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Abstract

Skin sensitization occurs when an exogenous chemical substance forms a covalent adduct with a dermal protein electrophile
or nucleophile. This instigates an immune response which leads to inflammation. The local lymph node assay (LLNA) is an
in-vivo model used in the assessment of relative skin sensitizing potency of chemicals. The method is time consuming and
expensive, as well as poses ethical questions given that a number of mice must be sacrificed for each compound assessed. In
this work we investigate the use of an inexpensive, rapid and ethical method to predict the skin sensitization potential of
Schiff base chemicals. We employ quantum chemical methods to rationalize the sensitization potential of 22 compounds with
a diverse range of activities. To this end we have evaluated the mechanistic profile associated with this type of reaction using
gas-phase models. We subsequently use the predicted rate determining barriers and key physico-chemical parameters (such as
logP) to establish SAR guidelines to predict the skin sensitization potential for new chemicals. We find that the predicted rate
determining barriers for aldehydes, ketone and 1,2 and 1,3 diones generally decrease in the given order, which concurs with the
overall trends in sensitization. We find that lipophilicity also plays a role, with those chemicals displaying both low barriers to
reaction, and lower lipophilicity (i.e. diones), being more likely to display undesirable skin sensitization effects. These findings
are in line with experimental based observations in the literature and point to the value 3D quantum chemical simulations can

play in the combination of approaches used to estimate skin sensitization potential of chemicals.

1.0 Introduction

Skin sensitization is a commonly observed occupational health issue which arises from an immunological
allergic response. Skin sensitizers are chemical substances that elicit an allergic response after exposure to
the skin, leading to allergic contact dermatitis (ACD).[1] It has been reported that between 15-20% of the
general population will suffer sensitization over the course of their lives. The disease is a significant regulatory
health concern and has resulted in European Union legislation in the form of the Registration, Evaluation,
Authorization and Restriction of Chemicals (REACH). This legislation requires that the skin sensitization
potential of all chemical substances manufactured or imported at level of one ton per annum must be assessed.
A further goal of REACH is to increase the use of nonanimal models for chemical assessment.[2; 3]

Skin sensitization arises from the reaction of chemical sensitizer with skin proteins triggering an immune
response.[4, 5] A range of different techniques are available to assess the skin sensitization of chemicals.
These including in-vivo, in-vitro, in-chemico and in-silico methods have been developed.[6-13] As a result of
ethical standards set by REACH legislation there has been an increasing push away from in vivo models such
as the gold standard in vivo murine Local Lymph Node Assay (LLNA),[7] towards in vitromethods, such
as KeratinoSensTM assay,[14] and in chemicoalternatives, such as peptide depletion assays.[13] Hoffman
et al.analyzed 128 compounds with a range of sensitization endpoints find that the LLNA assay shows
~75% concordance between human results and the LLNA assay, while that for the KeratinoSensTM assay



was roughly comparable.[15] Natsch et al. [8] reported that the latterin vitro approach showed a 60%
concordance with the LLNA methods for a set of 312 chemicals. Hoffman[16] and others[8, 17] report
that the most effective strategy to predict skinsensitization potential is to employ a multiple non-animal
methods. The former reports that incorporation of essentially orthogonal test strategies comprising in wvitro
, in chemicoand in silico inputs demonstrated the best overall performance, equivalent or superior to the
LLNA assay on their curated set of 128 datapoints.|[16]

In silico methods are desirable alternatives to in vivomodels since a prediction on an unknown chemical
can be made from its chemical structure alone. While this means the methods generally cost resource and
time efficient, they are generally of lower accuracy than their experimental alternatives. In silico models can
range from similarity or substructural methods[5, 18, 19] that allow the identification of like-molecules with
experimental data (read-across) or statistical models that can relate 2D chemical descriptors to a qualitative
or quantitative prediction of activity. [20-22] Methods TIMES, Toxtree, Derek Nexus etc. [17, 23, 24] have
proved useful in compound assessment in their own right,[21, 25] and as part of multi-tiered testing strategies
with in silico models as the first tier approach.[21, 26]

