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Abstract

Counting parameters has become customary in the density functional theory community as a way to infer the transferability
of popular approximations to the exchange—correlation functionals. Recent work in data science, however, has demonstrated
that the number of parameters of a fitted model is not related to the complexity of the model itself, nor to its eventual
overfitting. Using similar arguments, we show here that it is possible to represent every modern exchange—correlation functional
approximation using just one single parameter. This procedure proves the futility of the number of parameters as a measure of
transferability. To counteract this shortcoming, we introduce and analyze the performance of three statistical criteria for the
evaluation of the transferability of exchange—correlation functionals. The three criteria are called Akaike information criterion
(AIC), Vapnik—Chervonenkis criterion (VCC), and cross-validation criterion (CVC) and are used in a preliminary assessment

to rank 60 exchange—correlation functional approximations using the ASCDB database of chemical data.

1. Introduction

The success of density functional theory (DFT) as the method of choice for the calculation of the electronic
structure of molecules is undeniable, and is intertwined with the development of improved approximations
for the description of the exchange-correlation functional (zc functional, or just simply functional) *. Such
success is reflected by an indiscriminate proliferation of approximations, calling for a rugged safari across
the “zoo of functionals” 2% to select an appropriate one °.

Two philosophies are at odds in the world of functional development: the first one originated mainly within
the chemistry community from the pioneering work of Becke 7, which took the approach of using flexible
parametrized mathematical forms that are fitted to chemical data, exact constraints, or a mix of both.
The second philosophy originated primarily within the physics community from the ground-breaking work
of Perdew 8919 which expanded the knowledge and application of exact conditions and advocated for
DFT to remain a purely ab initio method. These two philosophies have been largely constructive with
each other, sharing ideas, providing criticisms, and validating results 1"'1:12:3. A frequent question used to
navigate the zoo of density functionals—perhaps guided by the famous John von Neumann’s quote: “with
four parameters I can fit an elephant, and with five I can make him wiggle his trunk” !3—is: “how many
parameters does this functional have?”. This question, in fact, underlies the more fundamental assumption
that the number of parameters is a reliable criterion to evaluate the transferability of the results—but is it
really? As pointed out in several occasions %1116 counting the number of parameters is not always as
straightforward as it might initially appear, especially for functionals that are not directly fitted to data.
In fact, there is no such thing as a truly parameter-free or “zero-parameter” zc functional approximation,



since even functionals that are usually considered as such have mathematical forms that contain parameters
that are then determined based on theoretical arguments. Since the true functional is still unknown, and
potentially unknowable,'” it seems clear that every zc functional approximation must contain an empirical
element 1.

Instead of counting fitted parameters in “parametrized functionals” and compare them to hidden parameters
in “zero-parameter” functionals, the first portion of this article explores the somehow opposite scenario where
every functional—regardless of its development philosophy—is represented using a simple function containing
one single parameter, as presented in section . This new representation is a direct adaptation of the recent
works of Piantadosi '® and Boué '?, where any distribution of points in any dimension is represented by
a well-behaved scalar function with a single real-valued parameter. In other words, quoting Piantadosi’s
paper title: “One parameter is always enough”, even for zc¢ functionals. The result of this procedure is that
every single functional on the first three rungs of Perdew and Schmidt’s “Jacob’s ladder” 2° (corresponding
to LDA, GGA, and meta-GGA approximations) can be represented by just one single parameter. Famous
“zero-parameter” functionals, such as PBE 2! and SCAN 22, as well as popular “parametrized functionals”,
such as the Minnesota family 23:24:25,26,27,28,29,30,31,32,33,34 " are 3]l defined by one number.

