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Abstract

The expense of quantum chemistry calculations significantly hinders the search for novel catalysts. Here, we provide a tutorial
for using an easy and highly cost-efficient calculation scheme called alchemical perturbation density functional theory (APDFT)
for rapid predictions of binding energies of reaction intermediates and reaction barrier heights based on Kohn-Sham density
functional theory reference data. We outline standard procedures used in computational catalysis applications, explain how
computational alchemy calculations can be carried out for those applications, and then present bench marking studies of binding
energy and barrier height predictions. Using a single OH binding energy on the Pt(111) surface as a reference case, we use
computational alchemy to predict binding energies of 32 variations of this system with a mean unsigned error of less than 0.05 eV
relative to single-point DFT calculations. Using a single nudged elastic band calculation for CH4 dehydrogenation on Pt(111)
as a reference case, we generate 32 new pathways with barrier heights having mean unsigned errors of less than 0.3 eV relative
to single-point DFT calculations. Notably, this easy APDFT scheme brings no appreciable computational cost once reference
calculations are done, and this shows that simple applications of computational alchemy can significantly impact DFT-driven
explorations for catalysts. To accelerate computational catalysis discovery and ensure computational reproducibility, we also
include Python modules that allow users to perform their own computational alchemy calculations.

Keywords — Computational catalysis, density functional theory (DFT), adsorption energies, nudged elastic band calculations,

binding energies, barrier heights

Introduction

Advances in computational chemistry open new possibilities for impressively large scale computational screen-
ing of hypothetical catalysts across materials space.[1],[2],[3] However, productively leveraging high throughput
screening has been challenging. For useful and insightful predictions, computational screening studies must
be reproducible while also i) determining important active sites that are stable under specified environmental
conditions on large numbers of material compositions and ii) elucidating important elementary reaction steps
with barrier heights that are needed for kinetic modeling. To date, most computational catalysis studies
can address one of these points at a time, but new advances are needed to make it possible to address both
points at the same time.

Reliably accurate quantum chemistry (QC) methods, e.g. Kohn-Sham Density Functional Theory (DFT),
continue to play a central role for computational catalysis studies. Even though the computational cost of
QC calculations continues to decrease to allow even more calculations possible in the future, one should not
expect that the two points above can be addressed at the same time using QC calculations without invoking
severe approximations. For example, the cost of most DFT calculations limits their utility in screening
studies to O(103-104) of kinds of active sites. If one considers just binary pairs of twenty different metals,
there are 190 possible binary alloys. Each alloy in turn has an enormous configuration space, e.g. for a
55-atom nanoparticle, there are close to 255 possible configurations that potentially need to be considered.
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Thus, we need a computationally inexpensive but sufficiently accurate approach to estimate which alloy
configurations are important enough to warrant further study with QC calculations.

A similar challenge exists with calculating reaction barriers. These computations are much more expensive
than stability or adsorption energy calculations. Only the most relevant barriers ideally would be studied
with costly QC methods, but determining whether a barrier is relevant requires iterative kinetic analyses
that themselves require numerous barrier height predictions to be useful. The key point is these studies
would be significantly accelerated if barriers could be estimated quickly and accurately enough to determine
if more QC calculations were needed.

The present tutorial shows how to apply an approximate method that has promise to accelerate computa-
tional catalysis screening studies. The method has previously been called “computational alchemy”,[4],[5],[6],[7]

but more recently termed “alchemical perturbation density functional theory”[8] to better distinguish it to
other forms of “computational alchemy”.[9] The tutorial begins with an overview of how computational
catalysis is normally done, we then provide an introduction to the theory of computational alchemy, and
then we benchmark a set of adsorbate binding energies (BE) and activation energies (Ea). Large amounts
of computational alchemy data can be obtained from a single set of DFT calculations by using updatable
and reproducible procedures embedded within Jupyter notebooks. This is expected to make it useful for
accelerating computational catalysis screening predictions of adsorption energies and reaction barriers.

Conventional Computational Catalysis

Catalytic reaction mechanisms depend on the interplay of reaction thermodynamics and kinetics. The present
work assumes that these can often be modeled quite well with standard DFT calculations, but bringing this
level of accuracy already brings substantial computational cost. More complicated systems will be expected
to require higher level QC calculations that bring even greater costs.

