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Abstract

Aside from Bell’s inequality, QM and local real theory have other specifications that can be observed in experiments. To explore

these specifications, we re-examine EPR paradox to show that non-locality arises from the absence of location variable. Our

analysis are then applied to several reported experiments. 1) In a known short range Bell experiment with high detection

efficiency, portion of the presented data agrees more with local real model than with QM. 2) The so called non maximally

entangled state in several experiments are essentially partially entangled photons, with a large local real part helping the

violation of Bell’s inequality, and the reported event counts deviate from expected entanglement model. 3) In long range EPR

experiments for closing locality loophole, interactions with local real apparatus prior to measurements put the entanglement in

question.
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Bell’s inequality(J. S. Bell, 1965; J. F. Clauser and Holt, 1969)/entanglement has been extensively stud-
ied(A. Aspect and G. Roger, 1804; G. Weihs and A. Zeilinger, 5039; M. A. Rowe and D. J. Wineland, 2001;
E. G. Cavalcanti and P. D. Drummond, 2104; C. Branciard and V. Scarani, 2104) as it distinguishes quantum
mechanics(QM) from local real theories. In a typical setup in testing Bell’s inequality as shown in fig. 1, the
source produces entangled particle pairs, which are measured by Alice and Bob. Various experiments have
been reported to violate Bell’s inequality, in support of QM while ruling out local real theory.

But in addition to Bell’s inequality, QM and local real theory have other empirical specifications which are
expected to be consistent with a valid experiments. To study these various specifications, we first re-examine
EPR paradox(A. Einstein and N. Rosen, 1935) to reveal the origin of non-locality as lack of location variable
x in wave function, which is thus incapable of modelling interaction with local real apparatus. Several
experiments are analyzed, in a short range Bell experiment with high detection efficiency, portion of the
presented data agrees more with local real model than with QM. In many other experiments, the so called
non-maximally entangled photons are essentially partially entangled, which oddly involves a substantial
local real part in the source to help violation of Bell’s inequality, and the reported event counts deviate from
the expected entanglement model. Then in many long range experiments for closing locality loophole, the
interactions with local real device can not be properly modelled by the non-local wave function, thus the
measurements in these experiments are only taken on local real photons.

To some extent, EPR paradox can be explained without “spooky action at a distance”. Due to uncertainty
principle ∆x∆p > ~

2 , when Alice measures the particle momentum on the left side, ∆pA = 0, ∆xA becomes
infinitely large, so xA can take any value. i.e. the particle measured by Alice can be anywhere, in specific,
it can just be next to its peer particle on the right side and have an intimate impact on pB and xB .
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figures/general-png/general-png-eps-converted-to.pdf

Figure 1: General setup of a Bell experiment

The above arguments may seem rhetoric, but it reveals the origin of non locality. The infinitely large ∆x
effectively removes the location variable from an equation. With location variable x absent, the equation
would be incapable of treating local real interactions happening at a particular location with a definite
amount of impact, and thus would be non local.

If an equation lacks a variable that has substantial impact on the physical process to be described, the
equation becomes indefinite and incomplete. For example, if an actual physical process varies with respect
to location x, but an equation E attempting to describe the physical process lacks location variable x, then
in E ’s expression, the physical process assumes a set of values uniformly over the entire space (rather than
a unique value at each x), or alternatively, E represents the physical process as a non-local superposition.

While subsequent studies on the topic focus on particle spin instead of position/momentum pair, QM, in its
eigenvalue/eigenstate interpretation, factors out the location variable from wave function, which is thus non
local. As to be shown later, the non local wave function is inadequate to describe many reported experiments.

In the following discussion, α is the polarization of the detector at Alice’s side of an EPR experiment, PA is
the probability measured at Alice’s side. On Bob’s side, β is the polarization of the detector and PB is the
probability.

With a local real source, a pair of photons with identical polarization are sent to Alice and Bob. The
polarization θ of the photons is defined before it is measured. As Alice and Bob each has a location
specification, they are at different locations, thus their detection outcomes can not be directly correlated.
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Instead, Alice and Bob can each calculate the correlation between the polarization of their own detectors
and the photon polarization θ.

