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Abstract

The hydrology community is engaged in an intense debate regarding the merits of machine learning (ML) models over traditional
models. These traditional models include both conceptual and process-based hydrological models (PBHMs). Many in the
hydrologic community remain skeptical about the use of ML models, because they consider these models “black-box” constructs
that do not allow for a direct mapping between model internals and hydrologic states. In addition, they argue that it is unclear
how to encode a priori hydrological expertise into ML models. Yet at the same time, ML models now routinely outperform
traditional hydrological models for tasks such as streamflow simulation and short-range forecasting. Not only that, they are
demonstrably better at generalizing runoff behavior across sites and therefore better at making predictions in ungauged basins, a
long-standing problem in hydrology. In recent model experiments, we have shown that ML turbulent heat flux parameterizations
embedded in a PBHM outperform the process-based parameterization in that PBHM. In this case, the PBHM enforced energy
and mass constraints, while the ML parameterization calculated the heat fluxes. While this approach provides an interesting
proof-of-concept and perhaps acts as a bridge between traditional models and ML models, we argue that it is time to take a
bigger leap than incrementally improving the existing generation of models. We need to construct a new generation of hydrologic
and land surface models (LSMs) that takes advantage of ML technologies in which we directly encode the physical concepts
and constraints that we know are important, while being able to flexibly ingest a wide variety of data sources directly. To
be employed as LSMs in coupled earth system models, they will need to conserve mass and energy. These new models will
take time to develop, but the time to start is now, since the basic building blocks exist and we know how to get started. If
nothing else, it will advance the debate and undoubtedly lead to better understanding within the hydrology and land surface
communities regarding the merits and demerits of the competing approaches. In this presentation, we will discuss some of these
early studies, illustrate how ML models can offer hydrologic insight, and argue the case for the development of ML-based LSMs.
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NASA Visible earth: Blue Marble: https://visibleearth.nasa.gov/images/57723/the-blue-marble



NASA Visible earth: Map by Robert Simmon, based on data from the MODIS Land Cover Group, Boston University.



http://www-modis.bu.edu/landcover/index.html

Table 3 Root zone depths (m) and fraction of roots in each zone for IGBP land cover
classes.

From: A near-global, high resolution land surface parameter dataset for the variable infiltration capacity model

Depth(1) Depth(2) Depth(3) Fract(1) Fract(2) Fract(3)
Open water 0.1 0.6 0.8 0.44 0.45 0 &
Evergreen needleleaf forest 0.1 0.6 11 0.34 0.51 0.14
Evergreen broadleaf forest 0.1 0.6 2.3 0.32 0.44 0.23
Deciduous needleleaf forest 0.1 0.6 13 0.34 0.5 0.16
Deciduous broadleaf forest 0.1 0.6 13 0.31 0.52 0.17
Mixed forest 0.1 0.6 17 0.25 0.52 0.22
Closed shrublands 0.1 0.6 18 0.31 0.49 0.21
Open shrublands 0.1 0.6 24 0.33 0.43 0.24
Savanna 0.1 0.6 17 0.36 0.45 0.19
Woody savanna 0.1 0.6 1 0.37 0.5 013
Grasslands 0.1 0.6 0.8 0.44 0.45 (ON4]
Permanent wetlands 0.1 0.6 0.8 0.44 0.45 oM
Cropland 0.1 0.6 0.8 0.33 0.55 0.12
Urban 0.1 0.6 0.8 0.44 0.45 0.1
Cropland/natural vegetation mosaic 0.1 0.6 0.8 0.33 0.55 012
Permanent snow and ice 0.1 0.6 0.8 0.44 0.45 0.1
Barren 0.1 0.6 3.3 0.22 0.46 0.31
Schaperow, J. R., D. Li, S. A. Margulis, and D. P. Lettenmaier (2021), A near-global, N
high resolution land surface parameter dataset for the variable infiltration B

capacity model, Sci Data, 8(1), 216, doi:10.1038/s41597-021-00999-4. 8 N
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Most of our LSMs are data-hungry, yet not
well desighed to take advantage of the
existing and new sources of observations



Most of our LSMs are data-hungry, yet not
well designed to take advantage of the
existing and new sources of observations
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1. INTRODUCTION

1.1. Relation of Hydrology to Science

Fifty years ago, there was only a handful of books and a
handful of journals available to the hydrologist who wished
to establish a sound scientific basis for his practical deci-
sions. Todny. there i is an cmbunsung abundmce of books.

structed to provide a prediction of system behavior to some
specific accuracy and scientific theories developed to pro-
vide insight into the nature of the system operation. Though
their function is different, predicti dels and expl y
theories can be closely related to one another. An hypothesis
or a conﬁrmed theory can be used as the basis for the

of a predictive model and in turn some predic-

symp ing
for hls or her attention. Is hydrolozy now an established
science? Is hydrologic practice now firmly based on scien-
tific principles?

This paper deals with the problems raised by the search
for regularities and for laws in hydrology. In order to
emphasize the challenge implicit in such a search, special
attention will be paid to flood hydrology in which the
enterprise is particularly difficult. It is proposed to discuss

tive models which reproduce a prototype behavior accu-
rately can provide insight for the construction of explanatory
theories.