The thermodynamics of elementary reaction steps can be assessed by computing reaction intermediate BEs.
Each BE determination normally requires three separate QC electronic energy calculations, each preferably
modeled using geometrically relaxed structures, and suitably accurate levels of theory. Appropriate zero-
point energy, thermal, and entropy corrections can be included as well, but these are neglected here for
simplicity. The required calculations include the model of the catalyst surface without the adsorbate (site),
a model of the adsorbate not interacting with the catalyst (ads), and a model for the catalyst surface with
the adsorbate bound (ads-site). A BE is then calculated with the following equation:

BE = Esite + Eads − Eads-site (1)

In this convention, positive binding energies indicate thermodynamically favorable adsorptions. This equa-
tion clearly highlights a problem with high throughput screening studies that rely on QC calculations. Any
BE calculation for a single adsorbate on any hypothetical surface site usually requires two separate QC
calculations (for Eads-site and Esite), and those might take anywhere from minutes to weeks to complete
on modern super computers. Predictive BEs also may require more considerations of multiple adsorbate
configurations as well as adsorbate-induced surface reconstruction and segregation.

Relatively efficient DFT calculations for N electron systems typically scale as N3 or greater, making these
calculations quite expensive. This unfavorable scaling is especially significant when calculating Ea. The
Nudged Elastic Band (NEB) algorithm,[10] which is now a standard approach for predicting Ea, works by
computing a series of constrained geometric ‘images’ that are eventually optimized to a minimum energy
pathway along a potential energy surface. Since standard NEB calculations generally require the optimization
of 10−20 images per pathway, they bring significant computational cost that limits applications in high-
throughput screening. A conventional approach to address this is with linear scaling relations,[11],[12],[13] but
an open question is whether alternative approaches might be more accurate and useful.
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APDFT

The poor scaling of QC calculations in computational catalysis applications motivate the need for developing
faster methods to estimate BEs and Eas. Brute-force computations driven exclusively by DFT calculations
are not expected to be aproductive for large-scale explorations for hypothetical catalysts. Machine learning
models for catalysis prediction are becoming a more common alternative,[14],[15],[3] but a downside of most of
these approaches is that they need a lot of data for training, they can unreliably extrapolate to new systems,
and they are often harder to intuitively or physically interpret. An alternative and general approach being
championed by von Lilienfeld and co-workers [4],[5],[16] is to use gradient-supported methods that consider
how a change to a material results in a change in a specific property without the explicit QC calculation
of the property itself. These approaches are essentially a special class of quantitative structure property
relationship (QSPR) methods,[17] but while most QSPR models are empirically fit, the end goal here is to
make computationally efficient predictions based on first principles-derived entities such as a wavefunction,
an electron density, or an electrostatic potential.

We now provide a tutorial on how a simple form of APDFT can be employed for computational catalysis
applications [18],[19],[7],[20]. To begin, we consider the BE calculation for an OH molecule on Pt(111). This
system will be referred as our reference state and subsequently labeled with λ = 0. Since zero-point, thermal,
and entropy corrections will be neglected out of simplicity, its BE will be labeled as ∆E0|λ=0. We now will
consider a new system where the Pt(111) surface has been doped with a new element that results in a new
binding site. This new state will be labeled as λ = 1, and its BE will be labeled as ∆E0|λ=1. APDFT can
be used to predict ∆E0|λ=1 by relating it to ∆E0|λ=0 using a thermodynamic cycle shown in Fig. 1.

Figure 1: Thermodynamic cycle depicting the binding energies (BEs) of an adsorbate on a surface (horizontal
legs) and atomic transmutations (vertical legs). ∆E0|λ=0 and ∆E0|λ=1 denote the BEs for the top and
bottom horizontal legs, respectively. ∆Esλ→1 and ∆Eaλ→1 denote the energy change associated with the
atomic transmutation for the left (s = surface) and right (a = ads-site) vertical legs, respectively.