When Alice measures the photon with a detector of polarization α, the probabilities of detection result are

PA(1|θ, α) = cos2(θ − α)

PA(0|θ, α) = sin2(θ − α)
(1)

Similarly on Bob’s side, where the photon is measured with a detector in polarization β

PB(1|θ, β) = cos2(θ − β)

PB(0|θ, β) = sin2(θ − β)
(2)

the probability of θ is evenly distributed

PA(θ|α) =
1

2π
(3)

then the joint conditional probability

PA(1, θ|α) = PA(1|θ, α)PA(θ|α) =
1

2π
cos2(θ − α) (4)

The local real joint probability of Alice detecting a 1 photon at polarization α and Bob detecting a 1 photon
at polarization β can be derived with eqn. (2),

Plocal−real(1, 1|α, β) =

∫ 2π

0

PB(1|θ, β)PA(θ, 1|α)dθ

=

∫ 2π

0

1

2π
cos2(θ − α)cos2(θ − β)dθ

=
1

8
+

1

4
cos2(α− β)

(5)

similarly,

Plocal−real(0, 0|α, β) =
1

8
+

1

4
cos2(α− β)

Plocal−real(0, 1|α, β) =
1

8
+

1

4
sin2(α− β)

Plocal−real(1, 0|α, β) =
1

8
+

1

4
sin2(α− β)

(6)

Unlike the above local real model, entangled photon pair are in a quantum singlet state

|Ψ〉 =
1√
2

(|1〉A |1〉B + |0〉A |0〉B) (7)

3
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In this quantum setup, the photon polarization θ does not exist, and as photons do not have location
specification, their polarization can be directly correlated. The quantum joint probability of Alice detecting
a 1 photon at polarization α and Bob detecting a 1 photon at polarization β can be derived directly from
eqn. (7)

PQM (1, 1|α, β) =
1

2
cos2(α− β) (8)

similarly,

PQM (0, 0|α, β) =
1

2
cos2(α− β)

PQM (0, 1|α, β) =
1

2
sin2(α− β)

PQM (1, 0|α, β) =
1

2
sin2(α− β)

(9)

figures/prob-png/prob-png-eps-converted-to.pdf

Figure 2: Joint probability of detecting 1 at both Alice’s and Bob’s sides

For comparison, eqn. (5) and (8) are plotted in fig. 2. As it shows, sinusoidal shaped joint probability is
predicted by both QM and local real model. The primary difference is the range of the probability, which

4
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enables various inequalities to be constructed. Consequently, it is important to compute the actual proba-
bility in any experiment testing Bell’s inequality. And it is error prone in interpreting existing experimental
data. For example:

1) Subtracting accidental coincidences could shift the sinusoidal curve.

2) Both sinusoidal curves in fig. 2 are about probability. In the QM model, PQM (1, 1|α, β) has a maximal
value of 0.5, which is important in violation of Bell’s inequality but has never been directly confirmed. Many
known experiments reported absolute count of coincidence and plotted them in sinusoidal shaped curve. But
without knowledge of the total count, these absolute count can not be accurately mapped to probability and
used in Bell test. e.g. if the underlying probability is

Pillustrative(1, 1|α, β) =
1

4
cos2(α− β) (10)

instead of eqn. (8), it can also generate the reported data, but it does not violate Bell’s inequality.

To apply above theoretical models in an experiment, the computation of probability needs knowledge of the
total number of test runs. Such requirement can only be met in experiments with high detection efficiency.
We thus analyze the experiment in (M. A. Rowe and D. J. Wineland, 2001), which reports following data:

“a, Data histogram with a negative correlation using φ1 = 3π/8 and φ2 = 3π/8. For these data N0 = 2, 200,
N1 = 15, 500 and N2 = 2, 300. b, Data histogram with a positive correlation using φ1 = 3π/8 and φ2 = −π/8.
For these data N0 = 7, 700, N1 = 4, 400 and N2 = 7, 900. The zero bright peak extends vertically to 2,551.”

The total number of experiment in (M. A. Rowe and D. J. Wineland, 2001) is 20,000, the above data
translate to: a) for negative correlation, N(0, 0) = 2, 200, N(1, 0) + N(0, 1) = 15, 500 and N(1, 1) = 2, 300.
The probability can be computed:

P (0, 0) =
N(0, 0)

20000
= 11%

P (0, 1) + P (1, 0) =
N(0, 1) +N(1, 0)

20000
= 77.5%

P (1, 1) =
N(1, 1)

20000
= 11.5%

(11)

b) for positive correlation, N(0, 0) = 7, 700, N(1, 0) +N(0, 1) = 4, 400 and N(1, 1) = 7, 900. The probability

P (0, 0) =
N(0, 0)

20000
= 38.5%

P (0, 1) + P (1, 0) =
N(0, 1) +N(1, 0)

20000
= 22%

P (1, 1) =
N(1, 1)

20000
= 39.5%

(12)

Table 1 compares the above experimental data with predictions from QM and local real model. These data
agrees more with local real model than with QM.

