values over all features in the latent space and spa-
tial locations is averaged to a scalar value. This generates an
additional feature map in mini-batch over replication. Later,
the original layer is modified to calculate temporal and spatial
locations through the generated feature map which yields in
incremental variation over the data points. The last layer in the
model is a linear activation function following a Fully Connected
layer. A LeakyReLU, non-linear activation function is made use
at each layer to help address neuron deactivation and vanishing
gradients.

In the Network, the Convolutional Layer takes in input 128 x
128px image, which is further processed through batch deviation
and pooling layers till 4 x 4px, after which the Upsampling
Convolutional layer (UpConv tout) is initiated from 4 x 4px to
128 x 128px matching the input resolution. Finally an output 3D
Convolutional Layer (Conv3D) is used to output the generated
frames.

Complementary to the existing layers, to stabilize the training,
a weight scaling layer is added on top of the layers. This layer
helps in estimation of the standard deviation of the weights and
Normalizes them.

For the evaluation of the model, the Wasserstein GAN with
gradient penalty (WGAN-GP) loss function is employed. The
Wasserstein GAN loss seeks to increase the gap between the real
and generated image scores and is a function of critic score on
real and generated images [18]. The WGAN-GP loss function ef-

fectively increases the quality of the Generated frames. There are
two discrete WGAN-GP loss functions for the discriminator and
generator. The loss function for the discriminator is explained
as,

(14)

LD(x, x̃, x̂) = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
WGAN loss

+ λ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
︸ ︷︷ ︸

gradient-penalty

+ ε E
x∼Pr

D(x)2︸ ︷︷ ︸
epsilon-penalty

where, LD is the Discriminator loss, Pr and Pb are the data
distribution and model distribution coefficients respectively. ε
is the epsilon penalty coefficient and λ is the gradient penalty
coefficient adopted from [18].

Similarly, the WGAN-GP loss for optimizing the generator is
defined as,

LG(x̃) = − E
x̃∼Pg

[D(x̃)] (15)

also initially adopted from [18].

B. HyperParameter Tuning and Selection
To train the model, specific hyperparameters were analyzed and
experimentally evaluated to yield best results on the training
dataset. Eventually these hyperparameters were decided and
used to train both the datasets. The Adam optimizer function
was used in the model training with β1 as 0.0 and β2 as 0.99. The
learning rate was a variable function, initially set to 0.001, and a
learning rate decay was added at every resolution transition set
as 0.87. The Batchsize was a dynamic variable set according to
the available GPU RAM. The epsilon penalty ε was set to 0.001
and gradient penalty λ was set to 10. Feature Dimension of the
Final layer of the discriminator and generator was set to 512.
An additional noise vector of dimension 512 was added to the
Network. Model Weights were updated every 5 epochs, and
maximum resolution of the output image was set to 128 x 128px.
The Arabidopsis Thaliana model was trained for approximately
21 hours (7500 iterations) in multiple sessions, while the Beta
Vulgraris Dataset was trained for approximately 32 hours ( 14300
iterations ) in multiple sessions as well. Pytorch Framework
and Anaconda were used as supporting frameworks in training
of the model. The model training was carried out on Google
Colaboratory which is a Free platform for Students and Data
scientists, offering Virtual Machines to conduct computationally
expensive tasks such as Machine Learning model training. A
Nvidia Tesla K80 GPU was used in the training of the model
which took approximately 7-10 seconds per iteration.

5. MODEL EVALUATION AND PERFORMANCE

A. Loss function evaluation
The model loss function, gives as Wasserstein GAN with gra-
dient penalty (WGAN-GP) 14 was used in mapping the loss
function of the model. As mentioned in the earlier sections, a
mini-batch standar deviation layer was used instead of the Fea-
ture Vector Normalization layer to increase the variations which
results in a net increase in variation of the loss function as well.
The loss function is also dependent on the data distribution coef-
ficients calculated through latent space, which contribute in the
overall increase of the loss function. The Arabidopsis Thaliana
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Fig. 23. Loss Function score plotted on tensorboard every 100 iterations. Left Discriminator Loss Function. Centre Generator Loss
Function. Right Learning Rate with lr decay

Fig. 24. Graph plotted on tensorboard for Epoch:Iterations and Resolution of Input/Output Frame:Iterations

dataset made use of 6 input frames and 6 output frames which
increased the overall frame input and output nodes and feature
distribution. This increases the variation in the loss and low
power of loss convergence. However, this model performed
exceedingly well on all other GAN evaluation metrics. The Beta
Vulgaris model showed a standard convergence in loss observed
in both, the Generator and Discriminator loss. The Discriminator
loss was observed to be negative in both the Models. Since a
Learning Rate Decay function (lr-decay) of 0.87 was added to the
models upon transition in resolution, the learning rate of both
the models decreased hierarchically until 128 x 128px resolution
after which it remained constant. A gap was observed in the
measured readings in the Beta Vulgaris Model for iterations from
9k to 10k, which occurred due to a minor glitch in the script.
An additional python function was added to the main script to
log all loss functions and other readings to tensorboard during
training. The Tensorboard log file stored all tensor weights for
log values during the training process. PGGANs and in general

all other GANs do not employ accuracy and precision scores as
default scores to evaluate the performance of the GAN. Several
other measures and Distance measurements are used to calcu-
late the Simimilarity index between the generated frame and the
ground truth frame.

During training in the generated samples, I noticed that in
specific iteration gaps, different visual layers noticed certain
biases. In some iteration layers, leaf details were intricately gen-
erated with high resolution while in few iteration samples, soil
samples were better generated. This could be better explained
by observing biases in different layers of the Progressively grow-
ing Generative Adversarial Network. The Encoder and Decoder
imposed certain biases in specific networks arbitrarily due to
change in variation magnitudes of Normalization values. When
further analyzed, plots of these biases and weight magnitude
distribution in intermediate layers revealed the average bias and
weight magnitude distribution between encoder and decoder
networks in Generator. This shift bias observed iteration-wise in



Research Article Paper - Initiative for Research and Innovation in STEM (IRIS) 16

Fig. 25. Intermediate decoder block bias in layer resolution 4x4 to 32x32 (Generator)

Fig. 26. Weight Distribution Magnitude and bias distribution in 16x16 to 32x32 Intermediate Resolution layer
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plots could thus explain plausible visual change in feature dis-
tribution over plant networks. 25 and 26 concatenated iteration-
wise Intermediate block layers reveal general bias distribution
certain layer resolutions.

B. Evaluation and Similarity Metrics
Multiple Similarity, Ratio and Error evaluation metrics, apart
from the loss function are further used to evaluate the model
performance. The peak-signal-to-noise ratio (PSNR), structural
similarity index measure (ssim) and mean squared error (mse)
metrics were used to evaluate the model performance. The
PSNR is defined as the ratio between the maximum possible
power of a signal to the power of noise that affects the fidelity
of signal representation. PSNR is based on Mean Squared Error
formula. Generated images by GANs have a noise corrupting
the signal representation, which is evaluated by PSNR. The
Structural Similarity Index (SSIM) was also calculated which is
a perceptual metric that quantifies the rate of image quality on
a scale of 0 to 1, and is based on visible images structures. The
MSE or the Mean squared deviation is the most commonly used
evaluation metric in GANs which evaluates average squared
difference between the predicted image and the ground truth
image. These metrics can be defined as,

PSNR = 20 log10

( max f√
MSE

)
(16)

SSIM( f , g) =

(
2µ f µg + c1

) (
2σf g + c2

)
(

µ2
f + µ2

g + c1

) (
σ2

f + σ2
g + c2

) (17)

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (18)

where, µx the average of x, µy the average of y;, σ2
x the vari-

ance of x„ σ2
y the variance of y;, σxy the covariance of x and y;

c1 = (k1L)2 , c2 = (k2L)2 are two stabilizing variables in weak
division with denominator. These metrics were evaluated for
both the datasets and the results were plotted visually.?? 27

These results evaluated in the models were compared to
other benchmark results for predicted frame types on different
datasets. The compared results can be presented as,

Table 4. Proposed results compared to other PGGAN pre-
dicted results on different datasets. Results averaged over all
frames.

