Insight into the mechanisms of CO_2 reduction to CHO over Zr-doped Cu nanoparticle

Hui Li¹, Yanyang Shen¹, Haonan Du¹, Jie Li¹, Haixia Zhang¹, and Chunxiang Xu¹

¹Taiyuan University of Technology

May 5, 2020

Abstract

Zr-doped icosahedral Cu nanoparticle (NP) with 54 Cu atoms and one Zr atom is studied by Density functional theory (DFT) calculation for CO₂ reduction to CHO which is intermediate converting into methanol. A Cu atom being at the vertex ('v') and edge ('e') site of Cu NP's surface is respectively substituted by a Zr atom, and this doping of Zr atom makes Cu NP becoming one of the potential catalysts for CO₂ reduction to methanol. Especially, $Cu_{54}Zr_e$ NP shows it's superior activity and selectivity for CO₂ reduction to CHO, where Zr atom stays at 'e' site. This can be well confirmed not only from it's adsorption behavior for several important intermediates, but also from the lowered reaction barrier of CO₂ converting into CHO. Moreover, $Cu_{54}Zr_v$ NP also shows it's relatively good performance in CO₂ converting into CHO, where Zr atom is doped at 'v' site, if compared with pure Cu NP and even bulk Cu with Zr doping. That is to say, the introduction of Zr atom can effectively improve the catalytic properties of Cu NPs for CO₂ reduction to methanol, and the fact of Zr atom doping site and it's relation with catalytic property, to some extent provides the guidance in designing catalysts that capture and convert CO₂ to fuels or chemicals.

1. Introduction

Fossil fuel combustion has significantly led to elevated levels of carbon dioxide (CO_2) in the atmosphere and global warming through the greenhouse effect.¹ Under this situation, the reduction reaction of carbon dioxide (CO_2RR) is widely considered to be a promising process to realize CO_2 converting into useful chemical feedstocks.² However, the kinetic sluggishness in CO_2RR , where the multiple electron transfer steps and high energy barriers are involved, is one of the important hinder to resolve this problem.³ So, an effective catalyst used in CO_2RR is greatly required, not only effectively reducing the reaction barriers, but also facilitating the kinetics to accomplish commercially significant rates.⁴

As reported in the previous works,⁵⁻⁹ many transition metals have shown their remarkable catalytic activity in CO_2RR . For instance, Au and Ag catalysts display their good selectivity and Faraday efficiency in converting CO_2 to CO,^{6,7} while Cu catalysts present their particularity in converting CO_2 into hydrocarbons and alcohols.^{8,9} It should be noted, considering the price and over potential, Cu catalysts have attracted much attention. However, the weak selectivity of Cu catalysts in CO_2RR is really existing,¹⁰ where the multiple pathways and a range of products concurrently produced are observed. Besides, the activation of CO_2 on Cu catalysts' surface needs enhancing since their usually weak adsorption to CO_2 molecular.¹¹ All this shows the difficulty in realizing pure Cu catalysts' high catalytic efficiency. To overcome this problem, some previous works mentioned that the doping of second transition metals on the surface or into Cu catalysts becomes a potential method to improve their catalytic properties.¹²⁻¹⁴

As reported, bimetallic Cu-based alloys with Cu rich composition have been extensively tested in the experiments for $CO_2 RR.^{15-17}$ For example, a series of heteroatoms such as Au, Ni, Zn and Zr are doped in Cu-based NPs. It is worth mentioning, Dean et al. found that the introduction of Zr atoms into Cu NPs

can well activate CO_2 molecular, and CO_2 molecular can be strongly adsorbed on these Cu NPs' surface.¹⁸ Other researchers also proposed that Zr doping can well enhance the selectivity and stability of Cu catalysts in CO_2RR .^{19,20} It has been reported that in Cu/ZnO system, a higher CO_2 conversion and better selectivity to methanol products is realized in the system with Zr doping, while it does not in the system without Zr doping.²¹ The similar situation is also observed in Cu/TiO₂ system.²² Actually, if compared with bulk Cu-Zr alloys, their smaller size systems will have the higher catalytic activation.^{18,23} Austin et al. selected a Cu NP with icosahedral structure and 55 Cu atoms as the matrix, and they found Zr atom doping at the vertex of Cu nanoparticle's surface shows a better ability for CO_2 activation.²⁴ Moreover, they found that CO_2 activation becomes barrierless and exothermic when Zr is doped at the surface of Cu NPs.²⁴ Obviously, Zr atom is one of the valid element in enhancing the catalytic efficiency of Cu-based catalysts.