Although (M. A. Rowe and D. J. Wineland, 2001) claims violation of Bell’s inequality, the presented data
gives visibility V < 0.6, substantially less than the minimal threshold 0.707 required for violation of Bell’s
inequality, which appears quite intriguing.

5



P
os

te
d

on
A

u
th

or
ea

2
M

ay
20

19
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
55

67
82

85
.5

02
60

78
6

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Table 1: Comparison of experimental data from (M. A. Rowe and D. J. Wineland, 2001) and prediction of
QM and local real model

For negative correlation |α− β| = π/2

Experimental data QM local real
P(0,0) 11% 0% 12.5%

P(0,1)+P(1,0) 77.5% 100% 75%
P(1,1) 11.5% 0% 12.5%

For positive correlation |α− β| = 0

Experimental data QM local real
P(0,0) 38.5% 50% 37.5%

P(0,1)+P(1,0) 22% 0% 25%
P(1,1) 39.5% 50% 37.5%

Several other experiments attempt to close the fair sampling loophole by using an inequality without requiring
fair sampling. However, fair sampling is indispensable in all statistical experiments, because theoretically, all
inequalities must deal with some probabilities (e.g. p++), whereas experimentally, all tests can only collect
raw count of events (e.g. N++, Ntotal). Normally the probabilities in an inequality are estimated as a ratio
of the raw counts collected in an experiment (e.g. p++ = N++/Ntotal), which is only valid when sampling is
fair. Thus fair sampling is always necessary regardless of the inequality being used, unless one is not doing
a statistical experiment. It is odd that (M. Giustina et al., 2504; L. K. Shalm et al., 2504) do not require
fair sampling.

(M. Giustina et al., 2504; L. K. Shalm et al., 2504) also use non maximally entangled state

|Ψ〉 =
1√

1 + r2
(|1〉A |1〉B + r |0〉A |0〉B)

=
|1〉A |1〉B + |0〉A |0〉B√

1 + r2
+

(r − 1) |0〉A |0〉B√
1 + r2

= |Ψ〉entangle + |Ψ〉local

(13)

Eqn. (13) actually represents partially entangled photons, which contains a full entanglement part |Ψ〉entangle
and a local real part |Ψ〉local, each of which contribute to the joint probabilities of the detection outcomes.
Here, we use the entanglement part as a rough approximation for the joint probability of partial entanglement
wave function

Ppartial(1, 1|α, β) ≈ 1

1 + r2
PQM =

cos2(α− β)

1 + r2
(14)

It is odd that the local real part in the wave function can help violate the selected inequality.

Incidentally, data reported in (M. Giustina et al., 2504; L. K. Shalm et al., 2504) deviate from the joint
probability expected from the above partial entanglement model. For example, figure 3 in (M. Giustina et
al., 2504) shows p++(a2b2) < 10−4 with r = −2.9, α = a2 = 62.4◦, β = b2 = 25.5◦, but the joint probability
estimated by (14) is about 0.068. From the table S-II in the supplemental material of (L. K. Shalm et al.,
2504), the estimated joint probability p++(ab) = 6378/(6378 + 3289 + 3147 + 44336240) = 0.000144 with
r = 3.47, α = a = 4.2◦, β = b = −4.2◦, but the joint probability projected by (14) is about 0.075.

While the raw data deviates from expected model, many experiments also involve interactions with local
real apparatus before Alice and Bob take measurements. To illustrate, a simplified setup of (G. Weihs and

6
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figures/redraw-png/redraw-png-eps-converted-to.pdf

Figure 3: Simplified diagram of (G. Weihs and A. Zeilinger, 5039)

A. Zeilinger, 5039) is shown in fig. 3. In (G. Weihs and A. Zeilinger, 5039), “Each of the observers switched
the direction of local polarization analysis with a transverse electro-optic modulator.” That is, a transverse
electro-optic modulator is placed on the path of each arm of the experiment, denoted A and B in fig. 3. A0

and B0 are reference points before photons from the source pass the modulator, A1 and B1 are reference
points after photons from the source pass the modulator,

The scheme in fig. 3 is widely used in closing the locality loophole. Such setup has to be finely aligned so
that photons pass through the modulator and the measurement polarizer, otherwise, the modulator does
not have any impact on photons that don’t pass it and the measurement polarizer can not pick up photons
that don’t pass it. This implies that the modulator and the measurement polarizer each are local real,
i.e. the polarization of the photon is changed only at the location of the modulator by a real amount as a
function of an external controlling random signal, and measurement happens precisely at the location of the
measurement polarizers.