According to the cycle, we have Eq. 2:

∆E0|λ=0 + ∆Eaλ→1 = ∆E0|λ=1 + ∆Esλ→1 (2)

Where ∆E0|λ=0 will be obtained using Eq. 1, ∆Esλ→1 is the energy change of the bare catalyst surface (s =
site) when doped with a new element, and ∆Eaλ→1 is the same type of change for the system of the catalyst
site with a bound adsorbate (a = ads-site). Upon rearrangement of Eq. 2, the change in BE due to the
transition from the λ = 0 to the λ = 1 states is the difference of these two unknown terms:

∆BE = ∆E0|λ=1 −∆E0|λ=0 = ∆Eaλ→1 −∆Esλ→1 (3)

3
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We now will demonstrate how to calculate the right side of Eq. 3 using APDFT to obtain ∆BE. APDFT
relates ∆E0|λ=1 to ∆E0|λ=0 with perturbation theory, specifically by approximating the exact result as a
Taylor series expansion with the thermodynamic state function (∆E0), Eq. 4.[19]

∆E0|λ=1 = ∆E0|λ=0 + ∂λ∆E0∆λ+
1

2
∂2λ∆E0∆λ2 + ... (4)

Here, the predicted BE (∆E0|λ=1) is approximated as the reference BE (∆E0|λ=0) plus additional corrections
from the Taylor series based on so-called “alchemical derivatives”, which are other terms resulting from the
transformation from the λ = 0 state to the λ = 1 state. The nth alchemical derivative with respect to λ is
denoted by ∂nλ∆E0. For the easiest applications of APDFT, one can simply truncate the expansion in Eq. 4
to first order and assign ∆λ = 1, but higher order corrections for non-periodic computational schemes have
been developed by von Lilienfeld and co-workers.[21] The first-order approximation for APDFT is shown by
Eq. 5.

∂λ∆E0 =
∑
I

∆µnI∂λNI −
∑
I

∆FI∂λRI + ∆µe∂λNe (5)

Here, the first term accounts for the nuclear chemical potential gradient (∆µnI) due to variation in nuclear
charge (NI) from the λ = 0 to the λ = 1 state. The second term accounts for energy gradients due to
the forces on atoms (∆FI) resulting from changes in atomic positions (RI) from the λ = 0 to the λ = 1
state. The third term accounts for the electronic chemical potential gradient (∆µe) due to variation in total
number of electrons (Ne) from the λ = 0 to the λ = 1 state.

Two additional approximations are typically employed with simple applications of first order APDFT used
for computational catalysis studies of extended surfaces. The first approximation is to assume that nuclear
positions for the λ = 0 state and the λ = 1 state are the same. While changing a material’s composition will
certainly impact interatomic forces and result in relaxations to achieve a minimum energy state, it will be
assumed for simplicity that the relaxation energy contributions due to the doping atom in the λ = 1 states
for the “ads-site” and “site” calculations are similar and thus largely cancel in the thermodynamic cycle
represented in Fig. 1. Mathematically, the result is that δλRI in the second term of Eq. 5 becomes zero,
and thus the second term can be neglected. The second approximation is to ensure that the λ = 0 state
and the λ = 1 state have the same number of electrons so that δλNe becomes zero so that the third term
becomes zero. (Note that this is not a general requirement for APDFT, but it is a practical way to ensure
that a total surface change density under periodic boundary conditions remains reasonably physical in these
specific applications.) To apply this constraint, one must use “isoelectronic transmutations” so that the
λ = 1 system has the same number of electrons as the λ = 0 system. For example, in a Pt(111) slab, if one
Pt atom is transmuted into an Au atom (∆Z = +1), a second Pt atom must be transmuted into an Ir atom

(∆Z = −1). This results in a zero net change in atomic number for the new slab (
∑no. of atoms

n=1 ∆Z = 0).
While the second transmutation is a departure from the system of interest, it can be made to occur far from
the site of interest so that it has no significant effect on the BE of that site.

To summarize, the simplest application of first order APDFT for predicting a BE for a hypothetical cata-
lyst surface will consider only fixed atomic coordinates and only net isoelectronic transmutations, and this
simplifies Eq. 5 into Eq. 6.

∂λ∆E0 =
∑
I

∆µnI∂λNI (6)

The nuclear chemical potential, ∆µnI (also called the alchemical potential), is defined as the change in atomic
electrostatic potential between the “site” and the “ads-site” reference states. This is represented as an array
of differences in electrostatic potentials, and so the elements of this array have units of energy/charge. Note
that this procedure accounts for changes in electrostatic potentials of atoms on the catalyst surface after
relaxations due to molecular adsorption have taken place. This term mathematically refers to the difference
shown by Eq. 7.

