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Abstract

Earth’s atmosphere underwent an irreversible, and geologically sudden, change approximately 2.5 billion years ago from oxygen
free, to oxygenated, called the Great Oxidation Event (GOE). This change was driven by the evolution of a new form of
photosynthesis which produced molecular oxygen as a byproduct. The group of bacteria in which this evolved, Cyanobacteria,
are the only organisms to independently harness this form of photosynthesis. While we know that by the time of the GOE,
Cyanobacteria were present, we do not know if they were present before the GOE. It has been proposed that Cyanobacteria
were restricted to freshwater environments for hundreds of millions of years before the GOE, and only when they were able
to inhabit the oceans did the GOE occur. We address this hypothesis by surveying the literature to understand how modern
cyanobacteria respond to changes in salinity, as well as running a 1000 generation evolution experiment. We find evidence that
just because a cyanobacterial species is found in freshwater does not mean it cannot live in marine salinities, and vice versa.
Additionally, we find that prolonged exposure to a different salinity does not result in loss of ability to grow in the ancestral

salinity.
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There are competing hypotheses about
the timing of the origin of oxygenic
photosynthesis and the GOE
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Hypothesis 1: Oxygenic photosynthesis
evolved just prior the GOE
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Hypothesis 2: Oxygenic photosynthesis
evolved well before the GOE but was
ecologically restricted
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The transition from terrestrial to marine
environments has been posited as a
major constraint
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Salt tolerance

Low salt tolerance
euryhaline

marine (0.15% NaCl)
halophile (5—-20% NaCl)
------ equivocal

Sanchez-Baracaldo et. al. 2005
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We surveyed the literature to develop a
database of cyanobacterial responses to
changes 1n salinity
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Cyanobacterial strains
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Future question: Can we 1dentify
molecular mechanisms behind the
different response shapes?
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Future question: Can we identify
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Future question: Can we identify
molecular mechanisms behind the
different response shapes?
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) , 1. Fresh water strains: tolerance limit 0.6 M NaCl
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