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Abstract

Disentangling the relative role of environmental filtering and dispersal limitation in driving metacommunity structure across

mountainous regions remains challenging, as the way we quantify spatial connectivity in topographically and environmentally

heterogeneous landscapes can influence our perception of which process predominates. More empirical datasets are required

to account for taxon- and context-dependency but relevant research is often compromised by coarse taxonomic resolution. We

here employed haplotype-level community DNA metabarcoding, enabled by stringent filtering of Amplicon Sequence Variants

(ASVs), to characterize metacommunity structure of soil microarthropod assemblages across a mosaic of five forest habitats on

the Troodos mountain range in Cyprus. We found similar β diversity patterns at ASV and species (OTU, Operational Taxonomic

Unit) levels, which pointed to a primary role of habitat filtering resulting in the existence of largely distinct metacommunities

linked to different forest types. Within-habitat turnover was correlated to topoclimatic heterogeneity, again emphasizing the

role of environmental filtering. However, when integrating landscape matrix information for the highly fragmented Golden

Oak habitat, we also detected a major role of dispersal limitation imposed by patch connectivity, indicating that stochastic

and niche-based processes synergistically govern community assembly. Alpha diversity patterns varied between ASV and OTU

levels, with OTU richness decreasing with elevation and ASV richness following a longitudinal gradient, potentially reflecting

a decline of genetic diversity eastwards due to historical pressures. Our study demonstrates the utility of haplotype-level com-

munity metabarcoding for characterising metacommunity structure of complex assemblages and improving our understanding

of biodiversity dynamics across mountainous landscapes worldwide.

INTRODUCTION

Understanding the drivers of metacommunity structure across heterogeneous landscapes remains a funda-
mental question in ecology (Meynard et al., 2013; Viana & Chase, 2019). Under a niche selection perspective
(Chase & Leibold, 2003; Hutchinson, 1959) metacommunity structure results from species sorting via en-
vironmental filtering, while under the neutral paradigm (Chase, 2005; Hubell, 2001) metacommunities are
structured by stochastic dispersal and ecological drift. These processes are not mutually exclusive, as their
relative importance in community assembly varies along a niche-dispersal continuum (Brown, Sokol, Skelton,
& Tornwall, 2017; Cottenie, 2005; Gravel, Canham, Beaudet, & Messier, 2006). Scale dependency has been
suggested to affect the perception of which process predominates, with environmental filtering prevailing at
larger spatial scales and the role of stochastic processes increasing at finer scales (Viana & Chase, 2019).
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. Yet, the apparent prevalence of environmental over spatial processes at regional scales (Chase, 2014) could
be biased by the tendency of most metacommunity studies to quantify dispersal as a simple function of
geographic distance (Biswas & Wagner, 2012), without considering landscape features such as topography
or matrix heterogeneity. Accounting for matrix resistance when quantifying connectivity (McRae, Dickson,
Keitt, & Shah, 2008) may enforce the role of dispersal as the primary driver of metacommunity structure
(e.g., Resasco & Fletcher, 2021). This is particularly relevant when focusing on montane regions, where
spatial connectivity among habitat patches can be strongly influenced by high topographic complexity and
environmental heterogeneity due to steep elevational gradients (Graf, Kramer-Schadt, Fernández, & Grimm,
2007; Liu, Dudley, Xu, & Economo, 2018). At the same time, elevational gradients in topoclimatic parameters
such as temperature or precipitation can impose strong environmental filtering on montane metacommuni-
ties (Hoiss, Krauss, Potts, Roberts, & Steffan-Dewenter, 2012; Leingärtner, Krauss, & Steffan-Dewenter,
2014) and are often considered to drive patterns of species richness (Peters et al., 2016; Rahbek, 1995) and
community uniqueness (Wang et al., 2020) at regional scales. As montane communities are rapidly changing
due to rising temperatures and anthropogenic disturbance (Rahbek et al., 2019; Steinbauer et al., 2018),
it is crucial to gain a better understanding of how elevation and landscape mediate the interplay between
environmental filtering and dispersal limitation as drivers of metacommunity structure across mountainous
regions (e.g., Gálvez-Reyes et al., 2020).