∆µnI = µads-site
n (Rads-site

I )− µsite
n (Rsite

I ) (7)

4
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These atom-centered electrostatic potentials for the “ads-site” and “site” reference states can be obtained
with VASP,[22] a widely-used DFT code. Fig. 2a depicts how alchemical potentials are constructed as an
array of differences in electrostatic potentials for atoms from both the “site” and “ads-site” states. The
nuclear charge variation quantity, ∂λNI , in Eq. 6 now should be accounted for. When one transmutes atoms
from a λ = 0 state to form a hypothetical λ = 1 state, one notes changes in nuclear charges. Specifically, one
uses an array of differences in nuclear charges due to the formation of the λ = 1 state, and so the elements
in this array have units of charge. Fig. 2b depicts how nuclear charge variations are constructed as an array
of differences in atomic numbers of the atoms in the λ = 0 state and the λ = 1 state. Note that this array
will be the same whether it is constructed for a “site” or “ads-site” state since they both will correspond
to the same λ = 1 state. The overall calculation of the alchemical derivative used to obtain ∆BE between
the λ = 0 state and the λ = 1 state is simply a dot product of the two arrays given above, and this gives a
scalar that has units of energy (Fig. 2c).

Figure 2: Illustrations of steps to compute corrections to binding energies (BEs) based on APDFT. a) Con-
structing the alchemical potential array with differences between µai and µsi , the electrostatic potentials for
the ith atom in the ads-site (a) and site (s) systems, respectively. The adsorbate atoms in the ads-site state
are conventionally not included in the array because they are not subject to transmutations. b) Constructing
the nuclear charge variation array with differences in atomic number for each atom in the system before and
after the transmutation. c) Illustrations of Eqs. 6 and 11 (see below) as a dot product of the two arrays
constructed in a) and b). (Note that the illustrations in a) and b) do not show an isoelectronic change
and the result of the equality shown in c) is provided to show a simple visual representation.)

For additional clarity, we can return to the two unknown terms (∆Eaλ→1 and ∆Esλ→1) in Eq. 3 that compute
∆BE according to the cycle in Fig. 1. We now show the direct relation to the results of Eqs. 6 and 7 and

5
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the steps in Fig. 2. The left leg of Fig. 1 and the expression in Fig. 2b both illustrate a reference Pt(111)
surface “site” undergoing an alchemical transmutation of one Pt atom into an Au atom. Using Eq. 6, a
first-order approximation of the energy change is:

∆Esλ→1 =
∑
I

µsite
nI (Rsite

I )∂λN
site
I (8)

Note that the illustrations in Fig. 1 and Fig. 2b do not show an isoelectronic change to provide a simple
visual representation, but the arrays used in Eq. 8 should account for them. The energy change for the same
alchemical transmutation done to the “ads-site” species is:

∆Eaλ→1 =
∑
I

µads-site
nI (Rads-site

I )∂λN
ads-site
I (9)

For the cycle in Fig. 1 to be true, the transmutations done to the “slab” and “ads-site” states must be exact,
and this results in ∂λN

site
I = ∂λN

ads-site
I = ∂λNI . Returning to Eq. 3, and using Eqs. 6 through 9:

∆Eaλ→1 −∆Esλ→1 =
∑
I

[µads-site
nI (Rads-site

I )− µsite
nI (Rsite

I )]∂λNI =
∑
I

∆µnI∂λNI (10)

Finally, we combine Eqs. 3 and 10 to rewrite our simple approximation, illustrated in Fig. 2c, for the
predicted BE change using computational alchemy:

∆BEalc =
∑
I

∆µnI∂λNI (11)

It is interesting that BEs from first order APDFT appear to be valid for cases that are and are not pri-
marily arising from d-orbital contributions. In contrast, the well-established “d-band model” for predicting
adsorbate BEs on transition metals has known shortcomings when d-orbital contributions to binding are less
significant.[23] One known limitation for BE predictions from first order APDFT predictions is that they are
less accurate when alchemical derivatives become large (e.g. when a system undergoes multiple and/or large
transmutations where ∆Z is larger than 1).[7] Another limitation is that these simple APDFT treatments
appear not to be valid for materials that have a band gap.[20] While more is being learned about the promise
and limitations, we see APDFT as a potentially transformative model for applied computational chemistry
communities and especially for computational catalysis. We will now show benchmarking calculations to
validate the use of computational alchemy for predictions of BE and Ea in two different examples.