Having proven the inadequacy of the “number of parameters” as a measure of transferability of z¢ functionals,
the focus of this article shifts to develop a set of statistical criteria that can be appropriately used for this
task. Since the exact functional is still unknown, these criteria must rely on statistical analysis of data
across as many different chemical and physical properties as possible. Luckily, several benchmark results
with hundreds of functionals are already available in the literature 3%:36:2:11:12:37:38 "hyt their analysis is not
unequivocal, and might even produce contrasting recommendations. This is because the large number of
data in these studies can be in principle sliced and grouped into any number of ad hoc subsets, that can
then be used to statistically validate pretty much any hypothesis. Recent work from the Author’s lab has
introduced a new unbiased subdivision of some of the most popular DFT databases generated without human
intervention by means of data-science algorithms 3°. Interestingly enough, concepts that can be derived using
simple chemical intuition have been also recovered by a posteriori analysis of the machine-generated groups.
This reassuring fact validates the chemical-intuition—based approach that was used by DFT developers to
group and analyze the data, but the data-science approach offer several other advantages nonetheless. One
of this advantages is demonstrated in Section , where the unbiased subsets are used as the basis for three
new statistical criteria obtained adapting the Akaike information criterion (AIC), the Vapnik—Chervonenkis
criterion (VCC), and a new cross-validation criterion (CVC) to the DFT results. Preliminary rankings of 60
popular zc¢ functionals are also presented and briefly discussed.

2. Fitting elephants: One-parameter fit of exchange—correlation

functionals.

This section briefly discusses the application of Piantadosi’s encoding procedure '®* to describe any lo-
cal zc functional with a single real-valued parameter « € [0, 1]. The simplest case of a generalized gradient
approximation (GGA) exchange functional is illustrated first, since it just requires a straightforward mono-
dimensional fit. The more complex case of meta-GGA exchange functionals and GGA exchange-correlation
functionals are also presented next. Jupyter notebooks with the code developed for each of these cases ac-
company the electronic version of this article and are available for download using the interactive features of
this special issue and on the Author’s github page. These programs allow to obtain single-parameter repre-
sentations for the majority of the more than 300 zc functionals that are included in the LibXC library 494!,

2.1 GGA exchange functionals

The first step to encode a functional into a single parameter using Piantadosi’s procedure is to represent the
functional as a series of points. This task is straightforward for GGA functionals, since they depend only



on two variables: the electron density, p, and its gradient, Vp. Restricting the discussion to the exchange
portion of a general GGA functional, a further simplification can be introduced by decoupling the two
variables. The resulting general formula for every GGA exchange functional is thus a simple product of
the density-dependent local spin density approximation energy density, 5IQ;SDA, and a gradient-dependent
enhancement factor, FSGA(s):

EGSA = [ peiPA (p) FO8 (s) dr, (1)

with the first term simply obtained from the exchange energy density per particle of the uniform electron
gas (UEG):

1
s = -2 (2)} i (2)
and the second term usually expressed using the dimensionless reduced variable, s :
s = Vel (3)

2(3772)%/)%
Therefore, the shape of every GGA exchange functional is uniquely determined by its enhancement factor,
which can then be represented as a set of N equidistant points on a grid in the finite variable u € [0, 1],

obtained from s € [0, inf) using Becke’s transformation “:
2
u= iz .(4)

This numerical representation becomes exact in the limit of infinite number of points, N — co. As previously
demonstrated 42, a grid of just simply N = 20 points is practically sufficient to describe the enhancement
factors of most exchange GGA functionals (e.g. PBE 2! and B88 *3) with sub-milliHartrees precision, when
used in conjunction with a well-behaved interpolation between the points—such as a cubic or univariate
spline. For a handful of more complicated functionals (e.g. SOGGA11 #*) a slightly finer grid of N = 100
points will suffice to achieve accuracies of 106 Hartrees.

Once the functional is defined on the grid, the simple sequence of points = € [0,..., N] can be represented
using Piantadosi’s formula:

fa (z) = sin® (2°7 arcsin va) (5)