A number of different statistical models that relate chemical properties to the degree of sensitization have
been reported in the literature. Guidelines that all in silico models must meet are: (a) a defined endpoint, (b)
an unambiguous QSAR model, which is (c¢), mechanistically interpretable. In addition the model must have
(d) predictivity that is fit for purpose and (e) a defined domain of applicability.[5, 27] Notable models include
the relative alkylation index (RAI) of Roberts et al.[28], models built on individual chemical domain basis[12,
29-32] or global basis.[21, 22, 33, 34] Global models are generally desirable due to their greater applicability
domain,[35] however in many cases focusing a QSAR model on individual chemical classes (i.e. Schiff bases,
Michael acceptors, SN1/SN2, SNAr, Acyl,etc. )[12] we can obtain better “local” performance.[36] These
mechanistically interpretable models can offer increased confidence over black box models which may be
important in a regulatory situation.

There has been a general trend towards more information rich 3D specific, or use of quantum chemical
descriptors in QSAR modelling studies associated with ligand bioactivity.[37-45] This includes the incorpo-
ration of dynamical effects via descriptors derived from MD simulations[46-48] and interaction energies and
conformational energies via quantum mechanics (QM).[49-53] and chemical reactivity.[54, 55] Indeed, these
trends towards more information rich descriptors have been observed in studies related to skin sensitization
prediction given that chemical reactivity can be encoded much effectively with quantum chemical derived
descriptors than those that are empirical derived. For example, Miller et al. [34] have used semi-empirical
HOMO-LUMO energies for their QSAR studies, Enoch et al. used density functional theory energies of
key reaction intermediate as surrogates for the rate determining barriers of Michael acceptors [55] while
Promkatkaew et al.fully profiled all intermediates and transition states in the reaction mechanism of SNAr
chemicals.[54] Additional efforts have been spent investigating ligand conformational effects on sensitization
- given that molecules are not perfectly described by a single conformation. Yu et al. have used 4D fin-
gerprints in their studies[33] while Kostal et al. have incorporated Monte Carlo conformational sampling in
their hybrid QSAR models with good results.[56]

In this work we apply quantum chemical methods to rationalize the sensitization potential of chemicals in
the Schiff base (SB) domain (Scheme 1). Roberts et al. have previously reported a quantitative mechanistic
model to predict the LLNA pEC3 using the Taft o* values and logP.[32] We were interested in expanding
on this work by (a) employing a more diverse datasets to cover a wider range of SB functional groups
as well as (b) investigate whether QM derived estimates of chemical reactivity could prove useful. In our
previous work we showed that DFT derived barrier estimates did indeed perform comparably well for the
SNAr domain.[54] A key advantage of such methods are that prediction can be made for functional groups
where the experimental Taft o* values are not readily available. To this end we have collected 22 SB base
chemicals covering aliphatic and aromatic aldehydes and ketones, 1,2 diones and 1,3 diones, expanding
considerably the domain of applicability of the model over the previous study (11 out of 16 were aliphatic
aldehydes). The full reaction energy profile leading to the formation of the 30 possible SB products for the



22 compounds, including 8 chemicals where more than one product is possible. The relationship between the
rate determining (RDS) barrier to reaction and the LLNA pEC3 was then assessed. Finally we constructed
a two parameter quantitative molecular model (QMM) using only the RDS barrier and the computed logP,
the latter being another property identified as being important for skin sensitization of SBs.[32]
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Scheme 1. Formation of the imine (Schiff base) from a carbonyl containing compound proceeds via a
hemi-acetal/ketal-like intermediate.