Framework MSE SSIM PSNR

FutureGAN 0.1603 0.7780 14.335

CopyLast 0.2580 0.679 11.723

fRNN 0.1854 0.7408 13.7345

MCNet 0.0048 0.8692 -

Beta Vulgaris[c] 0.007761 0.7286 27.4274

Arabidopsis Thaliana [c] 0.0098036 0.5620 26.3232

A quantitative Analysis of different initial proposals of Tem-
poral PGGANs and a benchmark comparison for model perfor-
mance evaluation was conducted. The above models excluding
mine were trained on datasets « 6000 image samples compared

to mine > 700 image samples. Also, these models were trained
for a minimum of 500 epochs compared to mine at 230 and
365 epochs for Arabidopsis Thaliana and Beta Vulgaris respec-
tively. The model did not perform as well in SSIM metric, but
outperformed the other models in MSE and PSNR by a signifi-
cant difference. This was used to evaluate the initial efficacy of
the model as a whole and how robust the model is compared
to benchmark scores. [c] represents the scores of the "current"
model used in the project.

C. Visual Evaluation of the Generated Model Frames
The model evaluation was not only limited to these metrics but
also how the model was visually represented and visual gener-
ated traits as well as generative morphology. These generated
visual traits are further evaluated based on visual comparison
methods and PLA (Projected Leaf Area) as well as on numerous
Vegetation Indices, Fréchet inception distance (FID) and other
soil traits and reflectance metrics.

C.1. Generated Frames for Arabidopsis Thaliana Dataset

This dataset was modelled in a way such that the prediction
of frames from the input 6 frames is at an hourly interval from
the preceding frame. This approach had been kept experimen-
tal, which was later made concrete to generate Future n frames
at an interval of 1 hour based on input frames at intervals of
an hour, where n is 6. Contrary to this approach, the second
dataset predicted the future frames on a biweekly basis so there
was a significant generative gap between the input and gen-
erated frame. Both these PGGAN output node type models
were adopted to evaluate the model efficacy in two different
domains simultaneously increasing the overall robustness of the
proposed system. An example of Ground Truth Input and Out-
put frames compared to Generated output frames is presented in
28 and 29. The model training output feature correlation was not
constant for each frame in each iteration. Since the GAN train-
ing is an iterative process, the model generated features were
progressively improving over each epoch and model weights
were updated after every 5 epochs. The generated frames by
the GAN for Arabidopsis Thaliana dataset were realistic and
corresponded visual traits as possessed by the Ground Truth
frames at epoch 230 (final epoch of the training procedure). The
position, growth structure, solid color and leaf count show high
correspondence to the Ground Truth Frame. However, human
biological correspondence based on visible plausible features is
sometimes biased, and so I used a number of Vegetation Indices
to establish correspondence with the predicted and ground truth
frame over all generated frames. Prior to that, the proceeding
Image cluster accurately demonstrates evolution of Generated
frames from 4x4 resolution all the way upto 128x128 iteratively.

The iterative process of PGGAN generating images from
epoch 0 to epoch 230, at which the training was halted revealed
the heuristic evolution of generated features by the PGGAN
model. The model picked up features from each plant images
that had less complexity and variance. At first, the color of the
soil samples and confined boundary of the sample were gen-
erated evenly for plants observed till epoch 98. However, an
outlying spectral noise on generated soil samples could still be
clearly observed. Till epoch 111, the noise was reduced and rela-
tively the PSNR for generated soil values had increased with the
decrease in noise. The model learnt leaf boundaries by epoch 126
which initially observed constraints in features. This point en-
tailed an extended bias to features learn for leaves and petioles,
proceeding the feature bias towards soil sample. By epoch 145,
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Fig. 27. Calculated metrics, MSE, SSIM, PSNR for Arabidopsis Thaliana and Beta Vulgaris Dataset

Fig. 28. Ground Truth Input frames compared to Generated proceeding frames by PGGAN network. Top Ground Truth Input 6
frames and Ground Truth expected prediction of 6 frames for comparison purposes. Bottom Left Ground Truth Input 6 frames to the

PGGAN model. Bottom Right Generated Images by the PGGAN Network based on the images provided.

Fig. 29. Ground Truth Input frames compared to Generated proceeding frames by PGGAN network. Top Ground Truth Input 6
frames and Ground Truth expected prediction of 6 frames for comparison purposes. Bottom Left Ground Truth Input 6 frames to the

PGGAN model. Bottom Right Generated Images by the PGGAN Network based on the images provided.
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(a) 0 epochs 4x4 (b) 35 epochs 8x8 (c) 52 epochs 16x16

(d) 71 epochs 32x32 (e) 79 epochs 32x32

(f) 87 epochs 64x64 (g) 91 epochs 64x64

(h) 95 epochs 64x64 (i) 98 epochs 64x64

(j) 105 epochs 128x128 (k) 111 epochs 128x128

(l) 114 epochs 128x128 (m) 120 epochs 128x128

(n) 126 epochs 128x128 (o) 130 epochs 128x128

(p) 137 epochs 128x128 (q) 145 epochs 128x128

(r) 153 epochs 128x128 (s) 164 epochs 128x128

(t) 176 epochs 128x128 (u) 184 epochs 128x128

Fig. 30. Generated morphological Images of PGGAN from epoch 0 to 184 including resolution 4x4 to 128x128px



(a) 197 epochs 128x128 (b) 214 epochs 128x128

(c) 220 epochs 128x128 (d) 230 epochs 128x128

Fig. 31. Generated morphological images of PGGANs from epochs 197 to 230 at resolution 128x128

Fig. 32. left Generated frames by PGGAN for different growth stages of the plant. Right Ground Truth frames for comparison. Note:
Input 6 frames aren’t displayed in the image.

the GAN could generate a close representation of the ground
truth frames, however it lacked in generating features necessary
to meet the goal of the project. These features would differ for
each plant sample and would contribute the most in evaluating
the nature of plant growth and responsive stimuli. The PGGAN
initially started to learn external visual features affecting of hin-
dering growth patterns such as leaf orientation of soil type and
color intensity as well as density of leaf count. These external
features even though present more abundantly in the second
dataset, this dataset observed growth patterns dependent on the
external features as well. Features for these learn external rep-
resentations showed initial appearance at 197 epochs and were
completely developed by 230 epochs. Few generated samples
still observed raw undefined leaf boundaries in certain arbitrary
samples, however these samples showed close resemblance to
visual traits important in deciding plant stimuli towards envi-
ronmental variables or induced conditions. While existing frame
generation approaches explained in "Related Work" aim to pre-
dict a single frame after t days, this approach predicts 6 frames
till tth day as well as the frame on tth for a given defined inter-
val between frames. This not only helps in understanding the
harvest outcome on tth day but also helps in understanding the
pattern of growth between the final day from the initial frame.
Fig 32 shows comparison of t to t+6 frames generated by PG-
GAN to ground truth frames. The generated frames show higher
correspondence to Ground frames for higher Leaf Area occu-
pied by the Arabidopsis Plant. For Rows 3 and 4, the predicted
outcome is visually similar to ground truth.

The Generated morphological images in the spatio-temporal
domain can be evaluated for structural resemblance from the
ground truth frame in multiple different methods. Human bio-
logical mind has different expectations of generated frames in

terms of reliability, resemblance, generated stimulus of the plant,
which corresponds to actual nature of growth in images, ensur-
ing the robustness of the proposed system in multiple topologies.
Alongside predicting growth pattern dependent on visual traits,
the model is compared to have a realistic generation in terms
of different aspects of the plants. Also, fig 32 ensures that plant
growth generation is not limited to a certain time frame and is
robust, and applicable over all growth stages of plant growth
till harvest. Eventually the goal of this research is to implement
autonomous monitoring systems to predict and generate plant
growth stages before harvest in multiple varieties of plant to
understand the positive and negative impacts of environmen-
tal variables in plants and yield contraction. Assessing plant
harvest and growth pattern till harvest through visual traits of
germinated seeds, which help in identifying early wilting or
yield contraction or environmental stresses hindering growth.

