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Abstract

Aim. The multi-part Unified Parkinson’s Disease Rating Scale is the standard instrument in clinical trials. A sum of scores for
all items in one or more parts of the instrument is usually analyzed. Without accounting for relative importance of individual
items, this sum of scores conceivably does not optimize the power of the instrument. The aim was to compare the ability to
detect drug effect in slowing down motor function deterioration, as measured by Part III of the Scale - motor examinations -
between the item scores and the sum of scores. Methods. We used data from 423 patients in a Parkinson’s disease progression
trial to estimate the symptom severity by item response modelling; modelled symptom progression using the severity and the
sum of scores; and conducted simulations to compare the sensitivity of detecting a broad range of hypothetical drug effects on
progression using the severity and the sum of scores. Results. The severity endpoint was far more sensitive than the sum of
scores for detecting treatment effects, e.g., requiring 280 versus 570 patients per arm to achieve 60% Probability of Success for
detecting a range of potential effects in a 2-year trial. Items related to the left side of the body were most informative; and
the domain relevance of tremor items was questionable. Conclusion. This analysis generated clear evidence that longitudinal
modelling of item scores can enhance trial efficiency and success. It also prompted the needs for a consensus on the placement

of the tremor items in the instrument.

INTRODUCTION

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative condition with about 6.2 million
patients worldwide'. Motor neuron deterioration in the brain is the key characteristic of the disease?.
Unfortunately, no definitive biomarker for PD has been identified®. A Unified Parkinson’s Disease Rating
Scale (UPDRS) was originally developed as a clinical measure for symptom severity among markedly and
severely disabled patients*. Later, a Movement Disorder Society version of UPDRS (MDS-UPDRS) was
introduced for early diagnosis to measure milder deficit and smaller changes in the early disease stage,
focusing on broader and lower ranges in disability than the original UPDRS. The MDS-UPDRS consists of
four parts, reflecting different aspects of the clinical manifestation of the disease®®. The outcome of the
assessment is a sum of scores (SoS) of multiple items in each part, and a total score (TS) for all parts.
Using these composite scores for evaluating disease severity and treatment effects requires large sample sizes
to avoid inconclusive drug trials, especially for disease modifying treatments’. An alternative analytical
approach that can enhance the signal-to-noise ratio would open the path for more efficient and rigorous
clinical trials of PD therapies.

Item Response Theory (IRT) modelling describes the relationships between the trait of interest and the
items that are used to measure the trait; therefore, it is a promising approach for analyzing itemized scales®.
Instead of relying on a single composite score of the test, it defines mathematical links for individual items
in the instrument to directly estimate a patient’s disease severity that the very instrument is designed to
measure. For its improved utilization of the data at the item level, IRT has been applied in the research
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of several neurological diseases such as Parkinson’s disease!??2:28  Alzheimer’s disease
and schizophreniall
drug trials®?2.

, multiple sclerosis
. Remarkably, the methodology have shown promise to significantly reduce the size of

Demonstrating the ability to delay motor impairment is essential for a drug aimed to slow down PD pro-
gression. Longitudinal IRT models has been developed using MDS-UPDRS to describe the progression of
PD'222, The models included the assessments of non-motor domains, as well as interaction terms among
items of different domains. The goal of the current analysis was to assess the IRT’s ability to enhance the
efficiency for detecting drug effect on MDS-UPDRS Part IIT — motor examinations — which is considered
as a more objective endpoint of motor function, hence central to diagnostic and therapeutic assessments.
Specifically, the aims were to: i) develop an IRT model for estimating symptom severity using item scores
of MDS-UPDRS Part 111, ii) use the IRT model to explore relative importance of the items, iii) build lon-
gitudinal models to describe symptom progression over time in terms of SoS and symptom severity, and
iv) compare the probability of trial success when analyzed using symptom severity or SoS for a potential
disease-modifying new treatment with uncertain effect.