Disentangling the drivers of metacommunity structure requires comprehensive empirical datasets from diffe-
rent functional groups, geographic regions and landforms, as the relative importance of spatial and environ-
mental constraints is expected to be taxon- and context-dependent (He et al., 2020; Tonkin et al., 2018). It
is thus difficult to extrapolate conclusions from the limited number of well-characterised montane metacom-
munities that have been studied to date (e.g., Benito, Fritz, Steinitz-Kannan, Vélez, & McGlue, 2018; Brodie
& Newmark, 2019; Tonkin et al., 2017). More empirical studies from a diversity of montane biota across
the globe are required to understand what general principles may be at play. Expanding metacommunity
research to understudied geographic areas, and/or poorly known taxonomic groups, is complicated by the
“taxonomic impediment” (Cicconardi, Fanciulli, & Emerson, 2013; Young, Proctor, deWaard, & Hebert,
2019), and has been often compromised by coarse taxonomic resolution (He et al., 2020; Verleyen et al.,
2009). The development of metabarcoding provides new opportunities to accelerate studies on metacommu-
nity structure across underexplored fractions of biodiversity and greatly increases their taxonomic resolution
(Arribas, Andújar, Salces-Castellano, Emerson, & Vogler, 2021b; Bush et al., 2020; Martin et al., 2021; Zinger
et al., 2019). Recent advances in field, laboratory and bioinformatic protocols for whole organism community
DNA (wocDNA, Creedy et al., 2021) metabarcoding have led to improvements in both the efficiency for the
generation of such high-resolution taxonomic inventories (Arribas, Andújar, Hopkins, Shepherd, & Vogler,
2016; Elbrecht, Vamos, Steinke, & Leese, 2018), and the reliability of α and β diversity estimates (Andújar et
al., 2018; Creedy, Ng, & Vogler et al., 2019). New bioinformatic tools for the removal of noise generated by
amplification and sequencing errors (e.g., Callahan et al., 2016; Edgar, 2016) and the filtering of spurious se-
quences resulting from co-amplification of nuclear mitochondrial pseudogenes (Andújar et al., 2021) allow to
move beyond classical OTU (Operational Taxonomic Unit) clustering and define haplotype-level entities, or
Amplicon Sequence Variants (ASVs; Callahan, McMurdie, & Holmes, 2017). In contrast to OTUs, ASVs ha-
ve intrinsic biological significance and offer the possibility for direct comparisons among studies that use the
same marker (Callahan et al., 2017; Porter & Hajibabaei, 2020), while they potentially improve community
diversity estimates (Joos et al., 2020). The availability of reliable whole-community ASV and OTU datasets
allows comparisons of spatial structure at haplotype and species levels, which can provide insights into the
prevalence of stochastic vs. niche-based processes in community dynamics, as similar diversity patterns at
both levels are predicted under neutral scenarios (Papadopoulou et al., 2011; Baselga, Gómez-Rodŕıguez, &
Vogler, 2015). All the latest advances in the field of wocDNA metabarcoding are expected to lead to a better
understanding of species diversity and community processes, particularly in historically intractable habitats,
such as the soil (Arribas et al., 2021b).

Soil biodiversity is among the most complex and poorly known terrestrial biotas on Earth (Decaëns, 2010).
The high structural complexity and heterogeneity of the edaphic environment are thought to facilitate species
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. coexistence and drive patchy distributions of soil organisms at multiple spatial scales (Berg, 2012; Thakur et
al., 2020), providing a particularly interesting template for metacommunity studies. Soil microarthropods,
including the highly abundant and diverse groups of Acari, Collembola and Coleoptera, represent a major
component of below-ground communities, with a broad range of functional roles in soil ecosystem services
(Nielsen, 2019) and high levels of cryptic diversity (e.g., Cicconardi et al., 2013; Young et al., 2019). Recent
metabarcoding studies (Arribas et al., 2021b; Zinger et al., 2019) have revealed an important role of stochastic
processes and dispersal limitation in community assembly of soil microarthropods at within-habitat scale, in
contrast to previous research that had emphasized environmental filtering in response to soil attributes as a
major driver of community composition (e.g., Caruso, Schaefer, Monson, & Keith, 2019; Caruso, Taormina,
& Migliorini, 2012; Gao, Liu, Lin, & Wu, 2016). Metabarcoding data also supports relatively low dispersal
rates (Zinger et al., 2019) and high turnover of soil microarthropod assemblages even within short geographic
distances (Arribas et al., 2021b), despite suggestions that long-distance passive dispersal might be prevalent in
these small-bodied groups (Schuppenhauer, Lehmitz, & Xylander, 2019; Türke, Lange, & Eisenhauer, 2018).
It remains to be assessed whether those differences among studies are due to the higher taxonomic resolution
offered by metabarcoding, or due to context- or scale-dependent variation among systems (Berg, 2012;
Ferrenberg, Martinez, & Faist, 2016). What both metabarcoding and morphology-based studies agree on is
that habitat type can impose a strong filtering effect overriding other environmental and spatial processes,
with forest vs. grassland habitats harbouring largely distinct metacommunities (Arribas et al., 2021b; Caruso
et al., 2012; Rota et al., 2020). Yet equivalent comparisons among more structurally similar habitats (e.g.,
different forest types) remain limited.