C.2. Generated Frames for Beta Vulgaris Dataset

This dataset involves much higher feature complexity as com-
pared to the previous dataset. Also, this dataset is considered
to be the epicentre of testing the robustness of the system. The
PGGAN model for this dataset was created to take an input of 4
frames and predict 4 frames with a duration of 4 days between
two frames. This means the interval between the first input
frame and the last predicted frame is approximately 28 days,
indicating that the model can generate growth patterns of plants
28 days into the future. An experimental evaluation of both the
models could conclude that this model had higher consistency in
generating patterns of growth stages. Similar to the first dataset,
this was an iterative process from 0 to 365 epoch for almost
15400 iterations which spanned twice as much as compared to
the Arabidsopsis Thaliana dataset. The model weights were each
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(a) 0 epochs 4x4 (b) 35 epochs 8x8 (c) 52 epochs 16x16

(d) 70 epochs 32x32 (e) 78 epochs 32x32

(f) 82 epochs 64x64 (g) 93 epochs 64x64

(h) 102 epochs 64x64 (i) 115 epochs 64x64

(j) 126 epochs 128x128 (k) 139 epochs 128x128

Fig. 33. Generated morphological Images of PGGAN from epoch 0 to 139 and progressively increasing image as well as layer reso-
lution from 4x4px to 128x128px doubled after every updated weight.
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(a) 148 epochs 128x128 (b) 156 epochs 128x128

(c) 167 epochs 128x128 (d) 174 epochs 128x128

(e) 191 epochs 128x128 (f) 196 epochs 128x128

(g) 206 epochs 128x128 (h) 215 epochs 128x128

(i) 228 epochs 128x128 (j) 239 epochs 128x128

(k) 245 epochs 128x128 (l) 254 epochs 128x128

(m) 263 epochs 128x128 (n) 274 epochs 128x128

(o) 293 epochs 128x128 (p) 308 epochs 128x128

(q) 322 epochs 128x128 (r) 341 epochs 128x128

(s) 348 epochs 128x128 (t) 365 epochs 128x128

Fig. 34. Generated morphological images of PGGANs from epochs 148 to 365 upto 15400 iterations at resolution 128x128 and con-
stant learning rate as well as perpetual converging loss function.
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Fig. 35. Ground Truth Input frames compared to Generated proceeding frames by PGGAN network for Beta Vulgaris Dataset. Top
Ground Truth Input 4 frames and Ground Truth expected prediction of 4 frames for comparison purposes. Bottom Left Ground Truth

Input 4 frames to the PGGAN model. Bottom Right Generated 4 frame Images by the PGGAN Network based on the images
provided.

updated after 5 epochs and the loss logs were saved after every
100 iterations. The Progressively Growing GAN started initially
from 4x4 epochs to 128x128 epochs, and in this period the learn-
ing rate decreased sequentially due to lr decay to avoid model
overfitting. It is worth to note that the images were cropped to
size 870 x 590, which were reduced to 190 x 128 maintaining
ratio aspect, further the model squishing the input image size
to 128x128 as a standard to ensure standardized training of the
frames using fitting the smallest width approach. Similar to the
training procedure of the previous dataset, this model observed
temporally varying bias towards complexity in features learnt,
which would be observed in histogram plots in Figure 25 and 26.
Uneven feature bias among layers of different resolution spread
over encoders and decoders discretely allowed feature variation
and feature priority over expected features ubiquitously over
data points in the latent space. The feature bias was centred
to feature distribution over soil variation till a certain iteration
point of 126 epochs. Following this, the iteration distribution
bias is more contributing towards learning leaf and venation
features rather than soil features. The epoch evolution from 126
to 365 epochs, involve feature bias distribution to leaf generation
variation towards environmental variables. Leaf features such
as leaf density, color, saturation, and natural stimulus towards
environmental elements such as photropism or hydrotropism
observed through leaf orientation and direction. The model
used 4 input frames and generated 4 output frames, while the
dataset included 16 frames for each plant from germination till
senescense in plants. Hence, the model split a plants growth
stage in two parts with one part predicting frames 5 to 8, while
the other predicting frames 13 to 16. The frame 5 to 8 show large
variation in generated visual output. Example, weeds from ger-
mination become clearly visible pointing out low quality or soil
sample. However, the effect of Nitrogen or Low Hydration on
leaf wilting is not clearly visible in this frame sample. In frames
9 to 16, with 13 to 16 as predicted frames, the effect of weed
stress "visually" on the plant reduces, while the most distinc-
tive features, low Hydration followed by Nitrogen deficiency
is observed in the trend. These environmental stresses induced
by water and nitrogen become visually striking and observable
in the latter part of the growth stage due to increased and pro-
longed exposure of observed stress. These stresses usually are
"chronic" and follow the plant until an environmental variable
is altered. Comparing it with weed stress, based on observed
sample readings, it could be observed that weed stress plays

important role in inducing "visual" constraint on initial growth
stages of plant. The complete observation over these samples
points out the distributed strain imposed on plant in varying
plant stages by Environmental stresses. The observed visual
features were clearly visible on generated visual cues of images
generated by the PGGAN model for Beta Vulgaris dataset. An
extent of effect varying with time can be observed as.

3days > Wscstr > 7days

6days > Ncstr > 12days

7days > Hcstr > 16days

These observations were manual observations as seen over
all samples in the dataset. These constraints overlap growth
duration, and some affect the crop growth simultaneously based
on the cultivar where each constraint is imposed. Here, since
the duration between two sample images captured was 4-5 days,
an observable change in features were visible in analyzing the
Generated Images. By epoch 148, the soil bias had nearly tran-
sitioned to leaf feature bias (bias corresponding to eccentric
distribution of feature learning mechanism over samples in la-
tent space). By epoch 206, the model achieved highly similar
feature generation over all features but with lot of noise and few
distortions. However, an additional bias in learning features
for frame 1 to 8 - 9 to 16, the early bias from around 100 epochs
to 220 epochs contributed in learning features for 1 to 8. These
features, since most distinctively visible, could be learnt easily
and generated images would contain less noise. Comparing that
to frames in 9 to 16 growth stage, these features were not so
distinct, were enigmatic to learn and hence took an additional
100 epochs more as compared to 1 to 8 frames, after which the
features and visual morphology could be visually distinguished.
The plants with higher intensity and number of stresses could
observe wilting of leaves, color fade and low ExG (Excessive
Green Vegetation) and more soil sample space. However, the cul-
tivars with variables under control observed high leaf density,
leaf overlapping and increased occlusion, higher distributed
concentration of artificial light and anomalous leaf reflection
over images. With increase in Projected leaf Area, and current
Observable Leaf Area Index, the volume of the plant increased
as well, which wasn’t distinctively visible in the dataset. Sans
these visual cues of depth in RGB datasets, the model could
learn growth morphology with features correlating to specific
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Fig. 36. Generated frames by the PGGAN model for beta vulgaris dataset for Drying, Medium Nitrogen and High Weed Cultivar

plant and produce accurate generation. Irrespective of the con-
tinuous increase in volume over all cultivars as a function of
time, the visible leaf area in the ROI (Region of Interest) were not
constant leading to certain anomalous trends in the latter frames.
The comparision of the Vegetation Indices (ExG, ExGR, ExR and
Area) is more deterministically measured for the initial frames
(an upper limit of 9 frames) and the latter frames observe high
entropy in volume change, but less observable leaf area change
in the frames. For the results we tested on this dataset, despite
the low predictive power of Leaf Area in the latter frames, the
generated frames could observe similar trend in leaf area genera-
tion and hence the covariance between this Index for latter frame
features could be established making the evaluation process in
the model testing robust as well. An extensive analysation of
the generated 36 explains how weed density contributes most
to visual features in the frames 5 to 7, while the Hydration level
affects the crop most in 13 to 15 the frame and is viusally visible
thereafter. The model adapts to orientation of the cultivar, and
also changes in dimension or illumination. With increase in
overall dataset, the model can simultaneously learn augmented
features or difference in feature concentration which is useful
in serving the aim of identifying environmental variables con-
ducive for plant growth and predicting harvest through visual
features to test the best environment for hybrid or Genetically
Modified (GM) plants (or in that case any) plant, weeks before
harvest. This is beneficial to test resilience of the new breed or
type of plant under different conditions with observed data for
previous growth and generate spatio-temporal images to predict
yield weeks before harvest to understand growth weeks before

harvesting the crop or days withing crop growth.