METHODS
Data source

We analyzed patient-level data from a de novo cohort of the Parkinson’s Progression Markers Initiative
(PPMI) study - an ongoing multi-cohort observational study to identify biomarkers of Parkinson’s disease
progression. The study design and its inclusion and exclusion criteria can be found at http://www.ppmi-
info.org/wp-content/uploads/2017,/02/PPMI-Am11-Protocol.pdf. In brief, patients in this cohort were en-
rolled within two years of positive diagnosis. They had not taken PD medications for more than 60 days prior
to the baseline and were not expected to require PD medications for at least six months from baseline. The
MDS-UPDRS observations were collected every 3 months up to 12 months and thereafter every 6 months.
We used data that were available as of January 2020.

Symptomatic treatments were allowed at any time during the study. For treated subjects, both Off-Med)
and On-Med MDS-UPDRS observations on the same day were recorded. To minimize the symptomatic
impact of PD medications and anticipate the intended analysis in the eventual drug trials, this analysis used
the Off-Med observations. The MDS-UPDRS Part III assessment included 33 items.

Item response modelling for estimating symptom severity

The concept of the IRT model is shown in Figure 1. The score for each of the 33 items is an ordinal variable
in commonly accepted clinical terms: 0 = normal, 1 = slight, 2 = mild, 3 = moderate and 4 = severe. For
each item, a graded-response logit model was used for describing the probability of a subject’s score for each

item?3:
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Equation 1 describes P (Y;; [?] k) as the probability that the score of subject i for item j(Y;; ) is at least
k, where S; is the severity for subject 4 ;a; is called the discrimination parameter for item j , reflecting the
ability of the item to differentiate the severity among the patients; and bj, is called difficulty parameter of
score k for item j , representing the severity at which there is a 50% probability of obtaining a score [?]k for
that item. The probability that the score of subjecti for item j (Y;; ) is k can then be derived in Equation
2.

As such, the 33 item-level graded-probability models described by Equations 1 and 2, one for each item,
collectively estimate a severity level for each patient at a given point in time, mirroring the patient’s sum of
scores (Figure 1). The graphical representation of Equation 1 and Equation 2 are called Item Characteristic
Curve (ICC) and Category Characteristic Curve (CCC), respectively; they can be visualized in Figure 1.



The difficulty and discrimination parameters were determined by fitting Equations 1 and 2 to the item
scores of the entire dataset; effectively, the severity in the same patient at different visits were estimated
independently without correlation. Baseline severity values were assumed to follow a standard normal
distribution with a mean of zero and a variance of one. The severity values in subsequent visits were
anchored to the baseline, with an estimated shift in their means and variances. This way all the IRT model
parameters were identifiable'*. The distribution of the estimated severity values was plotted over time to
explore the disease progression.

Identification of the most informative items

The Fisher information functions in Equation 3 and Equation 4 were used to estimate the information content
across the entire severity range'3:
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In these equations,Pj, (S; (;)) is the probability of responding with score & of item j by subject i with
severityS; (; ) at time ¢ . Thus, I;(S; ;) is the information for score k of item j from subject i at timet ,
andl; (S (4 ) is the total information for all scores (from the lowest score of ) to the highest score of K ) of
item j from subjecti at time ¢ .

The items were ranked according to their overall informativeness, which was I; (S ) integrated over time and
summed for all subjects.

Longitudinal modelling of symptom progression

Disease progression over the first five years was modelled, separately, in terms of severity and SoS. In the
case of the severity, the longitudinal function was estimated from the item scores, while the difficulty and
discrimination parameters were fixed to those determined as described above.

Informed by the data pattern shown in the upper panels of Figure 2, a linear function described in Equation
5 was used, whereS; (, ), was symptom, in terms of either Severity or SoS, for patient i at time ¢ ;S; o was
baseline; andSlope; was the progression rate. The IOVwas the inter-occasion (visit) variability to capture
the fluctuation of clinical symptoms.