Here we use both OTU- and ASV-level metabarcoding of entire communities to characterize soil microarthro-
pod assemblages (Acari, Collembola and Coleoptera) across an isolated montane forest mosaic and evaluate
the relative importance of forest type, topoclimatic variation and spatial/landscape factors in driving meta-
community structure. The Troodos mountain range harbours unique and understudied Mediterranean forest
habitats within the island of Cyprus, one of Europe’s most vulnerable islands to climate change (Vogiatzakis,
Mannion, & Sarris, 2016), and a major component of the Mediterranean biodiversity hotspot due to high
levels of endemicity (Medail & Quezel, 1997). Troodos is characterised by complex topography and steep
environmental gradients which, in combination with anthropogenic disturbance since ancient times (Deli-
petrou, Makhzoumi, Dimopoulos, & Georghiou, 2008), have created a mosaic consisting of five main forest
habitat types that differ in area, altitudinal range and level of fragmentation (Figure 1). These comprise
forests of: (i) the narrow endemic Cyprus Cedar - Cedrus brevifolia (Cb, hereafter), with a highly restricted
distribution (˜300 ha, between 900-1,400 m) in Western Troodos; (ii) the endemic Golden Oak - Quercus
alnifolia (Qa), with a broad (˜20,000 ha, 700-1,700 m) but highly fragmented distribution across Troodos;
(iii) Black Pine -Pinus nigra pallasiana (Pn, ˜3,500 ha, 1,450-1,950 m) and (iv) Stinking Juniper - Juniperus
foetidissima (Jn, ˜250 ha, 1,450-1,950 m), both narrowly distributed at the top of the highest peak (Chio-
nistra, 1952 m) in Central Troodos; and finally (v) Calabrian Pine forest - Pinus brutia (Pb) the dominant
habitat type, forming continuous and extensive forests across Troodos (˜90,000 ha, 400-1,400 m). We gene-
rate metabarcode data for soil microarthropods across this habitat mosaic matrix to address the following
questions: (i) Is forest habitat type the primary factor shaping metacommunity structure, in a similar way to
that seen between grassland and forest? (Arribas et al., 2021b; Caruso et al., 2012), (ii) What is the relative
contribution of spatial vs. environmental processes as drivers of within-habitat metacommunity structure?
(Zinger et al., 2019), (iii) Focusing on the endemic Quercus alnifolia habitat, which is highly fragmented
across Troodos, does habitat connectivity across the heterogeneous landscape play an important role in me-
tacommunity structure? (Resasco & Fletcher, 2021). Finally, (iv) are α and β diversity patterns obtained
using ASVs and OTUs equivalent and explained by similar spatial or topoclimatic factors? Apart from eluci-
dating soil biodiversity dynamics in those poorly studied but highly vulnerable and precious Mediterranean
forests, this system can provide insights into the utility of high-resolution community metabarcoding, in
combination with fine-scale topoclimatic and landscape matrix information, for disentangling the drivers of
metacommunity structure across mountainous regions and complex landscapes.

MATERIALS AND METHODS
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. Soil sampling and sample processing

During 2019, from mid-April to mid-June, we collected soil samples from 44 sites representing the main five
forest habitat types of the Troodos mountain range (described above, Figure 1; Table S1). Our sampling
scheme covered the full extent of the distribution and altitudinal range that the five tree species exhibit
on Troodos, spanning over 65 km along an east-west axis and 1500 m of elevation range (Figure 1; Table
S1). We collected two soil samples per sampling site corresponding to the superficial (1 m2 of leaf litter
and humus, 5 cm depth) and the deep layer (30 cm diameter, 30 cm depth, comprising ˜20 liters of soil) as
described in Arribas et al. (2021b). The 88 soil samples were subsequently processed using a standardized
flotation-Berlese-flotation protocol to extract the soil mesofauna as detailed in Arribas et al. (2016, 2021b).
This protocol allows the retrieval of two subsamples of bulk arthropod specimens, divided according to their
body size (typically Acari and Collembola vs. Coleoptera) which are suited for ‘clean’ extraction of whole
organism community DNA. During bulk-sample processing, we additionally selected ‘voucher’ specimens of
Acari, Collembola and Coleoptera representing broadly the morphological variation observed in these groups
across samples. A total of 176 bulk subsamples and 344 ‘voucher’ specimens were preserved at -20°C in
ethanol 100% for molecular analyses.