which is uniquely defined by a single parameter a € R, and a constant 8 € N that controls the accuracy of the
encoding procedure. It is important to notice that eq. 5 only reproduces the position of the points, while the
spline interpolation is still required to obtain a continuous function over the considered interval (an exact fit
would require N — o0, and therefore an infinitely long encoding parameter). The drawback of this procedure
is that eq. 5 is extremely sensitive to the value of the parameter. Hence a has to be represented using a
huge number of significant digits. In fact, the entire point of this exercise is to encode the full complexity
of the GGA exchange enhancement into the length of the single parameter. Such length (i.e. the number of
significant digits required to write «) depends on both the number of interpolation points that are used to
represent the functional on the grid, and the accuracy parameter 5. In general, N = 20 interpolation points
and 8 = 8 can be used to represent simple GGA exchange functionals—such as PBE 2! with relative errors
in the description of the enhancement factor smaller than 1%, resulting in parameters that require ~ 60 digits.
For functionals that have some oscillation over the entire interval of u—such as SOGGA11 #—N = 100
interpolation points and a value of 8 = 12 are required for similar accuracies, resulting in parameters with
~ 350 digits. The single parameters for both the PBE and SOGGA11 functionals are reported in Fig. 1,
together with the corresponding plots of the enhancement factors, Fy, as a function of v and s. A Jupyter
notebook with the details of the encoding procedure—as well as an algorithm to evaluate the errors for both
the spline implementation and the encoding procedure—is also associated with the Figure and is available
on github.
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Figure 1: Single parameter representation for the PBE (upper panel) and SOGGA11 (lower panel) GGA
exchange functionals as a function of the reduced density variables u, eq. 7?7 (left plots) and s, eq. ?7?
(right plots). For both functionals, the black dots are the decoded points, the orange solid curve is the
original enhancement factor as obtained directly from LibXC, and the dashed red curve is the result of
the decoding of the single parameter and the interpolation via univariate cubic spline. Results are obtained
with N = 100 points and 5 = 12. A Jupyter notebook to encode every GGA exchange functional in LibXC,
as well as to reproduce the plots and to calculate the encoding and interpolation errors is associated with
the Figure.

2.2 Meta-GGA exchange functionals

The next rung in Perdew’s Jacob ladder is those of meta-GGA functionals. Restricting the discussion once
again to exchange functionals only, the enhancement factor for meta-GGA functionals depends only on two
variables, the gradient of the density and the orbital-dependent local kinetic energy density:

T= 521Vl .(6)

The meta-GGA enhancement factor can be easily represented by points on a two-dimensional grid using a
simple extension of the code used in the previous case. The steps in this extension include using the popular
transformation of 7 into the finite variable w € [—1,1] *°:

(7)

followed by the usage of a grid of N x N equidistant points on v and w. A two-dimensional spline (either
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bicubic or univariate) is then used to interpolate between points on the considered interval. The implemen-
tation of Piantadosi’s encoding procedure is then identical to the previous case, with the only difference
that the series of points are now constructed as x € [(0,0),...,(0,N),(1,0),...,(1, N)]. Once again, the
accuracy of the procedure depends only on two variables, the number of points used to interpolate the en-
hancement factor, N2, and the accuracy of the encoder parameter, 3. The major hurdle in the procedure
is that the number of digits required to represent the parameter is now much higher than for the previous
case. Interpolations with N > 20 become computationally expensive since they require > 400 points, and
result in parameters with more than 1500 digits, regardless of the value of 5. For well-behaved functionals,
however, N = 20 and 8 = 12 result in parameters with “1500 digits, and overall errors < 1 %, similarly
to the GGA case. Single parameters for the exchange enhancement factors of the SCAN 22 and the M11-
L 2% meta-GGA functionals are reported in Fig. 2 as a three dimensional surface and a corresponding slice
at u = s = 0. A Jupyter notebook with the details of the encoding procedure is also associated with the
Figure and is available on github.
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Figure 2: Single parameter representation for the SCAN (upper panel) and M11-L (lower panel) meta-
GGA exchange functionals as a 3D function (left plots) of the reduced density variables u, eq. 77, and the
local kinetic energy density variable w, eq. ?7. The right plots represent slices at constant u = 0. For
both functionals, the black dots are the decoded points, the orange solid curve is the original enhancement
factor as obtained directly from LibXC, and the dashed red curve is the result of the decoding of the single
parameter and the interpolation via univariate cubic spline. Results are obtained on a grid of 20 x 20 points
and 8 = 12. A Jupyter notebook to encode every meta-GGA exchange functional in LibXC, as well as to
reproduce the plots and to calculate the encoding and interpolation errors is associated with the Figure.