2.0 Computational Methods

Twenty two molecules with the potential to react as Schiff bases (Scheme 1) were taken from data reported
by ICCVAM (Interagency Coordinating Committee on the Validation of Alternative Methods)[57] and Kern
et al. [58] as described previously.[54] All SB compounds with non-zero EC3 values were chosen, covering a
different chemical substructures (Table 1). Some of the substrates contained chemical functionality associated
with other chemical domains (SNAr, SN2 and Acyl) or had more than one position capable of forming a
SB product. The compounds can be sub-classified as aliphatic and aromatic aldehydes, ketones, 1,2 diones
and 1,3 diones. In the case of 1,2 and 1,3 diones, each molecule contains two carbonyl groups leading to two
plausible points for nucleophilic attack.

Calculations were performed using a model consisting of the substrate, two water molecules and two methy-
lamine molecules to approximate the biological reaction. The simulated reaction leading to the imine product
(Schiff base) involves three distinct steps as shown in Scheme 2. The first step involves nucleophilic attack of
the substrate by methylamine giving rise to a carbinolamine or hemiacetal-like intermediate (INT1). Proton
transfer from the protonated intermediate, via water, leads to the elimination of water and the formation
of the protonated imine product (INT2). The final step involves the deprotonation of INT2 to give the
deprotonated imine (PROD).
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Scheme 2 Individual sequences simulated in this study; (a) substitution by an amine nucleophile (b) elim-
ination of water to form the imine and (c) deprotonation.



All calculations were performed using DFT method implemented in the Gaussian G09. [59] All structures
were optimized using hybrid meta exchange-correlation functionals, M06-2X with a 6-311+G(d,p) basis
set.[60, 61] The reaction mechanism associated with SB formation was studied in the gasphase following the
mechanism described in Scheme 2. In this model, a methylamine molecule acts as both the nucleophile and
base in the reaction. Two explicitly modelled water molecules provide additional stabilization and facilitate
proton transfer steps. The vibrational frequency calculations were performed to confirm all transition states
(TS). TSs are characterized by having a single imaginary frequency and minima having none. The rate
determining barrier were subsequently determined. Additional substrate properties (MWT and clogP) were
obtained using the Chemaxon JChem.[62]

The correlation between independent and dependent variables was assessed using linear regression. The data
was partitioned into a training (M=14) and test set (N=8) and a QMM was fitted using the RDS barrier
and the logP using multiple linear regression. All statistical analyses were performed in Statistica 12.[63]

3.0 Results and Discussion

The reaction energetics for compounds 1-22 are displayed in Table 1. The compounds simulated include
aldehydes, ketones, 1,2 diones and 1,3 diones. In addition, some molecules contain more than one position
that can undergo Schiff base (SB) reaction and the results for these positions are noted.

Table 1: Structures, IDs and energetics associated with SB formation for compounds 1-22 . Energy reported
relative to the reactant in kcal/mol. Absolute barriers are given in parenthesis.

CAS-

ID Name Structure No. TS1 INT1 TS2 INT2 TS3 Pl
1 6- 929253-05- 0.75 -12.75 15.39 -8.85 -7.60 -1
methoxy- 4 (28.14) (1.25)

2,6-
dimethyloctanal

2 3-chloro-4- 4903-09-7  2.42 -10.20 19.44 -8.45 -5.87 -9.
methoxy (29.63) (2.58)
benzaldehyde

3 benzaldehyde 100-52-7 1.62 -11.38 18.68 -7.55 -6.72 -1(

(30.06) (0.84)

4 1-(3- 34841-35-5 6.14 -4.40 25.15 -1.35 -0.78 -2.
chlorophenyl) (29.55) (0.57)
propan-1-
one

5 5- 13706-86-0 1.67 -13.01 20.63 -1.04 0.38 (1.42) -9.
methylhexane- (33.64)
2,3-dione

3.09 -9.68 20.24 -4.61 -4.60 -8.
(29.92) (0.01)

6 2-methyl- 6668-24-2  3.07 -0.98 27.35 3.81 3.94 (0.12) 2.(
1-phenyl (28.33)
butane-
1,3-dione

14.58 -3.92 21.15 -2.42 -2.16 -4.
(25.07) (0.26)