DNA extraction, PCR amplification and sequencing

We extracted DNA from each bulk subsample using the Biosprint 96 DNA Blood Kit (Qiagen) on a Thermo
KingFisher Flex automated extraction instrument. We quantified the DNA concentration using a NanoDrop
spectrophotometer and combined the extracts of each pair of subsamples at a 1:10 ratio (Arribas et al., 2021b).
Then, we PCR amplified the 3’ end of the cytochrome c oxidase subunit I (COI) barcode region corresponding
to the 418 bp bc3’ fragment using the Ill B F (Shokralla et al., 2015) and Fol-degen-rev (Yu et al., 2012)
primers. Amplifications were performed following the PCR conditions described in Arribas et al. (2016).
We carried out five independent PCR replicates per sample, visualised the PCR products on an agarose gel
and pooled the three amplicons per sample that presented the brightest bands, which were purified using a
magnetic bead-based protocol (Agencourt AMPure XP). We included three negative controls corresponding
to different wet-lab steps (lysis, DNA extraction and PCR amplification). The 88 metabarcoding samples
and the three negative controls were used for a dual-indexed library preparation following the Nextera XT
DNA workflow (llumina, San Diego, CA, USA) and were sequenced on a paired-end 2x300 bp lane of an
Illumina MiSeq platform at the Earlham Institute (Norwich, UK).

We individually extracted DNA from each of the ‘voucher’ specimens as described above. We amplified
the Folmers COI barcode region (658 bp, overlapping with the 418 bp metabarcoding fragment), using the
primers Fol-degen-for and Fol-degen-rev (Yu et al., 2012) and following the PCR conditions described in
Arribas et al. (2016). The PCR products were purified and bidirectionally Sanger sequenced (Macrogen,
South Korea). The generation of a curated ‘voucher’ reference catalogue allowed us to improve the taxonomic
assignment of the metabarcode reads and to apply a recently developed method for read filtering (metamate,
Andujar et al., 2021, see below).

Illumina read processing and filtering

Detailed information on the read processing and filtering pipeline is summarized in Table S2. Briefly, we
demultiplexed raw reads allowing no mismatch in the dual-index pair. Then, we used fastqc v.0.11.7 (An-
drews, 2010) to quality check raw reads and cutadapt v.2.10 (Martin, 2011) to trim primers and filter
out raw reads exhibiting any variation from expected primer length and composition. Subsequently, we
used pear v.0.9.11 (Zhang, Kobert, Flouri, & Stamatakis, 2014) to merge forward and reverse reads. Each
metabarcoding sample was then separately quality filtered, dereplicated discarding singletons, length filtered
retaining only reads 416-420 bp, de novo chimera filtered using UCHIME3, and denoised using UNOISE3 as
implemented in vsearch v.2.9.1 (Rognes, Flouri, Nichols, Quince, & Mahe, 2016). Once denoising was per-
formed, reads from all metabarcoding samples were pooled and again dereplicated (discarding no sequences)
to generate a catalogue of unique putative haplotypes (ASVs). Subsequently, we ran blast to compare all
ASVs against a combined database composed of the NCBI nt collection (accessed November 2020) and a
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. curated reference catalogue including the 344 Sanger sequences of the ‘voucher’ specimens plus 561 previ-
ously available sequences corresponding to soil lineages of Acari, Collembola and Coleoptera (Arribas et al.
2016, 2021b). Based on the blast output we assigned the ASVs to high-rank taxonomic levels, by applying
the weighted lowest common ancestor algorithm in megan6 (Huson et al., 2016; see also Hleap, Littlefair,
Steinke, Hebert, & Cristescu, 2021). Only ASVs assigned to Acari, Collembola or Coleoptera were retained
and used for downstream analyses. We further filtered the ASVs using metamate v.0.1b18 (Andujar et al.,
2021), a novel approach aiming at removing putative nuclear copies of mitochondrial DNA (NUMTs; Lopez,
Yuhki, Masuda, Modi, & O’Brien, 1994) and other types of low-frequency erroneous sequences from denoised
metabarcoding datasets. This software allows the application of multiple read-abundance filtering strategies
and posterior evaluation of their effects on the prevalence of known authentic mitochondrial haplotypes and
presumed non-mitochondrial copies (e.g., those violating the reading frame or expected length, as expected
for NUMTs and erroneous sequences) in the final filtered dataset (Andujar et al., 2021). We selected the
most stringent filtering solution to ensure the removal of most erroneous sequences (see Supplemental In-
formation for details on the metamate filtering). Subsequently, we used vsearch to generate a read-count
community table of the metamate-filtered ASVs by matching them with a 100% identity value against the
raw read dataset before dereplicating, length filtering and denoising. We further filtered these community
tables by removing ASVs showing abundances of 2 or fewer reads and also those whose contribution to
the total number of reads per taxonomic group and library was lower than 1%. Finally, filtered read-count
community tables were converted to presence/absence tables (see Jurburg, Keil, Singh, & Chase, 2021).
Negative controls were processed alongside actual samples throughout the filtering workflow.

