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Abstract

Forest structural dynamics is governed by tree growth and mortality; While the mean growth rate has been integrated in
mathematical derivation of forest size structure, variance in growth is always ignored. Here by solving Kolmogorov forward
equation, I show the significant difference in forest size structure predictions with and without considering of the variance,
which just solved the puzzle of mismatch between observation and theoretical prediction in previous studies. An asymptotically
power-law relationship between tree size and growth rate variance was found and statistically interpreted, which is the key link

in connecting all the evidences in forest size structure formation.

Introduction

Understanding the formation of forest size structure (i.e. the size-frequency distribution of trees) is crucial
for forest protection and management. Although a great deal of statistics and theoretical investigations
have been made, I would say that an essential defect in this research area results from the disadvantages in
mathematical analysis, rather than lack of revealing new biological or ecological processes.

Two general governing equations, the McKendrick-von Foerster equation (Eq. 1) and the Kolmogorov
forward equation (Eq. 2), have long been proposed for the size structure dynamics in plant communities(Von
Foerster 1959; Hara 1984; Kohyama 1991; Condit & Sukumar 1998; Coomeset al. 2003; Muller-Landau et
al. 2006b), in which the former is commonly used, it can be considered as a simplification of the latter, by
ignoring the variance of tree growth rate in the same size-class, i.e. letting V (D ) in Eq. 2 equals zero.

(1) (2) where N represents individual number with size D (measured by trunk diameter) and at time ¢ ,
G (D ),V (D), and M (D ) are mean growth rate, growth rate variance, and mortality in each size-class,
respectively.

Although growth rate variance is inevitable in natural world, the reason for rarely using Kolmogorov forward
equation is largely due to difficulties in solving the second-order partial differential equation analytically, and
ecologists believe that discarding the variance term has little impact in analyzing forest size structure under
demographic equilibrium state, so most studies are based on the equilibrium solution of McKendrick-von
Foerster equationN (D ) =N gexp[-[?]M (D )G (D )tdD |G (D )!(where N g is a constant representing
the ideal number of trees in the smallest size-class, i.e. when D closes to zero.)(Hara 1984; Kohyama 1991;
Condit & Sukumar 1998; Coomes et al. 2003; Muller-Landau et al. 2006b; Moore et al. 2020).

However, the deviation of observations to the mathematical prediction has been causing debates, some
of which cannot be simply attributed to disturbances or the non-ideality of field data(Coomes et al.2003;
Muller-Landau et al. 2006a; Muller-Landau et al.2006b; Stegen & White 2008; Farrior et al. 2016; Zhou &
Lin 2018; Moore et al. 2020). One puzzling problem rises from the non-self-consistency of metabolic scaling
theory of forest (MSTF)(Enquist et al. 2009; West et al. 2009). In this theory, power-law functions of N (D



), G (D) and M (D ) are proposed and well fitted with convincing data cases, which are N (D ) =N oD
2.G (D) =kD '3 andM (D ) = 2kD “2/3 respectively(Enquist et al. 2009; West et al. 2009). However,
putting the functional form of G (D ) andM (D ) into the equilibrium solution leads toN (D ) =N oD /3
rather thanN (D ) =N oD 2. Lin and I (2018) have interpreted that the non-self-consistency results from
the neglection of growth rate difference among size-classes in math derivations of MSTF (Zhou & Lin 2018),
which actually led to an equation of N (D ) =N gexp[-[?]M (D )G (D )'dD | in self-thinning. Therefore,
the data were actually well fitted with a flawed theory, there is still a missing link in explaining the formation
of forest size structure under demographic equilibrium state.

Here I will show how the stochasticity in tree growth rates in the same size class, which has been ignored in
previous studies, affects forest size structure significantly, and solves the paradox in MSTF.

Comparison of forest size structure with and without considering of growth variance

To compare the difference between forest size structure with and without considering the stochasticity, I first
assume V | G , andM as constants (Eq. 3 and Eq. 4), since analytic solution cannot be directly given for
the original form of Kolmogorov forward equation.

(3) (4) Equilibrium solutions of Eq. 3 and Eq. 4 can be easily obtained using the methods of variable
separation and characteristic equation (see Supporting information), which are: Solution of Eq. 3 can be
transformed as

Obviously, the exponent of N (D )gq. 4 is less negative than that of N (D )gq. 3, which means in prediction
of forest size structure, the decreasing rate of tree numbers with size increase will be slower in considering
of a constant growth rate variance, which also implicates that the -2 power-law distribution in MSTF might
be reduced from the -7/3 power due to the effect of growth rate variance.

Prediction and verification for the functional form of growth variance

In accepting N (D ) =N oD 2,G (D ) = kD Y3 andM (D ) = 2kD -?/3 in MSTF, the functional form
of V (D ) can be expected by putting the three known functions into Kolmogorov forward equation (see
Supporting information), under demographic equilibrium condition, this lead to: and:

In a prior perspective, it is basically acceptable that the variance of growth rate increases with tree size and
mean growth rate, a power relationship between diameter and growth rate variance was also verified with
data from Barro Colorado Island (BCI) forest(Condit et al.2012) (Fig. 1. B ).