7 6-nonenal 2277-19-2  1.36 -11.14 15.33 -7.08 -6.67 -9.
(26.47) (0.41)



CAS-

ID Name Structure No. TS1 INT1 TS2 INT2 TS3 Pl

8 2.2.6,6- 1118-71-4  7.37 3.66 95.33 -2.56 -2.43 -6.
tetramethyl (21.66) (0.13)
heptane-
3,5-dione

9 butane- 431-03-8 1.24 -14.24 19.82 -0.81 -0.68 -2.
2,3-dione (34.06) (0.13)

10 4,4.4- 326-06-7 — - 24.31 11.76 12.43 -5.
trifluoro- (24.31) (0.67)

1-
phenylbutane-
1,3-dione
25.86 14.56 37.24 7.93 7.96 (0.03) 5.
(22.68)

11 2- 110-41-8 0.87 -12.32 14.87 -7.03 -6.08 -1(
methylundecanal (27.19) (0.96)

12 2- 93-53-8 1.42 -11.88 17.25 -7.57 -2.20 -11
phenylpropanal (29.13) (5.37)

13 undec-10- 112-45-8 1.35 -11.24 15.55 -7.13 -6.65 -9.
enal (26.79) (0.48)

14 1-(2,3,4,5- 167998-73-  7.65 0.02 20.70 2.51 5.40 (2.89) -3.
tetramethylphenyl)butane-4 (20.67)
1,3-dione

18.02 2.22 27.91 -6.23 -5.72 -6.
(25.69) (0.52)

15 2-phenyl 122-78-1 2.03 -9.57 18.34 -6.74 -0.98 -1(
acetaldehyde (27.91) (5.76)

16 glyoxal 107-22-2 K - 31.54 Kk - -2.

(31.54)

17 methyl 2- 600-22-6 1.14 -3.64 17.85 0.45 2.21 (1.75) -3.
oxopropanoate (21.49)

13.08 10.53 37.43 9.92 12.83 12
(26.90) (2.91)

18 2-bromo- 2973-80-0 1.71 -12.97 17.88 -6.30 -5.21 -11
5-hydroxy (30.85) (1.10)
benzaldehyde

19 N-(4- 0437-98-9  4.10 -7.59 16.87 3.15 6.05 (2.91) -2.
methoxyphenyl)- (24.45)

3-
oxobutanamide
16.10 10.46 39.45 -0.67 -0.62 -0.
(28.99) (0.06)

20 acetyl 579-07-7 3.83 -12.58 2251 -1.83 -1.24 -1.

benzoyl (35.09) (0.59)
8.35 -8.38 21.76 4.61 5.30 (0.69) 1.7
(30.14)
21 glutaraldehyde 111-30-8 7.56 -2.94 23.03 -5.28 -5.16 -6.
(25.97) (0.12)



CAS-

ID Name Structure No. TS1 INT1 TS2 INT2 TS3 PI
22 1,3- 93-91-4 9.30 -3.04 23.87 5.35 11.70 -0.
butanedione, (26.91) (6.35)

1-phenyl-
21.30 9.88 28.62 3.35 3.51 (0.16) 1.
(18.74)

* no barrier to formation of INT1 from REACT, ** no barrier to formation of PROD from INT?2

3.1 General Reaction Scheme

The reaction simulated is described in Scheme 1 where methylamine is used to simulate a generic amine
nucleophile. The reaction involves an acid catalyzed process through the inclusion of a methylammonium
cation and two water molecules. The first step sees the SN2 based substitution of the carbonyl of the
substrate by the methylamine, the breaking of the carbonyl double bond with concomitant proton transfer
from the methylammonium cation to give the corresponding carbinolamine. As can be seen from Figure 1,
the transition state (T'S1) associated with the nucleophilic attack at position-a of compound 22 has a short
C-N nucleophilic distance of 2.0 A. However, it does not involve noticeable proton transfer to the oxyanion
being formed, this occurring after the barrier has been traversed. Furthermore, it is found that nucleophilic
attack of the carbonyl directly connected to the phenyl ring (position-b) results in a dramatically higher
barriers to reaction (9.3 vs 21.3 kcal/mol) as a result of the loss of resonance effects with the carbonyl
bond not observed at the other position. This also helps to explain why the corresponding intermediate at
position-a is considerably lower in energy (-3 vs 9.9 kcal/mol).