2.3 Exchange—correlation functionals

The extension to include correlation functionals is trivial, especially in the GGA case. The general shape of
the enhancement factor of every GGA xc functional can in fact be represented using just two variables that
depend on the density and its gradient, using the Wigner-Seitz Radius:

r=().®

and one of the reduced density gradient variables introduced above (either s or u). The implementation of a
two-dimensional interpolation and encoding procedure for GGA exchange—correlation functionals is reported
in Fig. 3, using a grid of N x N points on rs and u . Since a three-dimensional interpolation is necessary,
the same numerical complication of the previous case apply. In general, most GGA zc functionals can be
interpolated using N = 20 and encoded into single parameters with “1500 digits using § = 12. In Fig. 3 and
related Jupyter notebook, the encoding procedure is applied to the BLYP GGA zc functional 4345 and to the
GAM NGA zc functional 7. Single parameters of “1500 digits are obtained and reported. It is important
to recognize that the BLYP functional diverges at u = 1 (s = 00), hence the interpolation error for N = 20
grows substantially in the region where v > 0.8 (s > 2). The interpolation error can be further reduced
by increasing N, pushing it to regions of s that are not very significant for chemical systems. Nevertheless,
the s — w transformation is not ideal for functionals that diverge at the extremes.
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Figure 3: Single parameter representation for the BLYP (upper panel) and GAM (lower panel) exchange—
correlation functionals as a 3D function (left plots) of the Wigner-Seitz radius 75, eq. ?? and reduced density
variables u, eq. ??7. The right plots represent slices at constant rs = 2.5. For both functionals, the black dots
are the decoded points, the orange solid curve is the original enhancement factor as obtained directly from
LibXC, and the dashed red curve is the result of the decoding of the single parameter and the interpolation
via univariate cubic spline. Results are obtained on a grid of 20 x 20 points and 8 = 12. A Jupyter
notebook to encode every GGA or NGA exchange—correlation functional in LibXC, as well as to reproduce

the plots and to calculate the encoding and interpolation errors is associated with the Figure.



Extension to meta-GGA exchange—correlation functionals, as well as to functionals with more complex forms
sitting on higher rungs of Jacob’s ladder, could be achieved with various degrees of difficulty. For example,
meta-GGA functionals depend on at least three variables that cannot be decoupled (e.g. the density, its
gradient, and the kinetic energy density), and therefore they require higher dimensional interpolations.
The interpolation using multi-dimensional grids and appropriate functions is not problematic, especially
using available python libraries. A slightly more complicated case is the case of hybrid functionals (e.g.
functionals that include a fraction of Hartree—Fock exchange), for which the parameter that represents the
fraction of HF exchange could be encoded in the procedure, for example at the beginning of the sequence. For
range-separated hybrid functionals, more complicated ad hoc procedure must be designed. However, since
representing functionals with one parameter has no inherent benefit for DFT as a method, going beyond the
simple proof-of-principle described above has very little scientific merit and is not explored further in this
context. A more rewarding endeavor is the search for a procedure that does not rely on counting the number
of parameters to evaluate the transferability of functionals, as presented in the next section.

3. Statistical criteria of bias—variance tradeoff and analysis of 60
exchange—correlation functionals

The dispute between counting parameters and analytical fits is not a new scene in statistics and machine
learning, where the problem is generally known as the bias/variance dilemma 8. Especially in supervised
learning, where a model is learned from (fitted to) some training data, this dilemma translates to the necessity
to strike a balance between underfitting the data (bias error), resulting in methods that don’t incorporate
all the relations between the data, and overfitting them (variance), resulting in methods that are poorly
transferrable. Several criteria for model selection are available in this context, and they all generally include
two components, one that accounts for the performance of the model on the training data, and another that
accounts for the transferability of the model to unseen data. For a good introduction, see *°. The goal of the
next section is to borrow some of the methodologies that have been developed in the context of supervised
learning and apply them to the analysis of DFT approximations.