Therefore, the Zr doped Cu NP with icosahedral structure is also adopted in this work, to further explore the influences of Zr doping on both the CO₂ activation and hydrogenation, especially considering the role of Zr doping site. By using density functional theory (DFT), the adsorption energies for some key intermediates, such as CO₂, CO and CHO, and the activation barriers for the both crucial reaction steps in CO₂ reduction to methanol,^{24,25} i.e., CO₂ - CO + O and CO + H - CHO are calculated. It is found that Cu NP with Zr doping on it's surface has a stronger adsorption for CO₂, CO and CHO, and lower energetic barrier from CO₂ to CHO, implying their better catalytic activation than pure Cu NP and even than bulk Cu(111) surface with Zr doping. Moreover, the better catalytic property of Cu NP is found when Zr is doped at surface edge site.

2. Computational details

The spin-polarized DFT in DMol³ code was performed,^{26,27} the exchange-correlation interactions were treated with the Perdew-Burke-Ernzerhof (PBE) functional²⁸ within a generalized gradient approximation (GGA) and the empirical correction in the Grimme scheme²⁹ was applied. The DFT Semi-core Pseudopotentials (DSPP)³⁰ were used to replace the core electrons and double numerical plus polarization (DNP) basis sets were chosen. During the geometry structural optimization, the convergence tolerances of energy, maximum force, and displacement were set to 1.0×10^{-5} Ha, 0.002 Ha Å⁻¹, and 0.005 Å⁻¹, respectively. The electronic self-consistent field tolerance was set to 1.0×10^{-6} Ha, and a basis set orbital cutoff of 5.5 A and a smearing value of 0.005 Ha were applied to orbital occupations. Hirshfeld population analysis was performed to compute the charge transfer.³¹ The minimum energy path (MEP) to search for the involved transition state was obtained by LST/QST tools in DMol³ code.³²

The icosahedral Cu NPs with Zr doping respectively at vertex $(Cu_{54}Zr_v)$, edge $(Cu_{54}Zr_e)$ and core $(Cu_{54}Zr_c)$ and pure Cu NP were constructed, and their optimized structures are shown in Figure 1. Bulk Cu(111) surface with Zr doing (Cu(111)/Zr) was modeled by a four-layer slabs with (4×4) unit cell, where the bottom two atom layers were fixed while the top two layers were allowed to fully relax. The adjacent slabs are separated by 15 A of vacuum in the normal direction of the surface and the Brillouin zone integration was performed with $3 \times 3 \times 1k$ -points.

The preference site of one Zr atom in Cu NP's surface is determined by the segregation energy (SE), that is, SE = E (Cu₅₄Zr_(surface))-E (Cu₅₄Zr_(core)), defined as the energy difference when Zr atom stays at core and surface, where Zr atom at core site in Cu NP is taken as a reference. Adsorption energy (E_{ad}) is used to evaluate the binding strength of surface adsorbate: $E_{ad} = E$ [*]+E [adsorbate]-E [*adsorbate], where E [*] and E [adsorbate] are the total energies of the catalyst itself and the adsorbate in the gas phase. E [*adsorbate] shows the total energy of the system containing the adsorbed species which are adsorbed at the most stable site. More positive E_{ad} means stronger binding.