Despite position-a having the lowest barrier to substitution, it is found that position-b has the lowest barrier
associated with the elimination of water and the formation of the imine. This can be explained by the reso-
nance stabilization afforded by the phenyl ring attached to position-b. The reaction proceeds with shuttling
of a proton from the amine of the carbinolamine intermediate to its hydroxy groupwvia a water molecule.
The proton transfer step is essentially complete at the transition state with the C-O carbinolamine bond
being 1.5 A. The barrier to reaction for position-a is found to be 26.9 kcal/mol compared to 18.7 keal /mol
for position-b. The final step in the reaction requires the abstraction of the remaining proton on the imine
nitrogen to generate the neutral product. This step is found to be a low energy process (70.1-10 kcal/mol)
and sees the regeneration of the methylammonium catalyst.

All compounds simulated follow the same general trends as compound 22 . Two exceptions are compounds
10 and 16 which do not display a barrier to substitution (TS1) for positions containing strongly electron
withdrawing groups. Furthermore, 16 forms product directly from INT2 without the formation of INT3.
More detailed analysis of the complete reaction profiles of all molecules in Table 1 showed clearly that the
barrier to water elimination (TS2) was observed to be the rate determining step for the conversion of the
substrates to the corresponding SB. The TS2 barrier heights for the main chemical classes present ranged
from ~ 18-25 kcal/mol for 1,3 diones (6), “21-34 kcal/mol for 1,2 diones (5), "25-32 keal/mol for aliphatic
aldehydes (7), 729-30 kcal/mol for aromatic aldehydes and ketones (4).
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Figure 1: Optimized 3D structures for 22 (position a only, top) and the corresponding energetic profile.

A subset of molecules contain additional SNAr functionality (2 , 4 & 18 )[54] and Michael acceptor groups (7
& 13 ).[55] We also predicted the SNAr reactivity of compounds 2 , 4 and 18 using our previously reported
QM-QSAR method (Figure 4).[54] All 3 compounds were re-simulated using the methodology previously
described and it was observed that only compound 18 was predicted to have a barrier to reactivity likely to
result in a significant LLNA response. Compound 18 ; which contains bromide leaving group was predicted
to have a barrier of 10.5 kcal/mol while compounds 2 and 4 , the chloride leaving groups, have predicted
barriers of >16 kcal/mol. Compounds 7 and 13 were not simulated as they consist of Michael acceptors
connected to aliphatic carbons and couples with their small solvent accessible surfaces are not predicted to

be sensitizers.
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Figure 2. Plot of the SNAr reaction profiles for compounds 2 , 4 and 18 .

It should be acknowledged that such analyzes are further complication by the fact that the LLNA response
is not always a result of direct sensitization the molecule itself, rather an effect of reactive metabolites.
This issue further complicates the construction and validation of computational methodologies such as these
reported here.[21, 64] In particular, it is known that 1,2 diones such as compound 16 , glyoxal are not
commonly encountered because it can form a hydrate, which can then undergo oligomerization.