Εστιματες οφ α ανδ β διvερσιτψ ατ ΑΣ῞ ανδ ΟΤΥ λεvελς

The resulting fully-filtered ASVs were clustered into operational taxonomic units (OTUs) based on patristic
pairwise distances, using a threshold of 3% genetic divergence, which is commonly applied on arthropod COI
metabarcoding datasets (Dopheide et al., 2019; Yu et al., 2012). Patristic distances were calculated based on
a UPGMA tree, reconstructed using F84 model-corrected pairwise distances and a mafft FFT-NS-i alignment
(Katoh & Standley, 2013). These analyses were conducted using the adegenet (Jombart, 2008), phangorn
(Schliep, 2011) and ape (Paradis & Schliep, 2019) packages in R (R Core Team, 2020).

Using the ASV and OTU datasets, we calculated α diversity for each soil layer, sampling site and habitat
type. We also calculated community dissimilarity among sampling sites and between soil layers using the
Sørensen index (βSOR), which we decomposed in its additive components (Simpson dissimilarity index or
spatial turnover without the effect of variation in richness, βSIM, and nestedness, βSNE; Baselga, 2010). Then,
we used these community dissimilarity matrices to calculate the local contribution to β diversity (LCBD),
a comparative indicator of the uniqueness of each sample in terms of community composition (Legendre &
De Cáceres, 2013). We calculated the above diversity metrics using the betapart (Baselga & Orme, 2012)
and adespatial (Dray et al., 2020) R packages.

Characterisation of sampling sites using spatial, environmental and landscape variables

A number of spatial, environmental and landscape variables were calculated to characterize the sampling sites
and quantify the distances among localities, taking into account the high topographic complexity and envi-
ronmental/landscape heterogeneity of the study area. We calculated pairwise weighted topographic distances
(SPATWD) based on a digital elevation model (DEM) at 90 m resolution using the topoDistance R package
(Wang, 2020) as described in the Supplemental Information. We also generated a set of high-resolution envi-
ronmental variables (at 90 m resolution) for Cyprus, by spatial interpolation of temperature and precipitation
layers at lower resolution using the aforementioned DEM (see Supplemental Information). Specifically, we
interpolated six WorldClim (annual mean temperature, maximum temperature of warmest month, minimum
temperature of coldest month, annual precipitation, precipitation of wettest quarter and precipitation of
driest quarter; Fick & Hijmans, 2017) and three ENVIREM (climatic moisture index, Thornthwaite aridity
index and topographic wetness index; Title & Bemmels, 2018) variables. These variables are known to affect
the water-energy dynamics and to explain patterns of diversity in several organismal groups (Hawkins et al.,
2003). We extracted values of each interpolated variable along with the elevation for all sampling sites and
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. for 500 randomly distributed points throughout Cyprus, to avoid potential biases resulting from only consi-
dering conditions at focal sites. We then applied a principal component analysis (PCA; Figure S1) to reduce
the dimensionality of the dataset and eliminate covariance among variables and we retained the two first
principal components (PCs). PC1 (accounting for 81.3% of variation) was positively correlated with altitude
and precipitation variables and negatively with temperature variables and PC2 (8.0%) was positively corre-
lated with the topographic wetness index (Table S3). The PC1 and PC2 scores for each sampling site were
considered as topoclimatic predictors (ENVPC1 and ENVPC2) for downstream analyses. We also calculated
a Euclidean distance matrix among sampling points based on the obtained scores of the two retained PCs,
which was used as a topoclimatic predictor (ENVPC1-2) for matrix regression analyses.