3.1 Statistical Criteria for functional evaluation

In order to introduce appropriate bias—variance criteria for zc functionals, well-established model validation
techniques from statistical analysis must be used. Several criteria are available in statistics for model selection
and validation, mostly belonging to three main classes:

e Methods based on information criteria °°.

e Methods obtained from Vapnik—Chervonenkis theory °!.
e Resampling methods %23,

In general, the first two classes include analytic methods that evaluate the overall uncertainty (risk) of the
model by inflating the error of the fitted model calculated on the training set (or some appropriate data
set) by a penalty factor that depends on the degrees of freedom (DoF) of the model and the number of
data in the set. These methods usually have to rely on assumptions on both the type of function that is
estimated and the statistical distribution of the data. The third class of models require external data sets
for validation, and is usually more computational demanding, however it has the advantage of not relying
on any assumptions on the distribution of the errors, nor the training data. Among the first class, the
Akaike information criterion (AIC) °° is the most widely used estimator of error prediction. This coefficient
is constructed from maximum likelihood arguments, and it uses an additive formula to evaluate the overall
risk, R , as:

R= Remp + f (’ﬂ,p) ) (9)



where the empirical risk, Remp, represents the error of the fitted model calculated on the training set,
and should not be confused with the error associated with the comparison of DFT data and empirical
(experimental) results, in a chemical sense. In order to evaluate Remp, the recent ASCDB database can be
used, since it was specifically created to evaluate the performance of DFT functionals. To account for the
large differences in the average of the absolute reference energies of each subset of ASCDB, it is convenient
to introduce here an overall weighted mean unsigned error (wMUE), calculated from the mean unsigned
errors of the individual subsets, MUE; , using:

wMUE = Y°1% w;MUE; (10)

where the individual weights are calculated from the ratio between the average of the absolute reference
energies for each subset,‘ﬁh,, and that of the overall database (which is 6.988 kcal/mol for ASCDB, weights
for this database are provided within the Jupyter notebook that accompany the electronic version of this
article and on the Author’s github page):

o ’E\i 1) Gosshel a
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This quantity is a slightly simplified version of the WTMAD-2 indicator introduced by Goerigk et al. 2 to rank
functionals based on the performance on the GMTKNb55 database. On the statistical standpoint, wMUE is
the average of a slightly modified coefficient of variation for each subset (mCVi = MUE;/ |E’l) where the
standard deviation is replaced by the mean unsigned error of each subset

16
wMUE = 2i=1 Vi
6.988 ke

mol

(12)

This replacement is justified by the fact that the MUE has similar content to the root mean square error
(which, up to a constant in the definition, is the standard deviation of the distribution of the errors) but it
is usually preferred in the DFT literature as an indicator of functional performance. While Goerigk et al.
warned not to use their weighted MUE indicators as an estimation of statistical error for specific chemical
problems,? the connection with the coefficient of variation makes wMUE useful beyond classification purposes
as a balanced measure of the empirical risk of a functional, as demonstrated by the results presented below.
It is important to keep in mind though that—in accordance with Goerigk et al.’s suggestion—weighted MUE
values for different databases should never be compared in absolute terms, because they intrinsically depend
on the molecules that are included in each database, and their main purpose is to provide a basic criterion
for the ranking of functionals.

f(n,p) in Eq. 77 is an additive penalty function that depends on the number of training data, n , and the
degrees of freedom (number of free parameters) of the fitted function, p . Assuming a gaussian distribution
of the errors, the penalty function can be calculated for regression models as:

f(n,p) = 2202 (13)
with:
0% = ﬁRemp ,(14)

resulting in a final formula for AIC that is:
AIC = wMUE - (1 + j—g) (15)

Among the second class of methods the Vapnik-Chervonenkis criterion (VCC) ®! can be selected. This
criteria inflates the empirical risk by a multiplicative penalty function related to Vapnik’s measure:

10



-1
VCC = wMUE - (1—\/p—plnp+ln(n/2n) ) .(16)
For both AIC and VCC, n = 200 when evaluated using ASCDB, while p is an estimation of the degrees of

freedom (DoF) that is equal to the number of fitted parameters for fitted functionals, while it is set to 1 for
non-fitted ones (Table 1).