3.2 Reaction Barriers vs LLNA pEC3

The goal of the present work is to determine whether it is possible to attribute the skin sensitization to
the predicted chemical reactivity of the functional groups present the molecules1-22 . We first assessed
whether a relationship existed between the predicted barriers to reaction and the skin sensitivity. The
expectation was that TS2 should show the most significant correlation with the LLNA pEC3 given that
this was almost exclusively the rate determining barrier for the molecules studied here. Indeed we did see
the strongest correlation between the TS2 (lowest value of the reported positions if more than one) and the
pEC3. However, when all 22 compounds were included, the observed correlation coefficient squared (r2) was
just 0.16. This prompted us to re-evaluate the data by excluding compound 18 , which is a predicted to be a
strong sensitizer via the SNAr domain, and the 1,2 dione compound (5, 9, 16, 17, 20 ), which potentially
exist in their hydrated form. This is similar to the approach of Roberts et al. who focused on compounds
with a single reactive group consisting primarily of aldehydes and ketones and may point to a need for a
more restricted domain of applicability.[32]

Re-analysis of the correlation between the 16 remaining compounds and the pEC3 reveals an improved,
albeit weak correlation, with an r2 of 0.36. It is found as the predicted barrier to reaction decreases, the
experimental sensitization is found to increase in line with expectation (Figure 2). It can also be seen from
Figure 3 there is a lipophilicity effect operating within the dataset. Compounds, which have been colored
by logP, show a noticeable trend in that, those with a higher logP generally have lower pEC3 for a given
barrier. For example, the 1,3 dione 8 has a predicted barrier of approximately 22 kcal/mol compared to 19
which has a barrier of "25 kcal/mol (19 a). This would suggest that 8 should be a stronger sensitizer than



19 , whereas in fact the opposite is observed (pEC3 of 0.84 vs 1.97, respectively). The predicted logP of 8
is 3.93 while that of 19 is 1.28 suggesting that a lower barrier combined with a low logP leads to increased
sensitization for this set of diverse compounds.

This observation apparently contradicts the findings of the earlier QSAR study of Roberts et al. on Schiff
bases.[32] However, since this publication, the authors have reported an extensive analysis of 525 substances
and note that logP is not simply a surrogate for permeability and that higher logP values do not result in
higher sensitization on a diverse set of compounds.[65] The result is also consistent with observations that the
Schiff base, formaldehyde (logP=-0.51), which is known to be highly sensitizing in sensitization based-assays.
[66] It should be noted that we are using a somewhat larger (22 vs 16 compounds), and more diverse set of
chemicals (70% were aldehydes in the latter study). Indeed evidence for similar series specific-logP behavior
can be seen from the non-linear relationship between logP and pEC3 for azlactones of the acyl domain.[5]

40
22
35 | O “\)k©
21 o o
3.0 | \a NN
S L
25 1 \s @,M
g | i
a 2.0 H/‘j\ s\\ O 1 ©/\¢
© | ~
% 15 | \g ‘\\ 1311v 12
£ 10 S 'i \V4
g 10 - 8 QO 06 o~ D
2 . O Vo ~<
05 | RS
N 0 01 040;0?~
0.0 | M Z \.\
LU Vo N
-05 | T T e

19 20 21 22 23 24 25 26 27 28 29 30 31 32

RDS Barrier / kcal/mol

Figure 3: Plot of pEC3 versus the predicted rate determining barrier for aldehydes (triangle), ketones and
1,3 diones (circles). Data is colored by logP (red=high, green=low). R2=0.36, n=16.

3.3 Quantitative molecular model

Other factors such as clogP have been included in a number of QSAR models related to LLNA. Given that
the parameter also appeared possible in further differentiating between active and inactive compounds as
shown in Figure 3, an additional 2-parameter linear regression model was constructed on the data. The goal
here is to produce a conservative model using small numbers of descriptors that have known relevance to skin
sensitization. This is in part due to the REACH requirements for simple, robust and interpretable QSAR
models for use within a regulatory framework, but also due to the small numbers of datapoints available for
such modelling exercises.