Finally, we applied a circuit theory approach (McRae, 2006) to quantify habitat connectivity among the
Qa sampling sites. We focused specifically on the Qa habitat because it is broadly distributed but highly
fragmented across Troodos, in contrast to the Cb, Pn and Jn forests which are very narrowly distributed and
the Pb forest which is very extensive with largely continuous distribution (Figure 1). Based on the assumption
that dispersal among isolated forest fragments can be impeded by the presumed lower habitat suitability of
the surrounding landscape (Brodie & Newmark, 2019), we built an isolation-by-resistance (IBR) scenario of
connectivity (FRAIBR) defined by the distribution of Qa forest patches according to the existing cartography
(see Supplemental Information). Two alternative IBR scenarios were constructed for comparison: the TRIIBR

representing the topographic complexity of the study area as estimated by the terrain roughness index (Title
& Bemmels, 2018) and the NULLIBR representing a completely “flat landscape” with a fixed resistance (=1)
value assigned to all cells. Resistance distances among all Qa sampling points (n = 11) were calculated
under each alternative IBR scenario (FRAIBR, TRIIBR and NULLIBR) in circuitscape v.4.0.5 (McRae &
Beier, 2007).

Statistical analyses

Except when specified, we performed the following statistical analyses at sampling site level, after integrating
the community tables of the two soil layer samples (leaf litter and deep soil) for all three taxonomic groups
(Acari, Collembola and Coleoptera) into a single matrix. Each of the analyses was performed at both ASV
and OTU levels.

α diversity and community uniqueness:

We used ANOVAs to test for significant differences in α diversity (RICH) and community uniqueness (LCBD,
local contribution to β diversity) between forest habitats and soil layers. We used generalized linear mixed
models (GLMMs) to analyse the relationship between RICH or LCBD per site and the topoclimatic variables
(ENVPC1 and ENVPC2) as predictors, with latitude and longitude as covariates. We built GLMMs fitting
forest habitat type as a random effect in order to account for non-independence among samples from the
same forest habitat (see Supplemental Information).

β diversity:

The clustering of sampling sites according to their community composition was visualised using non-metric
multidimensional scaling (NMDS) assuming two dimensions (k =2). Differences among forest habitat types
were tested for significance using permutational multivariate analyses of variance (PERMANOVA). We used
symmetric Procrustes analyses to statistically assess non-randomness among NMDS ordinations calculated
from different community dissimilarity matrices (βSOR vs. βSIM and ASVs vs. OTUs; see Peres-Neto &
Jackson, 2001). These analyses were performed using the vegan (Oksanen et al., 2020) and pairwiseAdonis
(Martinez Arbizu, 2020) R packages.

The effect of forest habitat type and of the spatial and topoclimatic predictors on β diversity patterns was
tested using distance-based redundancy analyses (dbRDA; Legendre & Anderson, 1999), at both across-
habitats and within-habitat scales. Specifically, the response variables were the community dissimilarity
matrices based on the Simpson dissimilarity index (βSIM), and the explanatory variables were forward se-
lected from full models containing the following sets of predictors: (i) forest habitat type (HAB); (ii) spatial
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. variables (SPAPCNMi) derived from the transformation of the topographic weighted distance matrix using
Principal Coordinates of Neighbour Matrices (PCNM, see Supplemental Information), and (iii) topoclimatic
variables (ENVPC1and ENVPC2). The best-fit model was selected after ensuring there were no issues of
multicollinearity (Variance Inflation Factors, VIF <10; e.g., Tonkin, Stoll, Jähnig, & Haase, 2016). Finally,
the best-fit models for the across-habitat analyses were used to partition the variance explained exclusively
by each variable group (forest habitat type, space and topoclimate) and their intersections using the adjus-
ted coefficient of determination (R 2

ADJ) (e.g., Zinger et al., 2019). These analyses were performed using
the BiodiversityR (Kindt & Coe, 2005) and vegan R packages.