Sit) = Si,0 + Slope; e time + IOV Equation 5

Both severity and SoS longitudinal models were fitted to data, including or excluding the tremor items. (See
Results section.)

Evaluation of the longitudinal item-response model

The adequacy of the longitudinal item-response model was evaluated in several ways, by comparing the
model estimated or simulated data to the actual observations in the trial in terms of item scores and SoS,
and over time:

i) To detect any major overall bias in the item-response model, the model estimated CCCs were compared
to the distribution of the observations across entire severity range, for each score in each item. ii) To detect
score-specific bias at the item level, the proportion of patients having that score was compared between
simulated data and the observed data, for each score in each item. iii) To assess the model’s longitudinal
predictivity, a visual predictive check was conducted to compare the time course of model-simulated and
observed SoS values. For additional rigor, the longitudinal visual predictive checks were also conducted for
model-simulated proportion of patients having each score for each item.

Assessment of a clinical trial’s probability of success

Assuming a drug altered the disease progression rate as shown in Equation 6, where E was the drug effect
and all other parameters were the same as in Equation 5, the respective longitudinal models were used to
simulate the severity and SoS data for 6000 patients, stratified to either receive the drug treatment or not,
according to the assessment schedule in the PPMI trial.



Sity = Si,o + Slope; o (1 — E) e time + IOV Equation 6

The change from baseline of the simulated data was fitted to a full model which included a drug effect, or a
reduced model which did not include any drug effect, for treatment durations of 6, 12, 18 and 24 months.
Treatment difference was estimated to generate individual objective function (iOFV) values, which were
subject to likelihood ratio test (p<0.05) per Monte Carlo Mapped Power (MCMP) method, which has been
described in detail elsewhere??, based on 1000 treatment datasets for a wide range of samples sizes.

A range of potential drug effects — 100 random values from a normal distribution (mean of 0.3 and variance of
0.0169, which generated 5*"-95'"" quantiles of 0.1-0.5) were tested. The collective proportion of trials showing
a statistically significant positive drug effect across the entire range was calculated as the Probability of
Success (PoS).1> The PoS was calculated for both severity and SoS endpoints, based on all 33 items or only
the non-tremor items (see Results section).

Software

Data modeling and simulation were performed primarily in software NONMEM (ICON, Ellicott City, Mary-
land, version 7.3) in conjunction with a gfortran (64-bit) compiler using Pirana (version 2.9.7)!6 as an
interface. The Laplace integral approximation with -2 times log-likelihood option was used throughout the
analyses. The R environment'” for statistical computing version 3.6.2 was used for simulation and plotting.

RESULTS

The data from the PPMI trial are openly available upon request (https://www.ppmi-info.org/access-data-
specimens/). The data used in this analysis were downloaded on 3 Jan 2020; 233607 item level observations
from 423 de novo PD patients were used in the analysis. The SoS observations are shown in Figure 2 (upper
left), and key baseline characteristics are summarized in Table 1.

Item-response model and item importance

An item-response model, including 33 graded-response logit sub-models, one per item, was successfully
developed. Figure 2 shows that the pattern of the model-estimated severity data (upper right), including
the progression over time, the variability among patients, and the visit-to-visit fluctuation resemble those of
the observed SoS (upper left).

The discrimination parameter and four difficulty parameters for all items are shown in Table 2. Score value
4 (severe) was missing from five items (1, 25, 26, 31 and 32). The probability for a patient to score this
value, and consequently the corresponding difficulty parameter, could not be estimated for these items.

The information content varied greatly among the items (Figure 3 and Table 2): eight items each held > 5%
of the total information, totaling 65% and with the lowest discrimination parameter being 1.29. All seven
items for the left side of the body were among the eight top-informing items.