D. Testing model on Vegetation Indices and correlation of
traits

In this subsection of the Model Evaluation section, I propose
multiple Vegetation Indices and correlation coefficients to test
the model performance on the Generated frames with respect
to the Ground Truth frames, and most importantly draw con-
clusions (for Beta Vulgaris Dataset) for which environmental
variables contract the yield and which of them propagate or
induce maximum yield and growth, and how these conclusions
deduced compare to the Ground Truth recorded measurements
of favourable environment these crops grow in.

Analysing these Generated frames on multiple Vegetation In-
dices involved a thorough research on which Vegetation Indices
can analyse generated frames without any bias over feature
importance and are widely accepted indices on which these
plants can compare upon- with other species in a database and
draw meaningful conclusions interpretable over other plant
experiments. Before finding the optimum Vegetation Indices,
analyzing the data on which evaluation was to be done, was
important. There were multiple caveats where implementing
vegetation indices, estimating background feature contribution
to threshold of the vegetation index, or artificial saturation and
induced light contribution to determine the variable threshold-
and many constraints contributing to selecting the optimum
vegetation index.

Before coming across the optimum Vegetation indices, I tried
to implement a few Adaptive threshold algorithm, one of them
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being the Otsu’s Threshold which can binarize discrete pixels
and segment background from foreground in certain image
types. As defined by the author, the threshold segments the
foreground and background by maximizing the inter-class in-
tensity variance or minimizing the intra-class intensity-variance,
which in short terms binarizes the background and foreground.
The Otsu’s threshold algorithm can be defined as,

σ2
w(t) = ω0(t)σ2

0 (t) + ω1(t)σ2
1 (t) (19)

where, ω0 and ω1 are probablities of two classes, and t is the
threshold.

and the implementation of the algorithm in python is,

Algorithm 1. Otsu’s Threshold

1: otsu_threshold, image_result = cv2.threshold( image, 30, 255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU)

2:

The formulated algorithm was implemented in a python code
and deployed over a set of images to evaluate the segmentation
results. There were several loopholes hindering the efficacy of
the threshold.

Fig. 37. Otsu’s threshold pipeline and segmented frames using
the Adaptive Threshold algorithm showing low efficacy.

The Arabiopsis Thaliana dataset and Beta Vulgaris dataset
showed extremely low efficacy in segmentation using otsu’s
threshold. While the plant leaves and soil sample serve as dis-
tinctive foreground and background, it isn’t possible to under-
stand this difference in intensity due to complex features in the
plant soil and pot sample. The Otsu’s threshold algorithm didn’t
prove to be accurate in leaf segmentation from the soil sample.

After conducting sufficient research in evaluating vegetation,
multiple vegetation indices proposed in [19] and PhenoBot were
adopted to evaluate the efficacy of the model. Vegetation indices
such as ExG (Excessive Green Vegetation Index). ExR (Excessive
Red Vegetation Index) and ExGR (Difference of Excessive Green
and Red) also described as ExG - ExR. The minimum, maximum
and mean values of these Vegetation Indices was calculated as
well to understand pixel-level feature vectors of these vegetation
indices.

r, g and b chromatic color co-ordinates of an image were used
to calculate the Vegetation Indices of the plant. The r, g and b
co-ordinates were calculated as,

r =
R

R + G + B
, g =

G
R + G + B

, b =
B

R + G + B
(20)

R =
Rc

Rm
, G =

Gc

Gm
, B =

Bc

Bm
(21)

R, G and B pixel values were normalized from 0 to 1 and
the r,g and b values were calculated to formulate the ExG, ExR
and ExGR equation. Similarly, mathrmR_m, mathrmG_m, math-
rmB_m are constants at 255, taken as maximum tonal intensity
for each color channel inspired from [20]

ExG, ExR and ExGR were calculated as,

ExG = 2g− r− b

ExR = 1.4r− g

ExGR = ExG− ExR

Algorithm 2. Vegetation Indices

1: blue = img[:,:,2]
2: green = img[:,:,1]
3: red = img[:,:,0]
4: exg = 2*green - red - blue
5: exr = 1.4*red - green
6: exgr = exg - exr
7: exgr = np.where(exgr < 25, 0, exgr).astype(’uint8’) .

Thresholding removes low negative values (noise)
8: exgr = exgr.astype(np.uint8) . convert back to uint8
9:

The Algorithm can be understood as 3 channels of the im-
age, r,g and b area extracted and the pixel values as arrays are
used to calculate the vegetation indices. For the final value of
ExGR, additional noise is filtered and the arrays are converted
back to uint8 image format to be further analysed for calcula-
tion of area. The ExGR converted image format is used to find
the leaf area occupied by the plant, which shows high efficacy
with ground truth segmented values and is used as standard
index to calculate the Projected Leaf Area (PLA) and Leaf Area
Index (LAI). Another experimental algorithm was used to find
the visual NIR from RGB image. A red colormap was applied
over the segmented image, split to three Red Color bands sim-
ulating the Red and NIR bands in IR images and the final NIR
segmented image was obtained. However, since the process was
clearly experimental and the algorithm was not peer reviewed,
my algorithm hasn’t been used for evaluation in this experiment.
However, visual results for the algorithm are presented.

The algorithm can be understood as follows,

Algorithm 3. Visual NIR Algorithm

1: img_c = cv2.applyColorMap(exgr,
cmapy.cmap(’Reds’)).astype(np.int)

2: _, R, NIR = cv2.split(img_c)
3:

Figure 40 shows high efficacy in segmenting leaves and plant
features from the background through ExGR and a colormap
is imposed on the set of segmented images to highlight the
intensity of ExGR value through pixel color intensity. Clearly,
the Arabidopsis Thaliana dataset shows high ExGR compared
to Beta Vulgaris which might be visually evident observing the

https://github.com/precision-sustainable-ag/OpenCV_Competition2021/wiki/7.-Biomass-estimation-model
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Fig. 38. Vegetation Indices including ExGR, ExR, ExG, Visual NIR and Visual ExGR (intensity of ExGR pixels) applied on Beta
Vulgaris dataset.

Fig. 39. Vegetation Indices including ExGR, ExR, ExG, Visual NIR and Visual ExGR (intensity of ExGR pixels) applied on Arabidopsis
Thaliana Dataset
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Fig. 40. Visual ExGR evaluated for the whole dataset. Truncated to 5-7 generated images for better interpretation. Left Visual ExGR on
Beta Vulgaris dataset. Right Visual ExGR on Arabidopsis Thaliana Dataset. All images are generated by the PGGAN model.

Fig. 41. Compared to Otsu’s Threshold, the Visual ExGR
performs exceedingly well in segmenting images with complex
features, differing illumination and small visible plant regions

as well as wilted or faded leaves.

color of the pixels and leaf reflectance over both images. Since
the ExGR is merely used as a comparison metric to evaluate
the accuracy of the generated images through feature vectors
and ground truth observations, minor ExGR deviations over
different sample subsets aren’t altered and kept as is during
evaluation.

A python script is constructed to enable autonomous segmen-
tation of images in the Arabidopsis Thaliana Dataset and Beta
Vulgaris Dataset. The images are segmented and autonomously
stored in a folder and the numerical data points for the values
of ExG, ExGR, ExR, area and min, max, mean functions of these
indices with corresponding input frame is stored in a csv file.
The area of the Visual ExGR is simply calculated by applying a
threshold to the image, and using a function to calculate white
pixels (of the leaves) threshold(ed) by the function.

Finally, the Vegetation indices from Generated Images were
evaluated against Ground Truth image indices and high cor-
relation among the generated image indices and ground truth
indices was observed. This correlation was specifically much
higher for the Beta Vulgaris dataset, in an overall comparison
between all cultivars as well as in stress induced (Wscstr, Ncstr,
Hcstr) cultivars.