3. Results and discussion

From Figure 1, the SE values are always negative as long as Zr atom is located on the surface, meaning the preferential site for Zr atom in this Cu NP is surface. In fact, the atomic radium of Zr atom is larger than that of Cu atom,³³ that is to say, Zr atom prefers to reside on the surface, which can well minimize the strain energy in this NP. Moreover, one can find that there is only a small difference of 0.01 eV in SE

values between $Cu_{54}Zr_v$ and $Cu_{54}Zr_e$ NPs. So, the doping of Zr atom in this Cu NP is always advantageous as long as Zr stay at the surface site of the Cu NP, and both the vertex and edge site are acceptable.

Firstly, the influence of Zr doping in Cu NPs is well reflected by their capturing for CO₂. Upon the optimized structures for the adsorption of CO₂ on the Cu NPs with and without Zr doping, a larger difference in the adsorption energies $E_{\rm ad}$ is found. As displayed in Figure 2, $E_{\rm ad} = 0.19$ eV is obtained when CO₂ is adsorbed on the pure Cu₅₅ NP, and one can say this is physisorption state. However, $E_{\rm ad}$ is respectively 1.51 eV and 1.80 eV with a stronger adsorption behavior for CO₂ when it is adsorbed on Cu₅₄Zr_v and Cu₅₄Zr_e NPs. The similar case is also observed on bulk Cu(111) surface, where $E_{\rm ad}$ is 1.27 eV for CO₂ adsorption under the precondition of Zr doping. In a word, the introduction of Zr atom is of great importance whatever in Cu NPs or in bulk Cu catalyst.

Moreover, CO_2 molecular would rather stay near Zr atom, which can be seen from the configuration of the adsorbed CO_2 on these Cu catalysts in Figure 2. Actually, the transferred charge from these Cu catalysts to CO_2 molecular is closely related with E_{ad} . From Table 1, the more transferred charge means the stronger adsorption to CO_2 . This will inevitably lead to the change in both the bond length and bond angle of CO_2 molecular. One can see the elongation of the average length of C=O bond (d_{C=O}), and the shrinkage of the bong angle ([?]OCO) with the strength in E_{ad} or with the increased transferred charge. In addition, the above observance means that Zr atom doping at edge site is better than vertex site on this Cu NP, and this site is usual the preferential site of other metals doping in this Cu NP for CO_2 adsorption.¹⁸

In CO₂RR, CO₂ dissociation is the initial reaction step and has large impact on the overall reaction rate.³⁴ For this step, there usually have three paths in CuZr systems.^{35,36} One is the direct decomposition of CO₂ into CO and O,²⁴ the other two ways are CO₂ hydrogenation to form carboxyl (COOH) and formate (HCOO), respectively.²² To pick up the reasonable path for CO₂ dissociation, these three paths are performed on the Zr doped Cu(111) surface, and the concerned potential energies are shown in Figure 3. It is expected that the direct dissociation of CO₂ to CO and O, is the preferred path. This is because one hand, it is exothermic process for the step of CO₂-CO + O, while it is endothermic process if CO₂ is hydrogenated to COOH. On the other hand, the energy barrier is 0.47 eV for the step of CO₂-CO + O, while it is respectively 1.02 eV and 0.79 eV for CO₂ hydrogenation to COOH and HCOO. Although the hydrogenation of CO₂ to HCOO is also an exothermic reaction, the stronger adsorption for HCOO ($E_{ad} = 4.35 \text{ eV}$) may prevent it's further hydrogenation and then cause surface poisoning.²² Thus, the dissociation of CO₂ to CO and O is selected in this work, following by the next step of CO + H - CHO. Actually, they are two important steps in CO₂ reduction to methanol.