The definition of a resampling criterion for zc functionals is unfortunately not as straightforward, since in
several cases it might be difficult to find data that can be used as an external, unbiased, validation set to
be used in cross-validation methods. As such, cross-validation criteria are intrinsically dependent on the
data set that is used to obtain them °2°3, and particular effort has to be devoted to creating a criterion
that is representative and transferable across as many functionals and data sets as possible. The purpose of
cross-validation is, in practice, to highlight inconsistencies in the treatment of external data, when compared
to the data that are used for the training of the parameters. Therefore, every overfitted model present a large
difference between the errors for the training set and those for the validation set. The major hurdle in the
evaluation of zc functionals from different sources and development philosophies is to find two appropriate
and independent sets of data that can function as a “training set” and as a “validation set”. On the one hand,
the first 12 subsets of ASCDB include chemical systems that are conventionally used to train and evaluate
computational methods. While none of the existing functionals is specifically trained on all molecules of
these subsets, most of the modern fitted functionals were trained on similar systems (e.g. the Minnesota
and wB97 families), and even non-fitted ones (e.g. revIPSS and SCAN) have been subject to convergent
evolution to provide at least reasonable results for those basic chemical systems. On the other hand, the last
four subsets of ASCDB contain unconventional systems that are very far from what current functionals have
been designed or trained for and represent a good dataset for validation. (The three main subsets in this
category comes from the mindless benchmark database of Grimme and coworkers, while the last one includes
the energies of atoms on a per-electron basis.) A simple cross-validation measurement of the overfitting of
a functional can then be obtained from the ratio between the MUE of the unbiased calculation—used as
a “validation set”—and the overall wMUE of ASCDB—used as the “training set”. Interpreting this last
quantity as a cross-validation estimate of the unknown noise variance of the distribution of the errors, o2, the
cross-validation criterion (CVC) can then be calculated by inflating the empirical risk using eqs. ?? and ?7?,
as:

CVC = wMUE + 2. ¥U8ue (17)

where the wMUE of the full ASCDB database is used at the denominator in place of the MUE (or weighted
MUE) of the first twelve subsets of ASCDB because numerical evidence showed no significant differences
in the rankings when this transformation was performed. Apart from a much simpler formula to calculate
CVC, the main advantage of using the weighted MUE of the entire database is that eq. 77 also becomes
extensible to other databases. For example, a straightforward extension of CVC to the GMTKNb55 database
is obtained by using the overall WTMAD-2 at the numerator, and the MUE (MAD using Goerigk et al.
notation) for the mindless benchmark subset at the denominator:

CVCOMTENSS — WWTMAD2 + 22 MADup1as (18)

As for the wMUE case discussed before, it is important to keep in mind that, despite providing very similar
rankings, CVC values from different databases are difficult to compare in absolute terms because they
intrinsically depend on the molecules that are included in each database.

3.2 Evaluation of 60 exchange—correlation functionals

The usefulness of the three criteria described above can be evaluated on the set of 60 popular exchange—
correlation functional approximations.545%:35,56,57,58,59,60,61,62,63,43,46,64,65,66,67,68,69,70,22,27,71,72,23,24,33,73,74,21,75,31,76

77,78,79,28,31,80,81,8234,3283,30,25,84,85,86,87,88 The functionals is an expanded set of those that were originally
selected to develop the ASCDB database, and they include a broad set of approximations across all different
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rungs of Jacob’s ladder, as well as several decades of functional development. The list of all used functionals,
as well as detailed reference to their original publications, are reported in the last column of Table 1.

