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Abstract

This work deals with the analysis in the frequency domain of the temperature signal and mechanical energy rate of C45 steel
under two different fatigue stepwise loading series at stress ratios of 0.1 and -1. It was first investigated the energy distribution
among the harmonic components of the signals to understand possible variations caused by a different stress ratio. In addition,
the second amplitude harmonic (SAH) of heat dissipated and mechanical energy rates have been considered in the analysis
and their relationship was investigated. It has been shown as it depends only on the material, hence it is valid whatever the
kind of the test is without any assumption on the energy supplied to the material or material hysteresis loop stabilisation. The
adopted approach allows the analysis of intrinsic dissipations by means of rapid, full-field and contactless techniques without

any specific requirement on loading condition or temperature signal stabilisation.
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Dear Editor,

I am pleased to submit an original research article entitled “On the relationship between mechanical energy
rate and heat dissipated rate during fatigue for a C45 steel depending on stress ratio” by Rosa De Finis,
Davide Palumbo and Umberto Galietti for consideration for publication in the Fatigue & Fracture of En-
gineering Materials € Structures . We previously presented a new procedure to analyze temperature data
acquired during a rapid fatigue test and to evaluate the endurance limit of different stainless steels and this
manuscript builds on our prior study to investigate more in depth, in frequency domain, the thermal signal
acquired during a rapid, stepwise fatigue test. In particular, we focus on the second amplitude harmonic
(SAH) of thermal signal, a very well-known parameter to estimate the damage under specific test conditions
(fully-reversed applied load). We investigate the capability of SAH of temperature signal to represent an



useful parameter to estimate the heat dissipated energy at different stress ratio conditions (R=-1 and R=0.1).
In addition, we study the frequency spectrum of the strain energy rate, as well, in order to understand the
energy distribution among the harmonics for different stress ratios.

In this manuscript, we show that in presence of the mean stress in the load, the frequency spec-
trum of the strain energy density rate presents different harmonic components (not just one
as occurs at R=-1 ) while heat dissipated energy rate spectrum presents different harmonics,
so that the SAH is not the only one but it can be used to estimate the heat dissipated energy.
In addition, we show that the second amplitude harmonic (SAH) of the heat energy rate dis-
sipated by a unit volume of material is linearly related to the SAH of strain energy density
rate. Such a relationship depends only on material and do not depend on loading conditions
or damage level. The relationship is also valid, independently on signal stabilisation.

We believe that this manuscript is appropriate for publication by theFatigue & Fracture of Engineering
Materials & Structuresbecause it regards the use of innovative characterization methods associated with
fatigue such as the energy-based methods for carrying out the damage monitoring of the C45 steel. Our
manuscript can create a paradigm for future studies for the understanding of the relationship between
mechanical energy rate and heat dissipated rate during fatigue tests under different loading conditions.

This manuscript has not been published and is not under consideration for publication elsewhere. We have
no conflicts of interest to disclose.

Thank you for your consideration.

Sincerely,

Rosa De Finis, PhD

Post doctoral research fellow, Department of Mechanical Mathematics and Management
Politecnico di Bari-Via Orabona 4, 70125-Bari, Italy
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