For the key intermediates from CO₂ to CHO on these catalysts, including CO, CHO, O and H, Figure 4 presents their adsorption energies $E_{\rm ad}$. It is interesting that their strongest adsorptions happen on Cu₅₄Zr_e NP, and then on CuZe_v NP. Their smallest adsorption energies are obtained on Zr doped Cu(111) surface. This sequence is similar with the case of CO₂ adsorption on these catalysts. Their stable adsorption configurations and $E_{\rm ad}$ values have been presented in Table 2. From their configurations, one can find that Zr doped Cu NPs show their stronger adsorption for O atom, which is mainly due to the high oxygen affinity of metal Zr atom. And so a nearly linear relationship between $E_{\rm ad}$ (CO₂) and the summation of $E_{\rm ad}$ (CO) and $E_{\rm ad}$ (O) exists on these catalysts can be expected, as shown in Figure 5(a), and similarly the linear relationship between $E_{\rm ad}$ (CHO) and $[E_{\rm ad}({\rm CO})+E_{\rm ad}({\rm O})]$ is seen in Figure 5(b). All this means the C and O atoms are the mainly element to form the adsorption with the Zr doped Cu catalysts. The similar cases are also observed in other researches.³⁷⁻⁴⁰ Anyway, the adsorption behaviors for these intermediates again prove that Zr doped Cu NPs are the potential catalysts for CO₂ converting into methanol, especially Cu₅₄Zr_e NP.

Furthermore, the potential energy diagram from CO_2 to CHO is presented in Figure 6. One can see the energy barrier is 1.01 eV on pure Cu_{55} NP when CO_2 dissociation to CO, while it is greatly reduced as long as Zr atom is doped. Importantly, they are respectively 0.34 eV and 0.32 eV on $Cu_{55}Zr_v$ and $Cu_{55}Zr_e$ NPs. Even in bulk Cu surface, this energy barrier is also reduced to 0.47 eV when Zr atom is introduced. In this process, a C=O bond in the adsorbed CO_2 molecule is firstly cleaved, and then the single O atom always moves near the Zr atom to form the transition state. It is worth mentioning that the dissociation of CO_2

on the pure Cu₅₅ NP is an endothermic one ($\Delta E = +0.43 \text{ eV}$), while it is an exothermic reaction on both Cu₅₅Zr_v and Cu₅₅Zr_e NPs ($\Delta E_{v}^{,*}=-0.67 \text{ eV}$, $\Delta E_{v}^{,*}=-0.54 \text{ eV}$).

In the next process of CO hydrogenation to form CHO, one finds that the energy barrier is 1.34 eV on the pure Cu_{55} NPs. However, this energy barrier is still obviously lowered in the Zr doped Cu NPs, especially in $Cu_{54}Zr_e$ NP, and it is just 0.58 eV. Besides, this energy barrier in $Cu_{54}Zr_e$ NP being 1.05 eV is still smaller than that in Cu_{55} NP, while there has a little larger than that in $Cu_{54}Zr_e$ NP. All this means Zr atom doping in Cu NPs, greatly enhances their catalytic ability in the CO₂ reduction to methanol, and Zr atom serves as the active site to a large extent whatever it is doped at vertex or edge site. Moreover, the exothermic process is still observed for CO hydrogenation to CHO on both $Cu_{54}Zr_v$ and $Cu_{54}Zr_e$ NPs, while it is endothermic process in pure Cu_{55} NP. In addition, in the Zr doped Cu(111) surface, the energy barrier in the step of CO hydrogenation to CHO is 1.43 eV, which is higher than any of Cu NPs. So, Zr doping in Cu NPs with icosahedral structure makes them having the great potential as the effective catalysts for CO₂ reduction to methanol, not only from the adsorption for CO₂, CO and CHO, but also form the energy barriers of first two important steps. Especially, $Cu_{54}Zr_e$ NP shows it's superior catalytic ability.

4. Conclusions

In summary, we investigated the effect of Zr doping in Cu NPs with icosahedral structure on the CO_2 reduction to methanol by using DFT. Segregation energy analysis suggests that Zr atom prefers to reside on the surface of the Cu NPs. Moreover, Zr doping in Cu NPs actually enhances the adsorption capacity of CO_2 molecular and stabilizes the two important intermediates, i.e., CO and CHO. The fact of the energy barriers in this process from CO_2 to CHO are greatly reduced when Zr doping in Cu NPs, further means Cu_5_4 Zr NPs shows it's good potential as the effective catalyst for CO_2 reduction to methanol, especially when Zr doping at edge site.

Acknowledgement

The authors acknowledge the financial supports National Natural Science Foundation of China (grant No. 11404235 and 51701137) and also supported by Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.