Here I provide a statistical interpretation to the positive correlation between growth rate variance and tree
size, that for G (D ) = kA" | if growth rate variance derives from the intrinsic stochasticity in growth
coefficient k and exponentA , which mean values are p, andp, , and variances are 62j and o2, , then V (D
) can be expressed as (see Supporting information for full derivation(Limpert et al. 2001)): (5)

In acceptable range of the parameter values based on theoretical and empirical studies, where uy = 1/3 and
o2, varies around 0.01 ~ 0.1, functional curve of the statistical-based V (D ) is quite close to the power-law
function with the exponential value of 4/3 (Fig. 1. A ). Besides of the exponential value, the coefficient of
V (D ), as expected to be 0.6 k£ when the coefficient of G (D ) is k , depends on the accounting time scale
of G (D). For instance, G (D ) accounted with 5-years’ time interval is 5 times more than that accounted
with 1-year’s time interval, but variance of the former will be 25 times more than the latter, which is the
square of the ratio in G (D )’s magnitude changes. Hence the relative magnitude between G (D ) and V
(D ) will be different with the change of accounting time scale.

In estimating of forest size structure, if bin widths of size classes are at the magnitude of one to ten cen-
timeters, as was once used in MSTF(Enquist & Nicklas 2001), that would be diameter increments in 5- to
10-years’ growth according to empirical evidences. In this premise, the estimated coefficient value of V (D)
based on the data from BCI forest is just close to that being expected to satisfy the -2 power-law distribution
(Fig. 1. B ). However, if size classes are bound with smaller bin widths, as in later studies challenging



MSTF(Muller-Landau et al. 2006b), the relative magnitude of V (D ) will be quite small to lead significant
deviation of size structure from that predicted with N (D ) =N gexp[-[?]M (D )G (D )*dD |G (D ).

Discussion

Therefore, under particular circumstances, the inevitable variance in growth rate surely has a probability in
pulling back N (D ) from D “7/3, which determined by G (D ) and M (D ) in MSTF, to approximately D -2
in statistics, but not precisely (Fig. 2 ). The so-called energetic equivalence among different size classes in
forests(Perkins et al. 2019), is not a result of biological mechanism (i.e. considering a forest as a tree(West et
al. 2009)), but a statistical coincidence. Meanwhile, since V' (D ) is significantly affected by the accounting
time scale of G (D ), which is reflected as the bin width of size classes in size structure estimation, it is no
wonder that the estimated forest size structures deviate from the power-law distribution with the changes
of growth rate, bin width selection, or estimation methods(Whiteet al. 2008).

Although the evidences of growth rate variance, mean growth rate, mortality and forest size structure
were well linked in the special case of MSTF, more generalized interpretation and quantification of their
relationships are still needed. Basically, an explicit equilibrium solution to the Kolmogorov forward equation,
which in the form of N (D )= f (G (D ), V (D ),M (D)), if exist, would be expected, so that foresters can
get an intuitive understanding to the respective roles of G (D ), V (D ), and M (D ) on forest size structure
formation, and predict the large scale forest size structure from small scale inventories. Further than the
static analysis on demographic equilibrium state, time dynamic analysis of forest size structure would be
more challenging, especially in considering of the stochasticity in growth rate. Although ecologists believe
that forests would internally tend to equilibrium in the absence of disturbance, how a forest started with any
arbitrary size-density distribution finally converge to the approximately power-law distribution has never
been strictly proved, mathematical approaches in stability theory may be adopted for the analysis.

However, as a posteriori function, Kolmogorov forward equation does not provide any biological inferences to
forest dynamics, it simply reveals the physical truth in how growth and mortality affect individual numbers
in different size classes, biological insights on specific processes in growth and mortality, e.g. size dependent
growth, age dependent death, or the effects of competition, etc., require additional experimental and the-
oretical investigations. But without a clear understanding to the certain mathematical results, ecological
phenomena may be mis-interpreted with inappropriate anticipation to biological mysteries.
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Figures and Legends
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tree-growth-closes-the-chain-of-evidence-in-forest-structural-dynamics

Figure 1. The relationship between tree size and growth rate variance in theoretical prediction (A) and
data verification (B). The curve of variance derived from statistical rules (red line in subplot A) is based on
Eq. 5, parameter values were set aspuy = 1/3, 6%y = 0.05,p1, = 0.25, 0%}, = 0.25.
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imagel2.emf available at https://authorea.com/users/314145/articles/444533-stochasticity-in-
tree-growth-closes-the-chain-of-evidence-in-forest-structural-dynamics

Figure 2 . Estimated size-frequency distributions of BCI forest under different bin-widths of size classes.
To verify the effect of growth rate variance, size classes were bound with the estimated mean diameter
increments of the corresponding sizes, in approximately 5-years (blue dots) and 1-month (red dots). This
way of data grouping is different with the linear- or log-even size classes, which were used previously and
would lead to a decreasing exponent with the magnitude increase of bin-width due to statistical bias(White
et al. 2008).
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