Starting with all 22 compounds, a multiple linear regression model was constructed with the two variables
resulting in equation 1. The model results in an explained variance of 66% with a p value of 0.008, consider-



ably better than that observed with the energy barrier associated with TS2 alone. The model predicts that
as the barrier to reaction decreases, pEC3 will increase. In addition, as the logP decreases, the barrier to
reaction will concomitantly decrease.

pEC3=-0.377(£0.138)*clogP — 0.127(£0.0436)*ETS2 + 5.69 (+1.30) Equation 1
n=22, r2=0.66, r2adj=0.38,. p=0.008)

Subsequently, the known SNAr compound 18 , was excluded from the analysis and the logP of 20 was
corrected due to large difference between the clogP value used here (1.82) and two other commonly used
methods (0.58 for clogP[67] and 0.82 for ACD[68]). The latter value, intermediate between the two other
value was used. SNAr compounds 2 and 4 were not excluded as they are not predicted to function wvia an
SNAr mechanism according to the predicted QSAR methodology of Promkatkaewet al. [54] The updated
multiple regression model was developed for the 21 compounds as shown in equation 2. The model has
slightly improved prediction statistics with an r2=0.71 and a p-value of 0.002. Again, it is found that both
increasing logP and barrier height lead to decreased sensitization.

pEC3=-0.425(40.124)*clogP — 0.152(+0.0412)*ETS2 + 6.17 (£1.22) Equation 2
n=21, r2=0.71, r2adj =0.46, p=0.002

As a final exercise, the dataset of 22 compounds was partitioned into a training (N=14) and test set (N=8). As
with the work of Roberts et al. , we generated the QSAR model on a set consisting primarily of nonfunctional
aldehydes and ketones to avoid confounding effects. A small number of additional exemplars that help
cover the full range in pEC3 were also included (Table 2). All compounds were predicted using equation
3. Compounds 2 , 4 and 18 were also predicted using our previously reported model for SNAr domain.[54]
Again, a two-parameter model was fitted using the training data resulting in equation 3. The training set
explained variance is somewhat lower than observed with the larger combined set (r2=0.40), however the
descriptor coefficients are qualitatively similar. Prediction on the test set of compounds show the compounds
are quite well ranked (r2=0.49). A noticeable outlier in figure 3 is compound 17 which on further analysis
of the structure can also potentially function via the acyl reaction domain.[5] This could account for its low
predicted activity from this Schiff-base derived model. When compounds 20 (SNAr domain) and 17 (Acyl
domain) are excluded from the test set, r2 of 0.62 is observed.

pEC3 = -0.388(£0.150)*clogP — 0.172(40.061)*ETS2 + 6.671 (+1.841) Equation 3
Training set (n=14, r2=0.49, r2adj=0.40, p=0.02),
Test set (n=8, r2=0.49), Test set (n=6 (ex 17 & 20), r2=0.62)

10
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Figure 4: Plot of the observed vs predicted pEC3 using equation 3 for the training set (white circles) and

test set (red circles). Value for test set compound 20 using previously reported SNAr model.[54]

Table 2: Descriptors, observed and predicted pEC3 values from equation 3.

Chemical RDS Predicted

ID CAS No. Class pEC3 Barrier clogP pEC3 Set

01 929253-05- Aliphatic 0.00 28.14 2.62 0.81 Train

4 aldehyde

02 4903-09-7 Aromatic 0.00 29.63 2.13 0.74 Test
aldehyde (0.00)a

03 100-52-7 Aromatic 0.00 30.06 1.69 0.84 Train
aldehyde

04 34841-35-5 Aromatic 0.00 29.55 2.84 0.48 Train
Ketone (0.00)a

05 13706-86-0 1,2 dione 0.69 29.92 1.83 0.81 Train

06 6668-24-2 1,3 dione 0.78 25.07 2.30 1.46 Train

07 2277-19-2 Aliphatic 0.80 26.47 2.62 1.09 Train
aldehyde

08 1118-71-4 1,3 dione 0.84 21.66 3.93 1.42 Test

09 431-03-8 1,2 dione 0.89 34.06 0.40 0.65 Train

10 326-06-7 1,3 dione 1.03 22.68 2.89 1.64 Test

11 110-41-8 Aliphatic 1.27 27.19 4.42 0.27 Train
aldehyde

12 93-53-8 Aliphatic 1.33 29.13 2.00 0.88 Train
aldehyde

13 112-45-8 Aliphatic 1.39 26.79 3.57 0.67 Train
aldehyde/MA

11



Chemical RDS Predicted

ID CAS No. Class pEC3 Barrier clogP pEC3 Set
14 167998-73- 1,3 dione 1.42 20.67 3.81 1.63 Train
4