References

1 Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V. and Steffen, W. *Science* **2000**, *290*, 291-296.

2 Graves, C., Ebbesen, S. D., Mogensen, M. and Lackner, K. S. Renew. Sust. Energy Rev. 2011, 15, 1-23.

3 Nie, X. W., Luo, W. J., Janik, M. J. and Asthagiri, A. J. Catal. 2014, 312, 108-122.

4 Vasileff, A., Xu, C. C., Jiao, Y., Zheng, Y. and Qiao, S. Z. Chem 2018, 4, 1809-1831.

5 Power, P. P. Nature 2010, 463, 171-177.

6 Back, S., Yeom, M. S. and Jung, Y. ACS Catal. 2015, 5, 5089-2096.

7 Chen, Y. H., Li, C. W. and Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969-19972.

8 Peterson, A. A. and Norskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251-258.

9 Kuhl, K. P., Cave, E. R., Abram, D. N. and Jaramillo, T. F. Energy Environ. Sci. 2012, 5, 7050-7059.

10 Kim, D., Kley, C. S., Li, Y. F. and Yang, P. D. Proc. Natl. Acad. Sci. USA 2017, 114, 10560-10565.

11 Liu, C., Cundari, T. R. and Wilson, A. K. J. Phys. Chem. C2012, 116, 5681-5688.

- 12 Chen, J. G., Menning, C. A. and Zellner, M. B. Surf. Sci. Rep.2008, 63, 201-254.
- 13 Yu, W. T., Porosoff, M. D. and Chen, J. G. G. Chem. Rev.2012, 112, 5780-5817.

15 Lysgaard, S., Myrdal, J. S. G., Hansen, H. A. and Vegge, T. Phys. Chem. Chem. Phys. 2015 , 17 , 28270-28276.

16 Yang, D. X., Zhu, Q. G., Sun, X. F., Chen, C. J., Lu, L., Guo, W. W., Liu, Z. M. and Han, B. X. Green Chem . **2018**, 20, 3705-3710.

17 Zhao, X. Y., Luo, B. B., Long, R., Wang, C. M. and Xiong, Y. J.J. Mater. Chem. A 2015, 3, 4134-4138.

18 Dean, J., Yang, Y. H., Austin, N., Veser, G. and Mpourmpakis, G. ChemSusChem 2018, 11, 1169-1178.

19 Sloczynski, J., Grabowski, R., Olszewski, P., Kozlowska, A., Stoch, J., Lachowska, M. and Skrzypek, J. *Appl. Catal.* **2006** ,*310* , 127-137.

20 Samson, K., Śliwa, M., Socha, R. P., Góra-Marek, K., Mucha, D., Rutkowska-Zbik, D., Paul, J-F., Ruggiero-Mikołajczyk, M., Grabowski, R. and Słoczynski, J. ACS Catal. **2014**, 4, 3730-3741.

21 Yang, C., Ma, Z. Y., Zhao, N., Wei, W., Hu, T. D. and Sun, Y. H. Catal. Today 2006, 115, 222-227.

22 Kattel, S., Yan, B. H., Yang, Y. X., Chen, J. G. G. and Liu, P.J. Am. Chem. Soc. **2016**, 138, 12440-12450.

23 Kleis, J., Greeley, J., Romero, N. A., Morozov, V. A., Falsig, H., Larsen, A. H., Lu, J., Mortensen, J. J., Dułak, M., Thygesen, K. S., Nørskov, J. K. and Jacobsen, K. W. *Catal. Lett.* **2011**, *141*, 1067-1071.

24 Austin, N., Ye, J. and Mpourmpakis, G. Catal. Sci. Technol.2017, 7, 2245-2251.

25 Weigel, J., Koeppel, R. A., Baiker, A. and Wokaun, A. Langmuir1996, 12, 5319-5329.

- 26 Delley, B. J. Chem. Phys. 1990, 92, 508-517.
- 27 Delley, B. J. Chem. Phys. 2000, 113, 7756-7764.
- 28 Perdew, J. P., Burke, K. and Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
- 29 Grimme, S. J. Comput. Chem. 2006, 27, 1787-1799.
- 30 Delley, B. Phys. Rev. B 2002, 66, 155125.
- 31 Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129-138.
- 32 Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D. and Andzelm, J. Comput. Mater. Sci. 2003, 28, 250-258.