Results and Discussion

Benchmarking adsorbate BEs

We first benchmark BEs for OH adsorption on a four-layer, 2× 2 Pt(111) surface model that contains four
Pt atoms in each layer. For the binding configuration of OH on the surface, the fourth layer has two unique
atoms that are transmutable. Thus, we created hypothetical materials by transmuting one of the eight atoms
in the top two layers by ∆Z = ±1 to convert a Pt near a binding site into Au or Ir and one of the two atoms
in the fourth layer by ∆Z = ∓1. This generated 32 unique cases that computational alchemy can be used
for predictions based on a single DFT binding energy calculation.

6
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Figure 3: ∆BE predictions for OH adsorption on 32 hypothetical alloys of Pt made by ∆Z = ±1 transmu-
tations to the reference slab. Energy differences are relative to the reference calculation and reported in eV.
The size of the data points corresponds to the distance of the transmutation site from the adsorbate (large
points are transmutations far from the adsorption site).

Fig. 3 shows a benchmarking comparison of first order APDFT calculations compared to corresponding
single point DFT energy calculations. Note that these data were previously reported elsewhere,[7] but the
data shown now depict the relative location of transmuted atoms in the slab model to the OH adsorbate.
Larger data points depict cases where transmuted atoms are further from the adsorbate while smaller data
points depict cases where they are closer. These predictions have a mean absolute error of 0.045 eV. The
first order APDFT is notably less accurate for transmutations made directly at the binding site, where the
alchemical derivatives are the greatest.[7]

In summary, Fig. 3 reiterates that first order APDFT can quite accurately predict how BEs changes on
hypothetical alloys with simple algebraic computations based on a single set of QC calculations and corre-
sponding electrostatic potentials. This provides a computational lever to increase the utility of a single BE
calculation by enabling the estimation of (in this case) about 30 additional BEs. Even more BEs can be
predicted by employing more and/or larger (e.g. ∆Z = ±2) transmutations, but we have found these will
result in larger errors that would need to be remedied for accuracy. Not only does this tool give users BE
predictions, it also gives users physical insight into which nearby sites are the most important for adsorbate
binding. In principle, this screening allows us to eliminate cases that result in an insignificant change in
∆BE, and thus allow more careful attention to cases that result in more significant changes in BEs using
more refined QC methods and/or experimental studies.

7
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Benchmarking reaction barriers

To benchmark first order APDFT predictions of reaction barriers, we use CH4* dehydrogenation on Pt(111)
as a reference system (Eq. 12), where each species bound to a surface site is denoted by *:

CH4
∗+∗ → CH3

∗ + H∗ (12)

Fig. 4 shows snapshots of the NEB reaction pathway for this process. The reactant state and first image in
the NEB (a) contains CH4* geometrically relaxed to a distance of 3.7 Å from an ontop site. The reaction
proceeds as one C-H bond breaks and a hydrogen is adsorbed to an adjacent ontop site. In the transition
state, the detaching hydrogen is drawn toward a bridge site. The product state contains both a CH3* and
an H* bound at 2.1 and 1.5 Å at ontop sites, respectively. Other work reports that H* also binds favorably
to an fcc site in the product state.[24] However, our system is among many reasonable choices of reference
points to predict changing trends of various possible reaction pathways on many hypothetical catalysts.

Figure 4: Snapshots of the (a) reactant, (b) transition, and (c) product states of the dehydrogenation of
CH4 adsorbed at 1

4 coverage of ontop sites on Pt.