Two local real apparatus (a modulator and a measurement polarizer) are distinct even if they are enclosed in
one measurement station. Thus there exists point A1 and B1 between the two distinct apparatus at each end
of the experiment, i.e. on Alice’s side, there exists point A1 after the modulator and before the measurement
polarizer. A few questions then arise:

1)When the photon of an entangled pair on the left passes modulator A and gets its polarization modulated,
does its peer photon on the right get changed instantly? Can one photon of an entangled pair be modulated
independently? Does entanglement play any role at the modulator?

7
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2)After passing the modulators, can the photon pair remain entangled at A1 and B1? Are Alice’s and
Bob’s polarizers measuring entangled photons? What is the wave function on which Alice and Bob take
measurement?

The difficulties are, 1)if entanglement plays no role at the modulator, how can it subsequently have any
impact when the photons pass the measurement polarizers? 2) if entanglement plays some role at the
modulator, then the photon pair are already disentangled when arriving at Alice’s and Bob’s measurement
polarizers. What did Alice and Bob measure?

These questions expose the incompleteness of the wave function (7). We attempt 2 possible ways of treating
electro-optic modulator with QM wave function, in both cases, Alice and Bob are measuring local real
photons.

First, wave function (7) remains non-local, i.e. lacks location variable x, thus it attempts to represent the
physical process uniformly in the entire space, regardless of before/after the photon passing the modulator.
In this case, the wave function collapses due to interaction with the electro-optic modulator, because if the
wave function did not collapse, it (lacking location variable x) would not be able to describe the change of
polarization due to the interaction with electro-optic modulator at location A and B.

With wave function collapsing due to interaction with the modulators at location A and B, Alice and Bob
are only left to take measurement on disentangled photons.

Second, we annotate the wave function with location, so the wave function can reflect the change of polar-
ization introduced by the local real modulator A and B. In such annotations, the wave function becomes
local to some extent.

If the wave function at A0 and B0 is in entanglement,

|Ψ〉A0,B0
=

1√
2

(|1〉A |1〉B + |0〉A |0〉B) (15)

the wave function at A1 and B1 must be different than (15) to reflect the change of polarization due to
electro-optic modulator. As the electro-optic modulator can be arbitrarily configured by the controlling
random signal, the wave function at A1 and B1 will contain all possible joint states, thus becomes

|Ψ〉A1,B1
= |1〉A |1〉B + |0〉A |0〉B + |1〉A |0〉B + |1〉A |0〉B (16)

the wave function at A1, B1 is in disentanglement, Alice and Bob are only measuring disentangled photons.

The above arguments arises when the non-local wave function needs to model the change of polarization due
to the local real electro-optic modulator in the experiment. The same analysis applies when the non-local
wave function has to treat the interaction with any local real physical model in an actual experiment. In
another example, magnetic field has a local real model in that the field has a real value at every location.
When a particle interacts with magnetic field, its spin becomes real. Earth is surrounded in its magnetic
field, so in all experiments performed on the surface of the Earth, the spin of charged particles are local
real. Thus within the Earth’s magnetic field, experiments based on the spin of charged particles are only
measuring local real quantities.

In general, a local real apparatus exerts a definite amount of impact at a specified location, which can not be
modelled by non-local QM wave function. For experiments involving local real apparatus, the wave function
on which Alice and Bob are taking measurements is merely in disentanglement, thus local real.

While Bell’s inequality presents a statistic to test the local realism hypothesis, the physical essence of
entanglement is specified with certainty that, for 2 entities once in interaction and later separated, impact
on one entity will instantaneously change the other entity.

8
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There has been extensive interest in studying Bell’s inequality, but the real fundamental question is about
the physical essence of entanglement. If one could directly observe the spooky action at a distance, it would
be a conclusive support of entanglement, which would leave test of Bell’s inequality superfluous. If on the
other hand, an experiment has many aspects manifesting local realism (the opposite to entanglement), simple
violation of Bell’s inequality may not be effective.

In experiments that use partially entangled photons with a substantial local real part to help violating Bell’s
inequality, that report event counts deviating from joint probability expected in the entanglement model,
that rely on interaction with local real apparatus to close locality loophole, the reported violation of Bell’s
inequality can not be a convincing evidence of entanglement.
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