33 Kittel, C. Introduction to Solid State Physics . Wiley, New York, 7th edn, 1996.

34 Nakamura, J., Rodriguez, J. A. and Campbell, C. T. J. Phys.: Condens. Matter 1989, 1, SB149.

35 Tang, Q. L., Hong, Q. J. and Liu, Z. P. J. Catal. 2009, 263, 114-122.

36 Kattel, S., Ramirez, P. J., Chen, J. G., Rodriguez, J. A. and Liu, P. Science 2017, 355, 1296-1299.

37 Montemore, M. M. and Medlin, J. W. Catal. Sci. Technol.2014, 4, 3748-3761.

38 Zhang, X., Liu, J. X., Zijlstra, B., Filota, I. A. W., Zhou, Z. Y., Sun, S. G. and Hensena, E. J. M. *Nano* energy **2018**, 43, 200-209.

39 Ko, J., Kim, B. K. and Han, J. W. J. Phys. Chem. C2016, 120, 3438-3447.

40 Abild-Pedersen, F., Greeley, J., Studt, F., Rossmeisl, J., Munter, T. R., Moses, P. G., Skulason, E., Bligaard, T. and Norskov, J. K. *Phys. Rev. Lett.* **2007**, *99*, 016105.

Captions:

Figure 1. The optimized structures of Zr doping in Cu NPs with 55 atom, respectively when Zr atom stays at vertex, edge and core site. The Cu atoms are colored brown and the Zr atoms are in light blue. SE is defined as the energy difference when Zr atom stays at core and surface.

Figure 2. The most stable adsorption configurations of CO_2 respectively adsorbed on Cu_{55} NP, $Cu_{54}Zr_v$ NP, $Cu_{54}Zr_e$ NP and Cu(111)/Zr.

Figure 3. The three possible reaction mechanisms and transition state (TS) for CO_2 dissociation on Cu(111)/Zr, respectively converted to CO+O, COOH and HCOO.

Figure 4. The adsorption energies $E_{\rm ad}$ of CO, CHO, O and H respectively on $Cu_{54}Zr_v$ NP, $Cu_{54}Zr_e$ NP, and Cu(111)/Zr.

Figure 5. The scaling relations of the adsorption energies ($E_{ad}CO+E_{ad}O$) for both CO and O, respectively with (a) that $E_{ad}CO_2$ for CO₂, and (b) with that $E_{ad}CHO$ for CHO on the different catalysts.

Figure 6. Potential energy diagrams for the reduction of CO_2 to CHO on Cu_{55} NP, $Cu_{54}Zr_v$ NP, $Cu_{54}Zr_e$ NP and Cu(111)/Zr.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 6

Table 1. The adsorption energy and related parameters of CO_2 on different catalysts

Species	СО	СНО	0	Н
Cu ₅₄ Zr _e				
$E_{\rm ad}({\rm eV})$	1.81	3.69	7.35	0.79
$Cu_{54}Zr_v$				
$E_{\rm ad}({\rm eV})$	1.65	3.55	7.10	0.52
Cu(111)/Zr				~
$E_{\rm ad}({\rm eV})$	1.53	3.33	6.65	0.40

Table 2. The most stable adsorption configuration and adsorption energy of intermediates from CO_2 to CHO

Species	СО	СНО	0	Н
$\frac{1}{Cu_{\text{E4}}Zr_{\text{e}}}$				
$E_{\rm ad}({\rm eV})$	1.81	3.69	7.35	0.79
$\mathrm{Cu}_{54}\mathrm{Zr}_{\mathrm{v}}$				
$E_{\rm ad}({\rm eV})$	1.65	3.55	7.10	0.52
Cu(111)/Zr				
$E_{\rm ad}({\rm eV})$	1.53	3.33	6.65	0.40