Conversely, 11 items each held < 1% information, with the highest discrimination parameter being 0.46.
Nine of the ten tremor items were among the 11 least informative ones. Indeed, four of the five items where
score 4 (severe) was missing were tremor tests (Table 2). Six items (18, 20, 21, 30, 31 and 32) had mostly
score 0 (normal); three were tremor tests (Figure 2, lower right). Several tremor items were even estimated
to have a near-zero negative discrimination parameter value, with very wide-ranging difficult parameters.
These observations suggested that the parameters were badly estimated for these items and revealed these
items’ inability to differentiate patients with different levels of symptom severity. Based on these findings,
the longitudinal modelling and subsequent estimation of clinical trial PoS were conducted with or without
the tremor items.

Longitudinal models for symptom severity and sum of scores

The longitudinal model described in Equation 5 was successfully fitted to both severity data and SoS data,
with or without tremor items. The symptom progression rates for both severity and SoS were in turn found
to be functions of the baseline: patients with worse symptom at baseline appeared to have slower progression.



When all items were included in the modelling, the progression rate of severity, for the typical patient with
a baseline of zero point, was 0.227 points per year. The progression rate of SoS, for the typical patient with
a baseline of 19.6 points, was 2.99 points per year. When the tremor items were excluded, the progression
rates for severity and SoS were 0.243 and 2.24 points per year, respectively. All model parameters are listed
in Table 3.

Adequacy of the longitudinal item-response model

Model-estimated CCCs reflected reasonably well the distribution of observed categories for each item over the
range of severity; and the differing steepness and undulation of CCCs among the 33 items suggested these
items’ varying ability to differentiate severity (Figure 2, lower left). There was good agreement between
the observed and model-simulated proportion of each score for each item (Figure 2, lower right). Visual
predictive checks further manifested that the final longitudinal IRT model adequately simulated the time
course of both Part-IIT sum of scores (Figure 5) and item scores (Figure 6).

Clinical trial probability of success

The item-response approach consistently demonstrated higher PoS than the SoS approach for all trial du-
rations (Figure 4, upper). For the item-response approach, the PoS was identical whether the tremor items
were included or not. For the SoS approach, the PoS estimated based on all items was marginally higher
than the one estimated without tremor items. To achieve a 60% PoS in a 2-year trial, the item-response
method would require 280 patients per arm and the SoS analysis would require 570 patients per arm. As
expected, longer trials produced higher PoS, regardless of the analytical approach.

DISCUSSION

Compared to composite score modelling?®, the IRT approach differentiates the items by their sensitivity
level and has shown the potential to reduce trial sample size for detecting drug effects®??. The sample-
size saving is an attractive proposition, especially as the field advances towards increasingly personalized
medicine, where a certain therapy is expected to be effective only in a small population.

Multi-variable IRT models with item-level interaction across domains have been published; but they were
not readily adaptable for application to analysis of Part III alone'?22. In this work, we used only items
in Part III, aiming to support early development of PD drugs where a Go/No-Go decision hinges on their
effect on (the more objective) motor examinations. There is also a differentiating methodological feature
of our analysis: the analyses reported by others used the IRT model to simulate the total scores; applied
hypothetical drug effects to both the severity endpoint and the simulated total scores; and compared the
two endpoints — severity and total score - for the sample size requirement to detect the drug effect. This
approach could potentially bias against the total score endpoint, in the event the simulation inflated the
noise in total score. In contrast, we applied the drug effect directly to the SoS, as to the severity. In doing
0, the two endpoints were treated more fairly.

To compare the sample size requirement between the IRT and the conventional SoS methods, we applied a
range of relevant potential reduction in progression rate that a new agent could cause. The normally dis-
tributed effects centered at 0.3 and had the 5*® — 95 range of 0.1 to 0.5 which has been considered as clin-
ically meaningful effect range for neurodegenerative indications such as Parkinson’s disease and Alzheimer’s
disease®?2. While the center of the range represented an effect that’s highly relevant and reasonably plausi-
ble, the lower and higher tails were respectively less relevant and plausible. As such, the effect levels further
away from the center carried less weight in the computation of the overall PoS, which is then effectively the
collective power weighted by the distribution of the effect level. We consider this as a useful approach to
account for the uncertainty in the eventual effect size that a new agent could produce. Figure 4 lower panel
illustrates the (expected) difference between the PoS under this effect distribution and the power under the
more extreme effect sizes. For the same sample size, the power for detecting a large treatment effect would be
higher than the PoS for detecting a range of potential effects. Under this condition, we found that the IRT
method could lead to a tremendous saving of about 50% in sample size compared to the conventional SoS