To compute barrier heights using first order APDFT, we apply the BE procedure from above on each of
the images from the NEB calculation. From this, we can generate a variety of different pathways for up to
32 different hypothetical alloy configurations as shown in Fig. 5. Fig. 5a shows predicted reaction energy
profiles following Eq. 12. The reference energy profile calculated using DFT is denoted by red asterisks, while
the solid blue line denotes the most affected Au alloys and the solid green line denotes the most affected Ir
alloys. The other lines pertain to all other cases where the alloy systems result in a negligible change relative
to the reference system (due to very small alchemical derivatives present in these cases). Note that energy
profiles for similar systems overlap and may not be distinguishable. Figure 5b shows a parity plot for ∆Ea
values relative to the reference calculation. There is generally an increase in barrier when the transmuted
site becomes Au and a decrease when the site becomes Ir. Notably, the largest errors in barrier heights
are 0.3 eV relative to DFT benchmarks (for alloys that exhibited the highest alchemical derivatives), but
the vast majority of other data are more accurate. Even though first order APDFT can exhibit errors as
large as 0.3 eV in barrier heights for reference system doped with just a single atom, it is promising that
such simple approximations can be useful to calculate a computationally expensive descriptor that guides
screening studies. Furthermore, as the source for errors in different APDFT approximations become better
understood, it becomes reasonable to imagine that more accurate approaches might be developed based on
APDFT that would have a predictive power comparable (or even indistinguishable) to standard DFT.

8
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Figure 5: a) Energy profiles for the CH4 dehydrogenation mechanism on hypothetical alloys of Pt. The
reference pathway occurs on pure Pt and is denoted with red asterisks. The most significant effect from a
transmutation with ∆Z = +1 is shown in blue, the most significant effect from a transmutation with ∆Z =
−1 is shown in green, and other reaction pathways computed with alchemy are shown in light blue/green. b)
First order APDFT benchmarking of the change in ∆Ea for CH4 dehydrogenation on 32 hypothetical alloys
of Pt made by ∆Z = ±1 relative to the reference barrier (energies in eV). The size of the data points
correspond to the distance of the transmutation site from the adsorbate in the reactant state.
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Usability and reproducibility with computational alchemy

Python scripts that enable a workflow with first order APDFT suitable for use with VASP are open source
and continuously improving. Additionally, we offer hands-on outlines for calculations via Jupyter notebooks
so that readers can reproduce our analyses presented above. Interactive forms of Figs. 3 and 5 appear in the
following two notebooks:

• Binding Energy Predictions
• Transition State Barrier Height Predictions

Readers may then easily use first order APDFT with their own VASP reference calculations by installing
our Python modules and following the procedures written in these notebooks. These modules rely on an
installation of the Atomic Simulation Environment package [25] for reading, writing, and visualizing atomic
structures, and pristine copies of the POSCAR, CONTCAR, OSZICAR, and OUTCAR files from all VASP
calculations are required. Users of these modules will be able to do the following:

• Calculate atom-centered alchemical potentials
• Visualize a heat-map of the alchemical derivatives within their surface model
• Create a custom set of hypothetical materials using isoelectronic transmutations
• Calculate alchemical derivatives for the hypothetical systems, and depending on the type of reference

calculation set, compute BE, Ea, or other thermodynamic descriptors

Outlook/Known limitations

APDFT is a promising gradient-supported method for leveraging QC calculations in large scale screening.
This method relies on alchemical derivatives which are straight-forward to compute and which can be used
for accurate predictions of binding energies and activation energies on electronically conductive systems
relevant for computational catalysis. There are still notable limitations that need to be considered before
widespread use of computational alchemy would be possible.

A significant challenge with APDFT is that the simplest first order approximations appear to have some
material dependencies, and predictions appear to fail when used on systems having band gaps. A possi-
ble remedy we found is to add metal dopants into the semiconducting or insulating system. This allows
bandgaps to collapse, and computational alchemy appears to be valid.[20] Future work will address the phys-
ical descriptions of these systems and their relation to existing models such as the d-band model. We[7]

and other groups[6] have also noted that predictions from first order APDFT become less accurate with the
magnitude of the alchemical derivatives that are in play. There are possible options to address this ranging
from employing higher-order corrections and/or training machine learning algorithms to correct errors for
problematic systems.[26]

Conclusions

We have presented a tutorial for how first order APDFT can be used as a tool to dramatically accelerate
predictions of computational catalysis descriptors. This is a means to predict the impact of a material
change on a calculated energy with essentially no computational cost once reference calculations have been
obtained. Here, we demonstrated how to calculate binding energies and activation energies and provided
open source scripts for doing so. Using these scripts should enable rapid determinations of which atoms
within a catalyst should be changed to impact catalysis. Further improvements to these existing schemes
are expected with the use of second order corrections for improved physical descriptions and coupling to
machine learning models for improved accuracy.
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