In order to validate the dbRDA inferences (Jupke & Schäfer, 2020), we also applied multivariate generalized
linear models (mvGLMs) as implemented in the mvabund R package (Wang, Naumann, Wright, & Warton,
2012). Unlike dbRDA which is a distance-based approach, this model-based method fits a separate GLM
per species and performs resampling-based hypothesis testing for community-level effects of predictors. Here,
incidence (presence/absence) datasets were used as input and tested against the same sets of predictors as
in dbRDA. Models were fitted using a binomial error distribution and a log link function. We first assessed
the predictor significance using single-term models and only those predictors showing a significant effect
were used to assemble a full model. The best-fit model was built following a backward stepwise selection
approach (e.g., How, Cowan, Teale, & Schmitt, 2019). Term significance was assessed using likelihood ratio
tests, PIT-trap resampling and 999 bootstrapping iterations (Wang et al., 2012).

Finally, we assessed the effect of habitat connectivity on the community composition of the Qa sampling
sites by applying matrix regressions with randomization (MRR; Wang, 2013). Specifically, the community
dissimilarity matrices based on the Simpson dissimilarity index (βSIM) were used as response variables, while
the explanatory variables were selected among: (i) resistance due to habitat fragmentation (FRAIBR), (ii)
resistance due to topographic complexity (TRIIBR), (iii) resistance due to a “flat landscape” (NULLIBR),
(iv) weighted topographic (SPATWD) distances and (v) topoclimatic (ENVPC1-2) distances. We assembled
a full model including all explanatory matrices and built the best-fit model following a backward stepwise
selection approach, using 999 permutations for the significance tests (e.g., Ortego, Gugger, & Sork, 2015).
The unique contribution of each predictor to the total variance explained by the best-fit model was quantified
using hierarchical variance partitioning analysis in the hier.part R package (Walsh & Mac Nally, 2003).
Once the best-fit model was selected, we visualised the relationship between community similarity (1-βSIM)
and the explanatory distance/resistance matrices and fitted a distance-decay of community similarity curve
(Gómez-Rodŕıguez & Baselga, 2018; Nekola & White, 1999). Specifically, we fitted a negative exponential
function to univariate GLMs assuming a Gaussian error distribution and a log link function as implemented
in the betapart R package.

RESULTS

Richness and uniqueness of soil microarthropod communities

After denoising and chimera filtering, the removal of putative spurious sequences by metamate, followed
by additional filtering of community tables, generated a fully-filtered dataset comprising 907 ASVs which
clustered into 386 OTUs (putative species) across the three taxonomic groups. Specifically, we retrieved a
total of 353 ASVs and 154 OTUs of Coleoptera, which was the most diverse group at both across- and
within-habitat scales. The Acari and Collembola datasets comprised 237 and 317 ASVs which clustered into
139 and 93 OTUs, respectively (Figure 2).

The average α diversity of haplotypes per sampling site differed among habitat types, with the Cyprus cedar
(Cb) habitat showing significantly higher richness than the other four forest types (Tukey’s test: p-value
<0.028 in all comparisons involving Cb; Figure 2). At OTU level, the average α diversity per site was
higher in the forest types distributed at low and mid altitudes (Pb, Qa and Cb) than in those habitats
restricted to higher elevations (Pn and Jn Figure 2). However, the significance of this pattern was not
preserved after post-hoc tests (Tukey’s test: all p-values >0.123). When soil substrates were independently
compared, the leaf litter layer showed significantly higher richness (α diversity) than the deep soil substrate
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. in all comparisons (Figure S2). The average local contribution to β diversity (LCBD) per sampling site
differed significantly among habitats, with the Calabrian Pine (Pb) and Golden Oak (Qa) communities
showing significantly higher uniqueness at both ASV and OTU level when compared to the high-altitude Pn
and Jn communities (Tukey’s test: p-value <0.05 in most comparisons involving Pb or Qa; Figure 2). When
independently analyzed, deep soil communities showed significantly higher LCBD estimates, indicating a
more unique composition than the leaf litter communities (Figure S2, inset plots), a pattern particularly
evident in the high-altitude Pn and Jn communities (Figure S2).

Regression analyses (GLMMs/GLMs; see Supplemental Information) showed a significantly negative relation-
ship between average richness (α diversity) of ASVs per site and longitude (Lon), indicating that community
richness decreased towards the east of the Troodos mountain range (Table 1; Table S4). To ensure that
this relationship was not biased by the Cyprus cedar (Cb) sites, which are geographically restricted to the
westernmost part of the study area and have the highest ASV richness (Figures 1-2), additional analyses
excluded these sites. These analyses consistently supported the significant effect of longitude on ASVs rich-
ness across forest habitats (95% CI: [-34.968] - [-4.032]). Conversely, the richness (α diversity) of OTUs per
site was only explained by the topoclimatic predictor ENVPC2 (Table 1; Table S4). Similarly, we found that
LCBD estimates at both ASV and OTU levels were significantly correlated with the topoclimatic variables,
as summarized with the ENVPC1 and ENVPC2 predictors (Table 1; Table S4).