method. This magnitude of sample size savings is consistent with our recent analysis of a placebo-controlled
clinical trial of ropinirole — an established dopaminergic agent.33

The tremor tests showed poor discrimination power; they each and collectively held very little information
(Table 2). For most of the tremor items, the probability of score 0 (normal) was disproportionally high,
regardless of a patient’s severity as defined by the overall instrument (Figure 2, lower left and right). Con-
sistent with these observations, the clinical trial PoS was not affected by whether the tremor items were
included in the analyses or not (Figure 4 upper). Interestingly, a Rasch measurement theory analysis re-
vealed disordered threshold for several tremor-related items.?* These observations supported the view that
the tremor tests might measure a different construct, hence perhaps should be assessed using a separate and
more sensitive scale.?2:31:35

Interestingly, all seven left-side non-tremor items were among the most informative ones (Table 2). Compared
to their right-side counter items, they showed higher discriminatory power (a; ), and generally lower values
and narrower ranges of difficulty parameters (b;; to b;; ). This was also reflected by the left side’s better
differentiated ICCs (Figure 2 lower left) and slightly higher proportion of higher scores (Figure 2, lower
right). Similarly, Gottipati et al. identified “left hand finger tapping” as the most informative among the
sided items'?. In a previously-reported analysis, we explored the PoS for four different approaches: by IRT
and SoS, using all items or only the seven left-side items. For the same sample size, the order of estimated
trial PoS was: IRT on all items > IRT on seven items > SoS on seven items > SoS on all items.?* This
order illustrated IRT’s ability to enhance signal-noise ratio by item differentiation; indeed, its advantage over
SoS was reduced when only the most informative items were included in the analysis. These findings were
consistent with earlier analysis of combined Part II and Part III data by Buatois et al.??

A recent cross-section analysis also found the discrimination parameters to be higher and difficulty pa-
rameters to be lower for the left-side items then for the right-side items.®> Similar findings were reported
from an item-response analysis of multiple latent variables, although that analysis also reported a majority
(58%) of the patients having more advanced baseline disability on the right side of the body.'? The lower
difficulty parameters, or worse test performance, for the left side items may be a reflection of most people
being right handed, despite neuroimaging and meta-analyses suggesting the dominant side might be affected
earlier?®26:27 Change of hand preference while the disease progresses has also been reported.?¢ This is an
area to be investigated further, in different datasets and at different stages of the symptom progression.
Another possible reason for the consistent worse performance by the left side was this side being always
examined later per UPDRS form. Conceivably, this hypothesis may be tested by randomizing the order of
the sided tests.

We introduced an inter-occasion (visit) variability in the longitudinal model to reflect the commonly recog-
nized disease fluctuation; this improved the estimation of the progression rate. The model suggested that
patients with lower baseline severity had faster progression, support the report that the progression, when
measured by MDS-UPDRS Part III, was slower at the more advanced stage?!. The effects of other factors
such as genotype, comorbidity, age, disease history and diagnostic biomarkers on disease progression remain
to be assessed.?3:24:30