All calculations are stable broken-symmetry solutions close to the complete basis set limit, and have been
performed using quadruple-{ quality basis sets using Q-Chem 5.1 8. Results for the three statistical criteria,
AIC, VCC, and CVC, are reported in Table 1, as well as the ranking of each functional according to each
specific criterion (in parenthesis). The average ranking of each functional across the three criteria is also
reported in the last column of Table 1, and is used as the final indicator for performance of a functional.
It is clear that the rankings obtained using the statistical criteria align well with the Jacob’s ladder picture
of functional approximations. According to all three criteria, for example, the three best functionals are
double-hybrid “fifth rung” approximations. “Fourth rung” hybrid meta-GGA/NGA are the second-best
class, followed by “fourth rung” hybrid GGA/NGA and “third rung” local meta-GGA, with similar average
performance. “First and second rung” Local GGA/NGA are on average at the bottom of the rankings.
Interestingly enough, modern non-fitted functionals such as PBE and SCAN-D3(BJ) sits in the middle of
the ranking, together with most of the parametrized Minnesota functionals. Even more interesting than
the general trends are some of the outliers. For example, the B3LYP-D3(BJ) ranks near the top according
to all three criteria, while its parent functional BSLYP is consistently ranked at the bottom, more than 23
positions below B3LYP-D3(BJ), confirming the trends observed in the literature. However, PBE-D3(BJ) is
slightly more transferable (despite a slightly higher wMUE) than B3LYP-D3(BJ), confirming recent finding
of transferability issues in the popular BSLYP-D3(BJ) functional.
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DSD-PBEPS86-
D3(BJ)
PWPB95-D3(BJ)
B2PLYP-D3(BJ)
wB97M-V
PW6B95-D3(BJ)
PW6B95
PBE0-D3(BJ)
HSE-HJS
B3LYP-D3(BJ)
B9TM-rV
PBEO
B97TM-V

wB97X-V
SCAN-D3(BJ)
M06-2X

revPBE-D3(BJ)
B97-1

MO5
M05-2X
MN15
BMK
M06-2X-D3(0)

PBE
revTPSS-D3(BJ)

N12-SX

PWI1
t-HCTHh

TPSSh
PBE-D3(BJ)

B97-D3(0)
MO06-D3(0)

B3PWI1
MO6

TPSS
M11-D3(BJ)

MO08-HX
revIPSS

M11

DoF wMUE
7 2.14
10 2.69
) 3.33
12 3.43
9 3.75
6 5.27
4 5.45
1 5.7
6 0.42
12 5.05
1 5.74
12 5.12
10 5.33
2 6.32
29 4.86
4 6.49
10 5.95
22 5.47
19 5.82
99 3.68
17 6.04
35 5.03
1 7.41
6 6.76
26 5.51
1 7.56
17 6.36
1 8.04
3 7.81
9 7.23
39 5.09
3 7.82
33 9.58
1 8.39
46 5.18
47 5.24
1 8.79
40 5.6

AIC
2.29 (1)
2.97 (2)
3.5 (3)
3.87 (4)
4.11 (5)
5.6 (6)
5.68 (7)
5.75 (9)
5.76 (10)
5.69 (8)
5.79 (12)
5.77 (11)
5.89 (13)
6.45 (14)
6.5 (15)

6.76 (17)
6.58 (16)

6.82 (19)
7.05 (20)
6.76 (18)
7.16 (23)
7.16 (22)

7.48 (25)
7.17 (24)

7.15 (21)

7.64 (28)
7.54 (26)

8.12 (33)
8.05 (31)

7.91 (30)
7.56 (27)

8.06 (32)
7.78 (29)

8.48 (37)
8.28 (34)

8.46 (36)
8.88 (39)

8.4 (35)

9.89 (15)
8.58 (10)
14.37
(34)
0.74 (14)
11.05
(21)
13.84
(29)
13.74
(28)
20.16
(44)
13.57
(27)
16.89
(38)
9.39 (12)
10.99
(20)
15.26
(37)
9.59 (13)
14.28
(32)
10.2 (18)
11.19
(23)
13.02
(26)
18.58
(41)
11.2 (24)
17.98
(40)
10.64
(19)
1.81

o
22.5 (50)
11.15
(22)
20.86
(16)

6.63 (27)

7.9 (40)
6.85 (29)