While evaluating the Generated values with Ground Truth,
ExG and ExGR showed direct proportionality with the predicted
area, while ExR showed inverse variation. the min and max val-

ues showed no specific correlation, because certain minimum or
maximum values for these Vegetation Indices were observed to
be arbitrarily high in certain samples. However, in Beta Vulgaris
dataset, the max values for ExG and ExGR showed somewhat
steady trend. Irrespective, the mean values were used as default
indices to compare the model efficacy since a lot of entropy in
data points over min and max values were seen which were
from initial observation not used in comparison of the covari-
ance scores.

ProjectedLea f Area(PLA) ∝
∼

ExG

ProjectedLea f Area(PLA) ∝
∼

ExGR

ProjectedLea f Area(PLA) ∝
∼

ExR−1

D.1. Covariance metrics for Arabidopsis Thaliana Dataset

Fig. 42. Comparing Correlation between Generated image
Vegetation Indices and Vegetation Indices observed in ground

truth frames for Visual Leaf Area

The plot demonstrates correlation between the vegetation
indices of Generated images and Ground Truth vegetation in-
dices. The pearson’s correlation coefficient (r) showed a value
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Fig. 43. Comparing Correlation between Generated image Vegetation Indices and Vegetation Indices observed in ground truth frames
for ExG, ExR, ExGR

of 0.98 whereas, the p-value was observed to e 0.0 indicating
that all alternate hypothesis over data in latent space was ac-
cepted. The high correlation for vegetation indices in Generated
frames by the PGGAN showed high accuracy in generating ac-
curate frames with PLA of high covariance. For certain samples
between 4000 - 8000 pixels in ground truth, the model underpre-
dicted the data to less than 4000 pixels. The Vegetation indices
for input frames in Generated subset as well as Ground Truth
subset were included in the plot. The r-value for Mean ExG
correlation followed a value of 0.97, Mean ExR correlation with
a value of 0.83 and Mean ExGR correlation with a avlue of 0.96.

The Pearson’s Correlation Coefficient (PCC) known as (r),
is the ratio between the covariance between two variables and
product of standard deviations. This coefficient measures the
linear correlations between two datasets. Equation 22 shows
pearson’s coefficient and Equation 23 shows p-value.

The coefficient can be described in the following Equation,

r = ∑(xi−x̄)(yi−ȳ)√
∑(xi−x̄)2 ∑(yi−ȳ)2

xi = values of the x-variable in a sample

x̄ = mean of the values of the x-variable

yi = values of the y-variable in a sample

ȳ = mean of the values of the y-variable

(22)

z =
p̂− p0√
p0

(1−p0)
n

(23)

p̂ is the sample proportion,p0 is the hypothesized proportion
and n is the sample size.

The vegetation indices calculated for the generated frames
were distributed over 4 different subsets for detailed evalua-
tion under accuracy of each subset. The first subset included
unseen arbitrary pattern of samples of the Arabidopsis plant
taken from the dataset. The interval between two successive
images, kept constant were altered arbitrarily and hence a dif-
ferent pattern was formed. The second subset included samples
of low observed leaf area in the plant, third subset included
samples of intermediate samples of observed leaf area while
the fourth subset included sample of high observed leaf area.
These were categorically separated to evaluate individual corre-
lation among the Vegetation Indices and observe accuracy and
predictive power.

ExR, with inverse proportionality to the calculated area, rep-
resents the content of Excessive Red in the plant sample. this has
to do mainly with the area occupied by the Soil sample and Red
shades in the background. The ExR, when subtracted from ExG,
highlights a clear picture of the plant leaf sample, and is deduced
in the form of ExGR. ExR alone, with inverse proportionality
does not show high correspondence with the Ground Truth ex-
tracted vegetation ExR, because of the varying Red sample in the
generated images. This is specifically valid for the Arabidopsis
Thaliana plant, with the soil sample color varying with temporal
changes in leaf evolution over time. Certain sample observe an
excessive Green Index over the soil, alternatively observed as
moss in a specific amount. The Generated sample observe occa-
sional change in Excess of Red/Green in the soil with respect
to other leaf features. ExR observed highest consistency and
covariance in plant samples with high leaf density and projected
area. Most of the occupied area was covered by leaf samples
and hence, ExR did not vary a lot. Conversely, the ExR was
measured as the highest Vegetation Index for plant samples of
lower leaf area. Similar trend was found for intermediate leaf
area samples and a pearson’s coefficient (r) of 0.57 and 0.67 for
both the samples respectively was observed. Certain unseen
patterns of growth were randomly selected and curated with
time deviation between two frames greater or less than what’s
selected for the whole dataset. The ’r’ value for the unseen
sample patterns were observed to be 0.65.

ExG and ExGR showed higher covariance with Ground Truth
samples and Predicted samples. The highest correlation for ExG
was observed in High and Intermediate Leaf Area Samples, with
’r’ value of 0.96 and 0.95 and for lower leaf area samples and
unseen samples, a ’r’ value of 0.93 and 0.84. Similar trend for
ExGR with ’r’ value of 0.97 and 0.94 for high and intermediate
leaf area samples and 0.84 and 0.80 for lower leaf area and un-
seen area samples. Cumulatively, all these Vegetation Indices
contributed to calculating the Leaf Area Index of the plant per
plant unit(128x128px of plant box cultivar). Since all these in-
dices contributed cumulatively to calculation of the LAI, errors
in the calculation was minimized and accuracy increased. High
and Intermediate Plant leaf samples saw ’r’ value of 0.99 each
and low plant leaf area sample saw ’r’ value of 0.98. However
unseen pattern leaf area correlation observed ’r’ value of 0.86.
These samples over-predicted the Vegetation Indices and area
values. This could be explained by the fact that unseen pattern in
image samples showed inconsistency between growth duration

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Fig. 44. Vegetation Index correspondence with different subsets of the observed dataset
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Fig. 45. Plot for progressive frames from 1 to 12 with x axis as Box Number starting from unseen Random samples to low leaf area
samples, intermediate leaf area samples and high leaf area samples. Y axis corresponds to Ground Truth Vegetation Indices. a Ground

Truth Leaf Area, b GT ExG Vegetation Index, c GT ExGR Vegetation Index, d GT ExR Vegetation Index.

Fig. 46. Plot for progressive frames from 1 to 12 with x axis as Box Number starting from unseen Random samples to low leaf area
samples, intermediate leaf area samples and high leaf area samples. Y axis corresponds to Vegetation Indices for Generated Samples. a
Generated Leaf Area, b Generated ExG Vegetation Index, c Generated ExGR Vegetation Index, d Generated ExR Vegetation Index.

and so certain samples observed over-predicted area samples.
Figure 45 and 46 show plots for Frame-wise deviation in

Vegetation Index Morphology with respect to Generated Frame
type, initially with Unseen pattern in frames to high leaf area
plant frames, from 0 to 601 frames (each in Ground Truth and
Generated Image category). Clearly, the ExR frames show in-
verse correlation to the calculated Leaf Area Index for each unit
of Plant Sample (128x128px). For Generated frames, ExG and
ExGR were overestimated in unseen pattern of data input type.
These graphs unveil an in-depth explanation of corresponding
Area GT or predicted for each observed data in the latent space.

Figure 47 shows correlation between Vegetation Indices in
Generated Frames as well as Ground Truth Frames. The Vegeta-
tion Indices Correlate with high accuracy to produce Visual Area
segmentation. Generated Frames and Ground Truth Frames ob-
serve R2 of 0.98 and 0.98 respectively and the high correlation
can also be observed in graphical trends spread out over frames.

While, the Arabidopsis Thaliana dataset contains lower com-
plexity over soil and plant features and a comparatively more
ideal trend with respect to Beta Vulgaris Dataset. A tabulated
form of truncated dataset 5 was autonomously stored using a

python script to a csv file. For each image frame of Arabidopsis
Thaliana dataset, the python script analyzed the frames, and
segmented the plant leaf area using Vegetation Indices. The table
shows collected leaf area for 12 samples in a generated sequence
with an inteval of 15-30mins. The input video sequence consists
of video frames with frame area from 304 and 625, similarly the
predicted frames observe the descending pattern in area and
Generate images with area from 319 to 402.

A barplot 48 is illustrated as a function of trend for different
samples in the dataset distributed. With, the ExR Vegetation
Index having the least correlation to the Area segmentation hav-
ing the highest correlation over all samples, the highest absolute
leaf area sample observed highest correlation for all indices. A
larger set Generated images of Arabidopsis Thaliana dataset is
included in the code provided.