That IRT analysis of MDS-UPDRS Pat III required a smaller sample size is relevant to composite scales used
in other indications. Because of the less informative items, composite scores could compromise signal-to-noise
ratio. Some instruments are also long, hence physically and mentally exhausting for debilitated patients,
and leading to incomplete or poor data. Therefore, a bespoke and shorter instrument is often desired. The
development, validation and user training are costly and time consuming; and a new instrument suffers the
risk of missing out relevant information when used for assessing a new drug of unestablished profile and
lack of comparability with existing data. The IRT approach can enhance signal detection power and reduce
sample size through directly accessing and weighting of item-level data of a well-established instrument
that’s accepted by regulators. When item scores are used directly, incomplete data are still useful. By
extension, it may be possible to reduce patient burden by asking each patient to take only a stratified partial
test. Other potential applications of this approach include bridging between different versions of an evolving



instrument for meta-analysis or cross-study comparison,?® and translating clinical trial results to patient
outcome expectations. These areas require extensive further research and experience building by the clinical
research community.

CONCLUSION

In this work, longitudinal item-response analysis was applied to the data of MDS-UPDRS Part III from
the PPMI study. It revealed insight on the relationship between the items of motor examinations and the
underlying movement impairment and on the deterioration of the motor function over time. The most
useful tests for differentiating symptom severity among patients were those for the left side of the body, and
the least useful were the tremor tests. Simulations showed remarkable potential of about 50% sample size
reduction by the item-response method, compared to the conventional sum-of-score method, for detecting a
range of potential drug effects. We encourage the research community to further explore the full potential
of this methodology.
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Table 1. Demographics and baseline disease characteristics Table 1. Demographics and baseline disease cl

Patient characteristics N=423
Age (years)

Mean (SD) 62.1 (9.7)
(Min, Max) (34.2, 85.2)
Median 62.7

Sex, n (%)

Male 277 (65.5)
Female 146 (34.5)
Race, n (%)

White 399 (94.3)
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Black

Asian

Other

Disease duration (months)
Mean (SD)

(Min, Max)

Median

Dominant hand, n (%)
Left

Right

Mixed

MDS-UPDRS Part III score
Mean (SD)

(Min, Max)

Median

7 (1.7)
10 (2.4)
7 (1.7)

6.7 (6.6)
(0, 36.5)
4.1

38 (9)
375 (88.7)
10 (2.4)

21.0 (9.0)
(4, 51)
20

Table 2. Item-response model parameters and item importance

Item (j)
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31
32
33

Parameter definitions: aj: discrimination parameter; bjl to bj4: difficulty parameters. RUE, right upper extremity; LUE, le

Table 3.
Parameters for
longitudinal
models with or
without tremor
items

Table 3.
Parameters for
longitudinal
models with or
without tremor
items

Table 3.
Parameters for
longitudinal
models with or
without tremor
items

Table 3.
Parameters for
longitudinal
models with or
without tremor
items

Table 3.
Parameters for
longitudinal
models with or
without tremor
items

Model

Fixed effects
(%RSE)
Baseline

Slope (year™)
Effect of baseline
on slope
Inter-individual
variability
w2baseline
wgslopc
Inter-occasion
variability
Oproportional
Tadditive

& additive
variability; P
exponential
variability

Severity (all items)

Fixed effects
(%RSE)

0 (fixed) 0.227 (5)
-0.0545 (20)

Inter-individual
variability
1 (fixed) ® 0.0365

Inter-occasion
variability
-0.181

& additive
variability; P
exponential
variability

Severity
(non-tremor)
Fixed effects
(%RSE)

0 (fixed) 0.243 (5)
-0.0568 (23)

Inter-individual
variability
1 (fixed) # 0.0436

Inter-occasion
variability
-0.197

& additive
variability; P
exponential
variability

Sum of score (all
items)

Fixed effects
(%RSE)

19.6 (2) 2.99 (11)
-0.043 (33)

Inter-individual
variability
0.171 > 0.565 P

Inter-occasion
variability
0.0567 —

& additive
variability; P
exponential
variability

Sum of score
(non-tremor)
Fixed effects
(%RSE)

15 (3) 2.24 (11)
-0.0292 (49)

Inter-individual
variability
0.252 > 0.585 P

Inter-occasion
variability
0.0665 —

& additive
variability; P
exponential
variability

Figure legends

Figure 1. Item response model for MDS-UPDRS Part III. Left: Item scores relate to underlying
severity, which mirrors the sum of score, through Item Characteristic Curves (ICCs). Upper right: the posi-
tion and steepness of ICCs reflect an item’s difficulty and ability to differentiate patient severity, respectively.
The blue, pink, green and red curves describe the probabilities of having a score of not lower than 1, 2, 3 and
4, respectively. Lower right: The blue, pink, green, red and yellow Category Characteristic Curves (CCCs)
describe the probabilities of having a score of 0, 1, 2, 3 and 4, respectively.

