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Abstract

An accurate estimation of the shale permeability is essential to understand heterogeneous organic-rich shale reservoir rocks and

predict the complexity of pore fluid transport in the rocks. However, predicting the matrix permeability by traditional models

is still challenging because they require information often measured from core measurements. First, Kozeny’s equation (Kozeny,

1927) uses porosity and specific surface area of solid grains. However, it is difficult to characterize the specific surface area

values or grain sizes from the logs. Second, Herron’s method (Herron, 1987) has been used for predicting permeability based

on the mineral contents provided by well log data in conventional sandstone reservoirs. However, the predictive accuracy is low

due to the different pore network structures of the shales. In this study, we estimate shale matrix permeability by a combined

exploratory data analysis (EDA) and nonlinear regression estimation from the wireline logs. First, we conduct a bivariate

correlation analysis for permeability and rock properties in core measurements. According to the correlation and Shapley value

sensitivity test, we find that permeability change has a significant effect on the variation in porosity. Also, we investigate a

nonlinear behavior between porosity and permeability. Second, we derive a nonlinear polylogarithmic estimation function of

porosity to permeability, comparing it to the multivariate linear regression of porosity and clay volume fraction. As a result,

a cubic logarithmic function of porosity significantly improves the fitting performance of the permeability values, better than

the traditional methods. Moreover, we generate the permeability logs from the calibrated porosity logs, and they imply better

shale permeability prediction as well. Since we can invert the porosity distribution from seismic data, this approach can provide

a more accurate permeability estimation and reliable fluid flow modeling for shale and mudrock.
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1. Introduction

2. Study Area
• University Lands in the Midland Basin (eastern part of the Permian Basin, TX)
• Well logs and core measurements

4. Exploratory Data Analysis (EDA) 7. Results

8. Conclusions

Table 1. Bivariate correlation values between the permeability and four rock properties.

• First, we conduct a bivariate correlation analysis for permeability and rock properties in core 
measurements. We find that permeability change has a significant effect on the variation in porosity.

• Second, we derive a nonlinear polylogarithmic estimation function of porosity to permeability, comparing it 
to the traditional methods and the MLR model. As a result, a cubic logarithmic function of porosity 
significantly improves the fitting performance of the permeability values better than the traditional methods.

• We successfully generate the permeability logs from the calibrated porosity logs, and this approach can 
also help to understand the pore systems in shales and improve the fluid flow modeling.

1. An accurate estimation of the shale permeability (k) is essential to understand
heterogeneous organic-rich shale rocks and predict the complexity of pore fluid
transport in the rocks.

2. However, predicting the shale matrix permeability by traditional models, such
as Kozeny’s equation and Herron’s method, is still challenging because they
require information often measured from core measurements.

3. In this study, we estimate shale matrix permeability by a combined exploratory
data analysis (EDA) and nonlinear regression estimation from the wireline logs.
As a result, a cubic logarithmic function of porosity significantly improves the
estimation of the permeability values, better than the traditional methods.

(a) (b)

Figure 1. (a) Study area and well locations in three counties, the southern part of
the Midland Basin. (b) Mineralogic ternary diagram of the core measurements.

• Kozeny’s equation (Kozeny, 1927)
• Using porosity and specific surface area of solid grains
• 𝑘 = 𝑐 !
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• However, it is difficult to characterize the specific surface area values or grain 
sizes in the well logs.

• Herron’s method (Herron, 1987)
• Based on the mineral contents provided by well log data in quartz-rich 

sandstone rocks
• 𝑘 = 𝐴0
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• However, the predictive accuracy is low due to the different pore network 
structures of the shales.

3. Traditional Methods
6. Multivariate Linear Regression (MLR)
• 𝑘 = 𝑎$𝜙 + 𝑎4𝑉5678 + 𝑎#𝑇𝑂𝐶 + 𝑎& (R2 = 0.46, RMSE = 0.00023)
• Porosity is the most influential factor on the permeability estimation. Therefore, 

porosity can be a better indicator to predict the permeability. 
• Due to the nonlinearity between two variables, we can derive a nonlinear permeability 

function with a better fit to the permeability data than the traditional methods.

Figure 2. Crossplots of the permeability and four rock properties from the core data:
(a) porosity (𝝓), (b) total organic carbon (TOC), (c) clay volume (VClay), and (d) bulk
density (𝜌9:6;).

• Three-phase statistical shale rock physics model (Lee & Lumley, 2019)
• 𝑌 = 𝑎$𝜙 + 𝑎4𝑉<678 + 𝑎#𝑇𝑂𝐶 + 𝑎&
• Porosity shows the strongest correlation with the shale matrix permeability.

→ The porosity can be an efficient indicator to estimate the permeability.

k 𝝓 TOC VClay 𝜌!"#$
k 1.00

𝝓 0.67 1.00

TOC 0.25 0.30 1.00

VClay 0.24 0.49 0.22 1.00

𝜌!"#$ -0.47 -0.74 -0.71 -0.40 1.00

𝑎% 𝑎& 𝑎' 𝑎(
Coefficient 0.0000857 -2.56e-06 0.000011 -0.0002961

SRC 0.71 -0.12 0.06

Shapley 87.9% 11.2% 0.9%
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Table 2. MLR analysis with regression coefficient, standardized regression coefficient
(SRC), Shapley values between the permeability and three rock properties.

(a) Herron’s method (b) Modified Kozeny’s equation

R2 RMSE
(a) 0.40 2.4×10-4

MLR 0.46 2.3×10-4

(b) 0.56 2.1×10-4

(c) 0.67 2.0×10-4

(d) 0.99 2.5×10-5

(c) 𝑘 = 𝑎 log𝜙 + 𝑏 (d) 𝒌 = 𝒂(log𝝓)𝟑+𝒃(log𝝓)𝟐+𝒄(log𝝓) + 𝒅

Figure 3. Predicted versus actual permeability plots for four estimation functions.

Figure 4. Synthetic permeability logs from the calibrated porosity logs with the
core permeability measurements (black dots).

Deriving a nonlinear function 
of porosity to permeability 

from the core data

Calibrating the porosity logs 
with the core porosity 

measurements

Generating the permeability 
logs from the calibrated 

porosity logs