Conclusions about the evaluation of this Dataset can be in-
ferred through graphs and plots. While this spatio-temporal PG-
GAN is trained on merely <700 images, it achieves great scores
in Evaluation metrics like SSIM, PSNR, MSE as well as through
first principal Generated image evaluation through Vegetation
Indices. Not do these images provide relevant generations on
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Table 5. Sample Truncated Table for Vegetation Indices captured from Generated Arabidopsis Thaliana Samples

area max exg mean exg min exg max exr mean exr min exr max exgr mean exgr min exgr Gen Frame

625 135 -3.036071777 -79 98 14.78167725 0 135 -17.81774902 -157 1 1

515 131 -3.44329834 -71 85 14.2623291 0 131 -17.70562744 -133 1 2

531 107 -4.777709961 -81 79 11.85357666 0 107 -16.63128662 -136 1 3

373 161 -8.67980957 -98 91 20.6975708 0 161 -29.37738037 -156 1 4

304 123 -1.790771484 -88 82 16.44232178 0 123 -18.23309326 -168 1 5

558 135 -2.464599609 -73 89 15.50317383 0 135 -17.96777344 -158 1 6

372 117 -4.964599609 -76 95 17.57275391 0 117 -22.53735352 -138 1 7

402 129 -5.661743164 -72 88 16.8972168 0 129 -22.55895996 -121 1 8

326 111 -4.611816406 -70 87 20.2142334 0 111 -24.8260498 -142 1 9

356 126 -3.625061035 -63 84 15.31286621 0 126 -18.93792725 -118 1 10

319 119 -5.202697754 -74 86 16.17230225 0 119 -21.375 -148 1 11

327 142 -6.21685791 -83 93 19.79919434 0 142 -26.01605225 -151 1 12

Fig. 47. 3 Dimensional plot covariance with ExG ExGR and
Area over Ground Truth and Generated Frames.

plant and leaf morphology and responsive stimulus, but also
they are accurate and reliable making this research novel and
deployable over a variety of Agricultural domains. While the
Arabidopsis Thaliana was the initial test of the PGGAN model
framework with lesser complexity, the Beta Vulgaris model sets a
benchmark by performing significantly better with much higher
complexity under induces stresses also with varying artificial
light and under unsteady capturing conditions. The Fréchet
Inception Distance for both the models is calculated at the end
of the subsection.

D.2. Covariance Metrics for Beta Vulgaris Dataset

With increased complexity and number of features in the sample
and different visual traits contributing to growth modelling and
morphology, and different sample types with induced stresses,
this model had multiple complicated features in the latent space
to learn from as compared to the previous model. For the same
reason, this model was trained for 365 epochs rather than 230 in
the first model. The latter 135 epochs took significantly larger
amount of time than the initial epochs because of the larger
weight size scaled up to 128x128 resolution. The lr decay helped

Fig. 48. Barplot for correlation between Arabidopsis Generated
samples and ground truth samples through pearson’s

coefficient (r) depicting efficacy distribution over the dataset.

in increasing entropy and decreasing noise while acting as a
caveat which increases the number of epochs required for train-
ing. Irrespective of all these flaws, the model showed high
correlation between Ground Truth and Generated frame Vegeta-
tion Indices from Visual Area, ExG, ExGR to even ExR indicating
that soil features show high correlation as well (An improve-
ment from the first dataset). Overall Correlation for ExG, ExR,
ExGR and Segmented Area for the Beta Vulgaris Generated sam-
ples with the ground truth samples maintained high consistency
throughout the different samples in the dataset. The Ground
Truth and Generated Samples observed near-stellar covariance
illustrating that the Generated samples show high similarity
with the Ground Truth Samples.

Speaking about the ExR, a measure of Excessive Red typically
for the soil, the soil features generated in this model showed
great similarity of r-value 1.00 -The p-value of 0 indicating that
all samples in the dataset are statistically significant in the model.
These Vegetation Indices are not a measure of pixel-level simi-
larity (SSIM measures Structural Similarity) - instead these Vege-
tation Indices are a measure of the gradient of features present
in the Generated samples. Talking about plant vegetation, the
mean ExG measures distributed trend of Excessive Green ob-
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Table 6. Sample Truncated Table for Vegetation Indices captured from Generated Beta Vulgaris Samples

area max exg mean exg min exg max exr mean exr min exr max exgr mean exgr min exgr Gen Frame

1 25 1.892028809 -73 110 13.5345459 0 25 -11.64251709 -119 1 1

0 -8.922302246 -39 108 17.17071533 0 19 -26.09301758 -120 1 2

69 41 -1.775939941 -43 110 19.40899658 0 41 -21.18493652 -126 1 3

391 73 -4.355529785 -46 106 17.65063477 0 73 -22.00616455 -117 1 4

978 73 6.761779785 -27 110 18.25341797 0 73 -11.49163818 -118 1 5

3373 69 15.32513428 -31 106 17.65997314 0 69 -2.334838867 -118 1 6

5077 76 18.27893066 -26 116 14.61547852 0 76 3.663452148 -127 1 7

8392 72 25.87530518 -24 108 9.267700195 0 72 16.60760498 -109 1 8

10565 80 32.94207764 -31 99 5.315673828 0 80 27.62640381 -119 2 9

12582 94 43.27319336 -24 89 3.318237305 0 94 39.95495605 -93 2 10

11765 100 43.03289795 -69 143 8.996948242 0 100 34.03594971 -180 2 11

11914 110 50.86523438 -20 95 3.79498291 0 110 47.07025146 -96 2 12

12323 109 47.9375 -22 100 4.136169434 0 109 43.80133057 -122 2 13

13347 85 44.3470459 -32 96 4.110656738 0 85 40.23638916 -112 2 14

13621 112 48.36645508 -17 107 5.970092773 0 112 42.3963623 -106 2 15

12628 85 38.66821289 -44 94 4.686340332 0 85 33.98187256 -137 2 16

served throughout the plant sample and the density of leaf in a
unit measured, correlating with the Excessive Green in Gener-
ated Samples. These Vegetation Indices help in better identifying
the responsive and morphological overall growth and genera-
tion of feature type, rather than pixel level similarity. This helps
in a holistic measurement of the plant visual traits generated
rather than just understanding how similar was the Generation
to the Ground Truth Image. Taking an example, if a weed is
observed in the input samples and the Generated images sim-
ilarly generate the weed samples carried over further frames,
the Vegetation Indices would measure the density of the Gen-
erated weed or the features of the Weed in the samples rather
than similarity measure as of identifying the exact position of
the weed generation and correlating efficacy. This extensively
helps in identifying if a model is Robust in it’s true sense in
real world samples or if they are conditional to outliers. The
model performing well in Correlation of Generated Samples
in Vegetation Indices as well as SSIM,PSNR,MSE proves that
not only is the model objectively capable of understanding
outliers, but is also proved to generating similar and accu-
rate real world samples, demystifying prediction of harvest
through conditional visual features which extensively affect
growth where existing methods fail upon.

With the ideology being carried to evaluating the Vegetation
Indices in Generated samples, the model is objectively as well as
subjectively capable of generating frames till harvest with each
of these frames (till 8th) contributing to pearson’s coefficient (r)
in evaluation. Mean ExR shows a r-value of 1.00, the highest in
all Vegetation Indices with the Soil feature samples learning di-
versely all features from the visual input and outliers. Mean ExG
and ExGR of r-value 0.99 dynamically indicate that leaf features
throughout the sample covary in terms of leaf reflectance, den-
sity, venation features and color gradient in response to external

sunlight or internal nutritional factors, under stresses. Cumu-
latively, the segmented Area from Visual ExGR with r-value of
0.99, illustrating leaf generation (in terms of generative morphol-
ogy, from high leaf area generated for control plant cultivars
to low leaf area generated for stressed cultivars), dynamically
morphing over all samples.