8.43 (44)
6.29 (22)

6.29 (21)
8.83 (47)

6.64 (28)

AVG

ranking

4.33
4.67
7.67
10
11.33
11.33
11.67
13
14
16
18.67

19
20

22
22.33
22.67
23.33

24

24
25

25

26
29.33

30.67
31

31.33
31.67

32
32.67

33.33
35

35.67
36

36.33

Ref
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34;55
55;56
57
58;59
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58;60
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60
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58;71
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23
32
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26;74

20
5875

30

76,77
78

79
20;58

5875
2658

46;63;76;77
26

78
68;79

27
75

79



It is important to highlight that this study is primarily intended to establish the reliability of the statistical
criteria for evaluation of performance and transferability of functionals. While the reported rankings can be
used to establish some trends, the list of functionals is not comprehensive enough to provide reliable final
suggestions on which functional to pick among the more than 300 available in the literature. Some conclusion
on the performance and transferability of the considered functionals are still interesting to report, and are
as follows:

e Best double-hybrid: DSD-PBEP86-D3(BJ) °4, alternate: PWPB95-D3(BJ)3%5°.
Best hybrid meta-GGA: oBI7TM-V 7, alternate: PW6B95-D3(BJ) °°8.

Best hybrid-GGA: PBE0-D3(BJ) 609058 alternate: B3LYP-D3(BJ) 63:4346.64.65.58
Best local meta-GGA: BOTM-rV66:67 alternate: SCAN-D3(BJ) 22:58.

Best local GGA: PBE 2!, alternate: PW91 77,

These results are strengthened by the fact that the majority of the highlighted functionals overlap with
the top performers suggested in recent reviews by Head-Gordon’s '2, Goerigk’s 3, and Grimme’s ? groups,
obtained with larger databases and considering a broader spectrum of functionals. Finally, connecting the
transferability results to the issue of counting the number of parameters presented in Section , the summary
of the results plotted in Fig. 4 demonstrates a clear lack of correlation between the average ranking of each
functional and its number of degrees of freedom. This lack of correlation supports the main message of
this work: The number of fitted parameters does not represent an effective measure of the transferability
of a functional. More reliable statistical criteria—such as those developed in this work, or alternatively,
the probabilistic performance estimator recently introduced by Pernot and Savin ?%%2—should be used to
evaluate the reliability of new and existing xc functionals.
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Figure 4: Scatter plot of the statistical analysis of 60 exchange—correlation functionals. The results show no
correlation between the degrees of freedom of a functional—a loose count of the number of its fitted param-
eters (see text)—and its transferability—measured as the average ranking across the three new statistical

criteria.
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Conclusions

A simple encoding procedure borrowed from data science was used to show that the number of parameters of
a fitted exchange—correlation functional (or in a general sense, its degrees of freedom) are not representative of
transferability across different chemical systems. In section , more than 300 functionals from the LibXC DFT
library are represented using one single parameter. This exercise disentangles the arbitrary measurement
“number of parameter” from the fundamental concept of transferability of the results, and validates the
proposition of Yu and Truhlar '' reading: “Counting parameters in a density functional is a little bit
like evaluating the quality of a research program by counting the publications it produces—the number of
publications is hardly irrelevant, but it is far from the whole story, and usually it is not the decisive measure
of quality.”

To compensate for this lack of a “decisive measure of quality”, three new criteria based on the statistical
analysis of the recently proposed ASCDB database of chemical data were developed in section for the
assessment of exchange—correlation functional approximations. These criteria are the Akaike information
criterion (AIC), the Vapnik—Chervonenkis criterion (VCC), and the cross-validation criterion (CVC). While
the criteria mostly provide similar rankings, some differences between them do exist, and the average ranking
across the three criteria is the most unambiguous measurement for the evaluation of functionals.

Preliminary results of the average ranking with 60 functionals show that the best ones are those that carefully
use a flexible mathematical form with a modest number of appropriately fitted parameters (5-12). In the
debate between different functional development philosophies, occupying the middle ground seems to be the
current winning strategy.
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