For different scientific workers (or for the same scientific
worker at different times) the level of interest in explanatory
theories and predictivie models may vary as shown schemat-
ically in Figure 1. A research scientist uses observations
primarily as a basis of comparison be(ween lhe predlcuons
bned on alternative hypoth and

h
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the subject \vlthm the comexl of predlcuve dels and

explanatory th in . Such an ap h

can be useful not only for the purpose of emphaslzmg the

position of hydrology as onc of the earth sciences but also

because such an approach could lead to the suggestion of

analogies which can be so fruitful in the construction of
dels and the develop of theories [Polya, 1954).

Following an mtroducloty section on the nature of scien-
tific method, an outline is given of the conlrastmg ap-
proaches of analytical hanics and
and the problems involved in dealing with systems of inter-
mediate size. Attention is then turned to the various ap-
proaches to the study of water movement and the problem of
p izing at a le the effect of microscale pro-
cesses that are not explicitly included in the macroscale
model. Finally, the historical development of current meth-
ods of flood hydrology is reviewed against the background of
the foregoing material. The purpose of the whole exercise is
to provide the context for the formulation of a strategy for
the development of a body of hydrologic knowledge that is
both scientifically respectable and practically useful.

The term model is used to describe a system which is
simpler than the prototype system and which can reproduce
some but not all of the characteristics thereof. Accordingly,
a model is related to those particular aspects of the behavior
of the pmlmype for which understanding or prediction is
required. It is |mponam lo realize that a model is not a
theory and to disti dels that are con-
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hyp into a th ical system him or her to
understand nature. An engineer uses observations as a check
on the predictions he uses in his efforts *‘to control the
materials and forces of nature for the use and benefit of
man"" (ICE Charter; see Dennis [1968]). Hydrology, as one
of the earth sciences and as the basis of water resources
development, is concerned with both of these functions.
Understanding and prediction can aid the | of
flood events, but perfect understanding and perfect predic-
tion would be small solace if failure to control resulted in a
massive human tragedy.

1.2. Nature of Scientific Method

There seems at first sight to be all the difference in the
world between the scientific method of the physical scientist
and the efforts of the hydrologist to understand and predict
extreme flood events or other hydroloical phenomena. On
closer examination, however, it becomes clear that while
there are very significant differences, there are also similar-
ities and analogies that may be helpful to the hydrologist in
his task. It is clearly insufficient to define scientific method
as ‘‘what scientists do,”" but it would be equally wrong to
think that all scientists under all ci act in rd
ance with what is known as the scientific method.

In his notable work The Logic of Scientific Discovery,
Popper [1959] proposed falsifiability as the criterion of
dermarcation of empirical science. He requires of any sci-
entific system that ‘it must be possible for an empirical
scientific system to be refuted by experience.” Popper goes
on to develop such principles and rules as will ensure the
testability, i.e., the falsifiability of scientific statements.

Dooge, J. C. I. (1986), Looking for hydrologic laws, Water
Resour Res, 22(9), S46-S58, doi:10.1029/WR022i09Sp0046S.
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structed to provide a prediction of system behavior to some
specific accuracy and scientific theories developed to pro-
vide insight into the nature of the system operation. Though
their function is different, predictive models and explanatory
theories can be closely related to one another. An hypothesis
or a conﬁrmed lheory can be used as the basis for the
ive model and in turn some predic-
tive models which reproduce a prototype behavior accu-
rately can provide insight for the construction of explanatory
theories.

For different scientific workers (or for the same scientific
worker at different times) the level of interest in explanatory
theories and predictivie models may vary as shown schemat-
ically in Figure 1. A research scientist uses observations
primarily as a basis of comparison between the predictions
based on alternative hypotheses and combines confirmed
hypotheses into a theoretical system enabling him or her to
understand nature. An engineer uses observations as a check
on the predictions he uses in his efforts *‘to control the
materials and forces of nature for the use and benefit of
man'’ (ICE Charter; see Dennis [1968]). Hydrology, as one
of the earth sciences and as the basis of water resources
development, is concerned with both of these functions.
Understanding and prediction can aid the control of extreme
flood events, but perfect understanding and perfect predic-
tion would be small solace if failure to control resulted in a
massive human tragedy.
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Dataset & model: A purely data-driven approach
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Replacing turbulent heat flux parameterizations in a

process-based model —
Transpiration
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AI2 Men it o Columbia to Launch $25 Million Al-Based

4 Climate Modeling About  Papers  Team

Climate Modeling Center

BY KIM MARTINEAU | SEPTEMBER 9, 2021 £ [w]=]+ B Comments

uses GFDL model
Climate Modeling for the future of the planet

Some of this is already happening )
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What we need:

Ways to incorporate machine learning to take advantage of new data and existing

knowledge

Targeted efforts to explore the best use of new data

Critical evaluation of successes and failures of existing models
Identifying opportunities for each modeling approach
Streamlined model workflows and data sets

Collaborations between earth scientists and data scientists

Training and training resources in data science and machine learning
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Learning from Observations:

The Case for a New Generation of Land Surface
Models
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