Examining the relationships between basal channels and ice shelf
structural evolution with repeat, high-resolution elevation models
and altimetry

Allison Chartrand! and Ian Howat?

'Byrd Polar and Climate Research Center, The Ohio State University
2Ohio State University

November 26, 2022

Abstract

Ice shelves control the stability of ice sheets and regulate ice sheet contribution to sea level rise by buttressing ice ow. Most
of Greenland’s ice shelves have already been lost, and many ice shelves around Antarctica are thinning and retreating. Ice
shelves are increasingly vulnerable to thinning and destabilization due to surface and basal melting, and these processes may
be exacerbated by the presence of basal channels, which are deep grooves that entrain meltwater at the base of ice shelves.
Basal channels have been observed alongside spatial and temporal changes in grounding line geometry, strain rates and stress
transfer, and the incidence and advection of other surface and basal features. The relationships between these processes, and
their implications for ice shelf stability, remain largely unknown due to the lack of observations of suciently high spatial and
temporal resolution. Our methodology employs high temporal and spatial resolution digital elevation models (DEMs) from
REMA and ArcticDEM, laser altimetry from ICESat-2, radar sounding and laser altimetry from Operation IceBridge, and
velocity data derived from interferometry, enabling us to constrain the morphology and evolution of channels and other ice
shelf features at the fringes of both ice sheets. We intend to investigate how the relationships between channels, grounding
line processes, and rifts and crevasses impact the persistence of ice shelf area necessary to maintain a “safety band”, or sucient
buttressing force, against grounded ice. Where time-evolving grounding line position data are sparse, we use the DEMs to track
the boundary of hydrostatic equilibrium, which we use as a proxy for changes in grounding line position in order to investigate
changes in ice shelf geometry. We have completed analysis of three ice shelves and plan to observe at least twelve more in order
to develop an inventory of at- risk ice shelves. Based on our preliminary results, we hypothesize that rapidly evolving basal
channels are associated with high rates of change in the grounding zone. This work is integral to assessing past and future ice
shelf stability, and it will help the glacier dynamics community more accurately account for small-scale ice shelf processes in

computational models which predict ice sheet contribution to sea level rise.
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Basal channel formation Alley et al., 2016;
Nature
Flux 2?3 s';()) = oo \\ --u,,_,\\\ CO mmun |Cat|0 NS
Comm e agme—
s
A B

suao et

oe Lol ]2

2 S _ Relict N\ Z S et Ice stream

['!!9_9_- s S0 I“N

31 . E— Cross-section

Drews et al., 2017;

Nature Communications

Shear-strain rate
absolute value (day™")

I
0 0.0002

Alley et al., 2019;
Science Advances




How is basal channel evolution related to changes at or
upstream of the grounding line?

Rates of change between 2015 - 2019
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Surface elevation data are used to
track surface depressions.
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Modeled subglacial discharge - Wei et al., 2020, TC
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Surface height (m above sea level)
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Petermann Ice Shelf
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Takeaways

e Several channels observed to be lengthening landward are associated with high basal
melt rates, rapid thinning of grounded ice, and retreat of the hydrostatic boundary

 What do these changes in ice shelf structure mean for ice shelf stability?

e Several channels previously thought to be ocean-sourced line up with modeled
channelized subglacial discharge