Similar to the Arabidopsis Thaliana dataset divided into sam-
ples with unknown pattern to high leaf area, the Beta Vulgaris
dataset was divided into multiple samples, with corresponding
stresses induced on the cultivars. For each sample type, the r-
value of the samples was measured to individually understand
the data samples which performed well and which of them did
ot correlated well. With a pre-assumption that samples under
multiple stresses would have a low correlation, the assumption
was immediately proved wrong with all the samples cumula-
tively correlating with high r-value making the model robust
to all samples and outliers in each one and bias distribution
while learning the model equally favoured to features in each
sample. Table 6 shows 16 truncated samples of extracted Veg-
etation Indices and features out of 500+ samples. The first and
second image normally do not observe any segmented Area
and observe a negative mean ExGR normalized from all pixels.
After frame 8, the measurement of segmented area becomes
unyielding to easily measure due to the selected consistent ROI
for all images. After 10th sample, the leaves in the cultivar oc-
cupy the complete ROI and following that, the volume of the
plant inside the ROI increases due to increase in height and the
leaf area if to be calculated by the algorithm is observed to be
nearly constant inside the ROI. However visually perceived, the
morphological evolution of the plant can be distinctly made out
by the model, and the same reason why this research is novel
to using spatio-temporal generation method instead of feature
vectors. This is why during evaluation, the 15th and 16th frame
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Fig. 49. Comparing Correlation between Generated image
Vegetation Indices and Vegetation Indices observed in ground

truth frames for Area and ExGR in Beta Vulgaris Dataset

Fig. 50. Comparing Correlation between Generated image
Vegetation Indices and Vegetation Indices observed in ground

truth frames for ExG and ExR in Beta Vulgaris Dataset
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Fig. 51. Comparing Correlation between Generated image Vegetation Indices and Vegetation Indices observed in ground truth frames
for ExG,ExR, ExGR and Segmented Area in Beta Vulgaris Dataset for samples - "Control", "Low Nitrogen", "Medium Nitrogen",

"Medium Weeds", "High Weeds", "Dry", "Low Nitrogen - Medium Weed", "Drying - Medium Nitrogen - High Weed"

observe increase in petiole and stem height and so certain leaves
to be areally segmented are not eventually captured, merely the
increase in height can be observed. For this reason, an anomaly
in 15th and 16th frame which decreases the morphological trend
can be noticed. This might hamper the "evaluation process a bit",
but in reality it doesn’t because the same caveat is observed in
Generated frames as of Ground Truth frames. This isn’t a loop-
hole while generating the frames by the model, but is evident
merely during evaluating model efficacy which can be neglected
as a caveat.

The dataset correlation was distributed to different sam-
ples, "Control", "Low Nitrogen", "Medium Nitrogen", "Medium
Weeds", "High Weeds", "Dry", "Low Nitrogen - Medium Weed",
"Drying - Medium Nitrogen - High Weed". An individual corre-
lation plot with pearson’s coefficient (r) was measured individu-
ally for each plot and for each Vegetation Index, so a total of 32
plots. 48 image samples were used for each plot with 3 cultivars
for each stress induced and 16 frames in each cultivar. Each
graph presents a spatial correlation- with temporally morphed
yield with frame progression. The lowest correlation for any
individual plot was 0.97, which in itself is high, and the highest,
observed for multiple plots was 1.00. As observed in Fig 51, all
plots had high correlation in Generated to Ground Truth frames
from 0.97 and 1.00, with a high jump from Arabidopsis Thaliana
dataset. These individual evaluations for plots set a benchmark
for yield prediction through or without generative methods, and
signifies high reliability, high efficacy and objective robustness to
outliers in visual inputs. The r-value(pearson’s coefficient) and
p-value of the plots was calculated using the standard algorithm
22 and 23.

0.97 ≤ Segmented Area ≤ 1.00

0.99 ≤ ExR ≤ 1.00

0.99 ≤ ExGR ≤ 1.00

0.99 ≤ ExG ≤ 1.00

The upper and lower limit of these observed Vegetation In-
dices are described in the equation. Considering "Control", "Low
Nitrogen" and "Medium Nitrogen as cultivars in the control con-
dition, an average r-value for Segmented Area is calculated to
be 0.9967, while for Stresses plants in the rest of the cultivars, is
calculated to be 0.9920. Comparing these calculated values from
this Research to one of the most prominent methods to predict
yield before harvest using Feature vectors and multiple Neural
Network approaches to get the best outcome, it can be concluded
that this novel approach in my paper to predicting yield using
Spatio-Temporal generation achieves the best outcome. I com-
pared my method results to those proposed by Christian Klukas
et al. [21], one of the most prominent researcher in the field
of plant phenotyping (with over 3450 citations). His research
paper on "Predicting plant biomass accumulation from image-
derived parameters", a State of the Art (SOTA) framework in
plant phenotyping, used 2 dimensional extracted features in
their network to predict yield. This approach made use of mul-
tiple imaging tools from Geometric and Color related in Visual
to Fluorescent Imaging (Fluo) and Near Infrared (NIR), from
top and side view for each imaging tool, so a Permutation of 6
sets of images captured for a single frame. For all these frames,
45 image related traits were extracted and modelled in 4 dif-
ferent Network Frameworks, support vector regression (SVR),
multivariate linear regression (MLR), multivariate adaptive re-
gression splines (MARS) and random forest (RF). On top of that,
3 experiments were conducted for each sample and finally the
best results were proposed. 2 categories for plant samples, "Con-
trol" and "Stress" for each plant were also taken and analyzed.
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The Average r-value for plants in "Control" sample was 0.8686
over all 3 experiments and Average r-value for plants in "Stress"
Sample was 0.9179, determined from samples with upper and
lower limit,

0.8227 ≤ Controlled Biomass ≤ 0.9403

0.897 ≤ Stressed Biomass ≤ 0.9448

Table 7. Comparing Pearson’s Coefficient in my Approach to
existing SOTA approach

Controlled plant Stressed Plant

SOTA Framework 0.8686 0.9179

My Framework 0.9967 0.9920

Fig. 52. 3 Dimensional plot covariance with ExG ExGR and
Area over Ground Truth and Generated Frames for Beta

Vulgaris Dataset.

Plot 52 shows intra-trait covariance and the correlation for
ExG, ExGR and Segmented Area derived from these traits. The
correlation is 0.95 for Generated samples and 0.94 for ground
truth samples. This is an additional plot to show dependence
between the traits.

Fig. 53. A barplot to summarize existing correlations between
Generated and Ground Truth Vegetation Indices using

pearson’s coefficient

Finally, a barplot to summarize the pearson’s coefficient dis-
tribution over Generated and Ground Truth frames is presented.

With all the plots showing high correlation among the generated
and ground truth samples, the robustness of the model over
all samples is equidistributed and absolutely no bias over an
individual sample cultivar is noticed.

Fig. 54. Boxplot temporally analyzing lower and upper limit of
mean ExGR and mean ExG over all frames and cultivar

belonging to induced stress category.

Fig. 55. Boxplot temporally analyzing lower and upper limit of
segmented Area for Generated Samples (top) Ground Truth

(down) frames and cultivar belonging to induced stress
category.

To go on an in-depth analysis of the Generative growth of the
plant and per frame correlation, a plot for frame-wise individual
Vegetation Indices is presented. For each bar plot corresponding
to each frame from 1 to 16, the X-axis of each plot contains the
cultivar values predicting by the model. With the plot for Area
constantly incrementing from the first frame, ExG, ExGR and
progress slowly with few anomalous trends (These trends are
anomalous due to Dry samples and stress induced samples). Fi-
nally, the ExR shows an exact inverse trend compared to the rest
three plots. Overall, Beta Vulgaris dataset performed incredibly
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Fig. 56. Plot for progressive frames from 1 to 16 with x axis as Box Number and cultivar type classified in terms of induced stress. Y
axis corresponds to Ground Truth Vegetation Indices. a Generated Leaf Area, b Generated ExG Vegetation Index, c Generated ExR

Vegetation Index, d Generated ExGR Vegetation Index.

