A sectional critical plane model for multiaxial high-cycle fatigue life prediction

Xinxin Qi¹, Tianqi Liu¹, Xinhong Shi¹, Jiaying Wang², Jianyu Zhang³, and Binjun FEI¹

June 30, 2020

Abstract

A stress-based sectional critical plane model for multiaxial fatigue life prediction is proposed. The proposed model considers the effects of material properties and loading paths on the crack initiation and propagation behaviors. By introducing the ratio of maximum shear stress amplitude to maximum normal stress amplitude, it is divided into three sections in which the maximum normal stress plane, maximum damage plane and maximum shear stress amplitude plane are considered as the critical planes, respectively. To verify the accuracy and applicability of the proposed model, experimental data of 30CrMnSiA steel conducted by the authors and other test data of different materials from the existing literatures are utilized. For 30CrMnSiA steel, the prediction results of the proposed model demonstrate that 79.3% and 93.7% of the prediction results are within the ± 2 times and ± 3 times scatter band of fatigue life. For the experimental data from the existing literatures, more than 85% and 70% of the results predicted by the proposed model are within ± 3 times scatter band of fatigue life for steel and aluminum alloy materials, respectively.

Hosted file

A sectional critical plane model for multiaxial high-cycle fatigue life prediction.doc available at https://authorea.com/users/338190/articles/464224-a-sectional-critical-plane-model-for-multiaxial-high-cycle-fatigue-life-prediction

Hosted file

Table.doc available at https://authorea.com/users/338190/articles/464224-a-sectional-critical-plane-model-for-multiaxial-high-cycle-fatigue-life-prediction

Hosted file

Figures.doc available at https://authorea.com/users/338190/articles/464224-a-sectional-critical-plane-model-for-multiaxial-high-cycle-fatigue-life-prediction

¹Beihang University

²Shenyang Aircraft Design and Research Institute

³Chongqing University