Figure 2. Data pattern and model evaluation. The pattern of the observed Sum-of-Score data (upper
left) was reproduced by modeled Symptom Severity (upper right). Model-estimated Category Characteristic
Curves (lines) reflected the distribution of observed categories (circles) for each item over the range of
symptom severity (lower left). The proportion of the simulated scores were compared with the observed
scores (lower right).

Figure 3. Item informativeness. Item information over the whole spectrum of symptom severity shows

11



some items are far more informative than others. The color-coded areas represent the items, from bottom
to top, in the order of decreasing information.

Figure 4. Trial probability of success. Upper: Probability of trial success for detecting a hypothetical
drug’s ability to slow down disease progression was higher when data were analyzed using Symptom Severity
(brown) than using the Sum of Scores (green), where solid and dashed lines reflect analyses including all
items and only non-tremor items, respectively. Lower: Comparison of power for detecting drug effect (green:
0.1; blue: 0.5) and overall probability of trial success (brown) for detecting a range of potential drug effects
in a one-year trial.

Figure 5. Visual predictive check for the longitudinal item-response model. The time course of
the distribution of the observed sum of scores was well reproduced by the longitudinal IRT model (dots:
observations; green lines: 5%, 50% and 95% quantiles of the observations; red line: predicted time course
of sum of score for a typical patient; bands: 95% confidence intervals of model simulated corresponding
quantiles).

Figure 6. The model accurately simulated the time course of the observed proportion of each
score for each item. The lines are the proportion of the observed scores of 0 to 5. The bands are the 95%
confidence intervals of the model simulation.
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Figure 1. Item response model for MDS-UPDRS Part lll. Left: Item scores relate to underlying
severity, which mirrors the sum of score, through Item Characteristic Curves (ICCs). Upper right:
the position and steepness of ICCs reflect an item’s difficulty and ability to differentiate patient
severity, respectively. The blue, pink, green and red curves describe the probabilities of having a
score of not lower than 1, 2, 3 and 4, respectively. Lower right: The blue, pink, green, red and
yellow Category Characteristic Curves (CCCs) describe the probabilities of having a score of 0, 1,

2, 3 and 4, respectively.
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Figure 2. Data pattern and model evaluation. The pattern of the observed Sum-of-Score data
(upper left) was reproduced by modeled Symptom Severity (upper right). Model-estimated
Category Characteristic Curves (lines) were overlaid on the distribution of observed categories
(circles) for each item over the range of symptom severity (lower left). The proportion of the

simulated scores were compared to the observed scores (lower right).

14



FT0oRMR<-Q8N8RFRII
HECET EEETET.

m FollEloran228R -2

5.0

25
Severi

0.0

-25

o

w
uopewou|

75
25

0.0
severity shows some items are far more informative than others. The color-coded areas

Figure 3. Item informativeness. Item information over the whole spectrum of symptom
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Figure 4. Trial probability of success. Upper: Probability of trial success for detecting a

hypothetical drug’s ability to slow down disease progression was higher when data were

analyzed using Symptom Severity (brown) than using the Sum of Scores (green), where solid

and dashed lines reflect analyses including all items and only non-tremor items, respectively.

Lower: Comparison of power for detecting drug effect (green: 0.1; blue: 0.5) and overall

probability of trial success (brown) for detecting a range of potential drug effects in a one-

year trial.
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