Fig. 57. Plot for progressive frames from 1 to 16 with x axis as Box Number and cultivar type classified in terms of induced stress. Y
axis corresponds to Ground Truth Vegetation Indices. a Ground Truth Leaf Area, b GT ExG Vegetation Index, c GT ExR Vegetation

Index, d GT ExGR Vegetation Index.

well over all sample types, over conditional outliers in visual
samples and even analyzing correlation between the Vegetation
Indices, showing high r-value and low p-value making all data
points statistically significant in the model. The beta vulgaris
dataset also sets a benchmark in the plant phenotyping category,
with higher r-value and overall comparison with the observed
SOTA framework (Note: SOTA models are not officially defined
in this category, and hence the model most recognized and com-
pared to perform better than existing models in that category is
selected as SOTA). The Beta Vulgaris model, even with high com-
plexity in features, multiple sample types and a small dataset
observed high accuracy and similarity in generating images
and most importantly, with robustness. This concludes that the
model can be adopted by different Greenhouses or autonomous
industries in predicting yield before harvest through solely RGB
input frames and finding the optimum environmental variables
for conducive growth through visual feature inputs.

D.3. Additional plots and Fréchet inception distance (FID)

After an exhaustive summary on correlation and covariance
scores and results, this section understands general and over-
all trend over Generated and Ground Truth samples offering a
graphical summary to the evaluated results. As explained in the
Arabidopsis subsection, the unseen samples are underpredicted
which can be graphically interpreted. Similarly, in evaluating
other Vegetation Indices, the mean ExG, and ExGR show an
upward trend while min and max Vegetation Indices shows
near constant linear trend because that defines the max or min
value for a pixel in the image. Mean values take a mean for the

overall pixel values and so show an incremental growth. Mean
ExR on the other hand decreases by a certain factors over both,
the Ground Truth and Generated Samples. In the Beta Vulgaris
Dataset, controlled crops or crops with nitrogen stress show a
good overall trend over Vegetation Indices and segmented area,
while dry crops and those with multiple stress induced show
a low graphical trend. Comparing the Vegetation Indices in-
dividually, the overall noticeable trend for Ground Truth and
generated frames is similar for Arabidopsis Thaliana Dataset as
well as Beta Vulgaris Dataset. The Fréchet inception distance
(FID) score was calculated for the Beta Vulgaris Dataset. The
even numbered samples contained frames 9-16 for the cultivar
and the odd numbered samples contained 1-8. A General trend
with the FID being lower for 1-8 frames as compared to 9-16
frames was observed throughout the dataset. The lower the
FID, better is the generated image. While FID is yet another
parameter like SSIM or PSNR, it is used in multiple GAN eval-
uation frameworks and hence it was used. An Average FID of
116.7275 was observed over all samples. Minimum FID of 59.45
and Maximum of 198.81 was observed.



Research Article Paper - Initiative for Research and Innovation in STEM (IRIS) 37

Fig. 58. Plot for progressive frames for Arabidopsis Samples with Area and other Vegetation Indices, starting from unseen pattern
trend to low leaf area, intermediate leaf area and high leaf area.

Fig. 59. Plot for progressive frames for Arabidopsis Samples with closer look on Vegetation Indices, starting from unseen pattern
trend to low leaf growth, intermediate leaf growth and high leaf growth.

Fig. 60. Plot for progressive frames for Beta Vulgaris Samples with Area and other Vegetation Indices, starting from unseen pattern
trend to low leaf area, intermediate leaf area and high leaf area.



Research Article Paper - Initiative for Research and Innovation in STEM (IRIS) 38

Fig. 61. Plot for progressive frames for Beta Vulgaris Samples with closer look on Vegetation Indices, starting from unseen pattern
trend to low leaf growth, intermediate leaf growth and high leaf growth.

Fig. 62. Plot for progressive frames for Arabidopsis Samples with Area and other Vegetation Indices, starting from unseen pattern
trend to low leaf area, intermediate leaf area and high leaf area.

Fig. 63. Plot for progressive frames for Arabidopsis Samples with closer look on Vegetation Indices, starting from unseen pattern
trend to low leaf growth, intermediate leaf growth and high leaf growth.
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Fig. 64. Fréchet inception distance (FID) for Beta Vulgaris Plot

6. CONCLUSION

Understanding that the existing SOTA approach in plant pheno-
typing, depends on using 2 dimensional networks with numeri-
cal data input of 45 traits extracted from 6 frames of a plant with
multiple imaging sensors. This in itself is expensive, requires
more equipment, is time consuming to extract multiple traits
and is not visually capable of perceiving outliers in image data.
Simultaneously, the dependence of multiple traits reduces the
ability to understand anomalous trends in data points. Even-
tually, using these approaches and Frameworks, the average
r-value over all experiments is 0.867, compared to 0.9967 as in
the proposed approach for control plants and 0.9179 as com-
pared to 0.9920 in stressed plants. The proposed novel approach
to generating yield not only achieves a high accuracy, but also
requires solely an RGB image input of 4 frames and learns gen-
erative features over the raw pixel, enabling democratization
of yield prediction algorithms. These robust models, if initially
trained on a species of plant samples using proper labels and
data format, these are directly assessable by Farmers using Vi-
sually generated modes of interpretation. A single image input
format, and high similarity with robustness towards conditional
outliers and anomalies in visual cues makes this model’s results
better and more assessable than the current SOTA framework
relying on feature vector extraction and numerical data input
method.

In the proposed research by [22] and [23], the Research por-
trays how real world environmental factors and stresses influ-
ence hybrid crop tolerance to these factors. My proposed re-
search method can be implemented to accelerate these experi-
mental processes to protracting phenotyping approaches and
predict crop yield weeks before harvest through input of visually
highlighted cues and features in RGB images. An autonomous
system, similar to what is proposed above can not only help in
predicting visual generative models of the plant in the form of
temporal and spatial analysis, but also helps in reducing human
intervention and maximize yield through prediction.

7. FIELD TESTING

Pre and post research observations, I conducted certain obser-
vations in Mumbai, India and Banglore, India on how different
plant sample varieties respond to visual traits and environmen-
tal visual factors affecting plant growth. My analysis could
conclude that different soil patterns and features can distinguish
whether a plant is drying or wilting as well as the leaf color,
venation, features and density overall affects the trend. ExG
and ExGR as well as depth for certain samples was analyzed
to understand height growth and leaf reflectance to conditional
visual features and how they are affected in real world. On this
basis, the aim as well as the algorithm for my project originated
and was designed on how these visual traits play a key role in
deciding plant growth.

8. DATA AND CODE AVAILABILITY

Code : All code and supporting files as well as csv data used
for analyzing data. (log files and model structure provided for
each model Resolution layer) https://github.com/dhruvsheth-
ai/Spatio-Temporal-GAN

Data:
1) Beta Vulgaris Dataset by Raghav

Khanna et al. - http://robotics.ethz.ch/ asl-
datasets/2018_plant_stress_phenotyping_dataset/

2) Arabidopsis Thaliana Dataset by Han-
nah et al. - http://download.fz-juelich.de/ibg-
2/CVPPP2017_LSC_training.zip

3) Generated Images as well as segmented Area -
https://www.kaggle.com/dhruvsheth12345/spatiotemporal-
gan Note: Gifs for input as well as generated image are available
in each video frame. The dataset is navigable and content for
each folder can be viewed.

Note: Unless not referenced by the author, all codes, figures and plots
are created by the Author. All results are carefully evaluated, and stan-
dard protocols are followed throughout the research. Due acknowl-
edgements to work used in this Research are given to Researchers.

https://github.com/dhruvsheth-ai/Spatio-Temporal-GAN
https://github.com/dhruvsheth-ai/Spatio-Temporal-GAN
http://robotics.ethz.ch/~asl-datasets/2018_plant_stress_phenotyping_dataset/
http://robotics.ethz.ch/~asl-datasets/2018_plant_stress_phenotyping_dataset/
http://download.fz-juelich.de/ibg-2/CVPPP2017_LSC_training.zip
http://download.fz-juelich.de/ibg-2/CVPPP2017_LSC_training.zip
https://www.kaggle.com/dhruvsheth12345/spatiotemporal-gan
https://www.kaggle.com/dhruvsheth12345/spatiotemporal-gan
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Fig. 65. Observational Analysis at Mumbai, India

Fig. 66. Observational Analysis at Banglore, India
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Fig. 67. ExG and ExR obtained from observational analysis

Fig. 68. Depth samples collected to understand height for
observational analysis of features
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