15 122-78-1 Aliphatic 1.60 27.91 1.45 1.30 Train
aldehyde

16 107-22-2 1,2 dione 1.62 31.54 0.00 1.24 Test

17 600-22-6 1,2 dione 1.63 21.49 0.45 2.80 Test

18 2973-80-0 Aldehyde 1.89 30.85 2.15 1.60a Test
/ SNAr (0.52)

19 5437-98-9 1,3 dione 1.97 24.45 1.28 1.96 Train

20 579-07-7 1,2 dione 2.06 30.14 1.82 1.10b Test

(0.82)b (0.77)

21 111-30-8 Aliphatic 3.00 25.97 -0.27 2.30 Train
aldehyde

22 93-91-4 1,3 dione 3.61 18.74 1.75 2.76 Test

(a) pEC3 predicted based on its SNAr potential (pEC3 = -0.31*SNAr barrier + 4.90)[54] b pEC3 predicted
using ACD logP

As highlighted by other researchers the prediction of skin sensitization is a highly challenging process and
that the concordance between different in vivo , in vitro and in chemico based methods is often no more
than 60-80% in agreement with gold-standard methods such as the LLNA assay.[8, 15, 16] This is in part
due to the fact that the LLNA response is not always a result of direct sensitization the molecule itself,
potentially arising as a function of reactive metabolites.[21, 64] In this case we report a purely theoretical
approach to predict a diverse set of Schiff base chemicals — using just two relatively simple and interpretable
descriptors. The observation that the model can explain “50-60% of the variance in the dataset is therefore
not surprising.

4.0 Conclusions

In this paper we have reported the use of a quantum chemical-based approach to assess the skin sensitization
potential of chemicals from the Schiff base domain. We have evaluated the mechanistic profile associated
with 22 SB substrates using a model consisting of two methylamine and two water molecules. We find that
calculating the full reaction profile for the chemicals is important as the substrates can often react in more
than one position, while also allowing for mechanistic exceptions to be uncovered. We find that the use of a
single computed descriptor, namely the rate determining barrier to formation of the SB product can help us
to separate sensitizer and non-sensitizer. A RDS barrier of “28 kcal/mol indicate that a molecule is unlikely
to act as a sensitizer. We also observed that compounds with low barriers, but higher logP values show
reduced sensitization prompting us to generate a 2 parameter QMM.

A QMM equation established suggests that SB of lower logP have a greater propensity to react resulting in
r2 of 0.50-0.60. The predicted RDS and logP establish SAR guidelines to rationalize the skin sensitization
potential. The RDS barriers for aldehydes, ketone, 1,2 and 1,3 diones broadly decrease in that order, in line
with their increasing experimental sensitivity. These findings agree with experimental based observations
in the literature and point to the value computational methods can play in skin sensitization predictions.
We find that the rate determining barrier and the computed lipophilicity can be used to estimate the skin-
sensitization of unknown compounds. This orthogonal source of information could prove useful in consensus
based predictions of likely sensitization potential.[21, 26]
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The results presented here show that 3D quantum chemical simulation of SB chemicals, while useful, will lead
to the mischaracterization of some compounds. This is not so different to the variation observed between the
different types of in vivo , in vitro and in silico methods reported to date which show predictions accuracies
of no more than 70-80%. This is simply a reflection of the complex event being simulated, a multitude of
potential protein targets, and the fact that the molecules may function in the form of a metabolite rather
than the dosed substrate. The utility of such simulations is that physical insight and understanding can be
garnered which could prove useful, especially when combined in the so—called weight of evidence approach
with other methods.
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