Dissimilarity in community composition among forest sites

Dissimilarity in community composition among sampling sites was high and mainly determined by spatial
turnover, with a very limited contribution of nestedness (ASVs: βSIM = 0.974, βSNE= 0.004; OTUs: βSIM =
0.961, βSNE = 0.006). This pattern was consistent when each taxonomic group was separately analyzed (all
βSIM >0.952, all βSNE <0.015). The community dissimilarity matrices (βSOR or βSIM) of the three taxonomic
groups were correlated among them at both ASV and OTU level (Mantel test, all r >0.240, all p-values
<0.001). As the contribution of nestedness was minimal, we only report the results of the statistical analyses
obtained using the community dissimilarity matrices calculated with the Simpson dissimilarity index (βSIM).

The NMDS analysis grouped the sampling points according to their respective forest habitat type, except
those from Black Pine (Pn) and Stinking Juniper (Jn) forests which exhibited a greater overlap in the
ordination (Figure 3). PERMANOVA analyses detected significant differences in community composition
among forest habitat types, a factor explaining over 25-34% of the overall variation in community dissimilarity
(Figure 3). These differences were significant for all habitat pairs (all p-values <0.020), as confirmed by
pairwise comparisons (all p-values <0.019). The NMDS ordinations obtained from different community
dissimilarity matrices (βSOR vs. βSIM and ASVs vs. OTUs) converged on highly similar solutions and were
significantly concordant according to Procrustes tests (all r = 0.917, all p-values <0.001).

When dbRDA analyses were applied across all habitats, all three sets of explanatory variables (forest habitat
type, spatial and topoclimatic variables) were retained as significant predictors of community dissimilarity
(βSIM) (Table 2), although the largest fraction of the variation was clearly explained by habitat type (Figure
4). Pairwise comparisons testing for the effect of forest habitat type in community dissimilarity confirmed
significant differences between all habitat pairs (all p-values <0.020). When dbRDA were applied at within-
habitat scale, community dissimilarity (βSIM) of most forest types showed a significant relationship with
topoclimatic predictors, except for the case of the Stinking Juniper (Jn) habitat where no predictor was
significant (Table 2; Table S5). Once the Jn sampling sites were analysed together with the Pn sites according
to the great overlap observed in the NMDS-based ordinations (Figure 3), a significant correlation between
community dissimilarity (βSIM) and topoclimatic predictors was confirmed (Table 2). The predominant role
of topoclimatic variation in explaining βSIM diversity patterns within each habitat was consistent across
ASVs and OTUs levels (Table 2; Table S5).

Multivariate GLMs (mvGLMs) provided highly concordant inferences with those obtained using dbRDA
(Table S6). Forest habitat type was the predictor that explained the largest fraction of the variation in com-
munity composition at across-habitat scale (R 2 >0.121), with the spatial and topoclimatic predictors also
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. included in the final model, although exhibiting much less explanatory power (R 2 <0.044; Table S6). Signifi-
cant differences in community composition between all habitat pairs were supported by pairwise comparisons
(all p-values <0.013). Analyses at within-habitat scale showed that topoclimatic predictors significantly ex-
plained community composition within most habitat types. In those cases in which spatial predictors were
also retained in the final model, their univariate contribution to the explained variance was usually lower
than the one of the topoclimatic predictors (Table S6).

Matrix regressions with randomization (MRR) showed that community dissimilarity (βSIM) among Golden
Oak (Qa) sampling sites at both ASV and OTU levels was positively correlated with the IBR matrix based
on the spatial configuration of Qa patches (FRAIBR) and the topoclimatic distance matrix (ENVPC1-2).
Both predictors were significantly retained in the best-fit models (Table 3), and there was no correlation
between them (Mantel test, r <0.103, p-value >0.188). According to the sensitivity analyses, the FRAIBR

scenarios that best explained the observed patterns of βSIM variation were those in which the non-Quercus
matrix offered much higher resistance (10- or 100-fold) than the target habitat (Table S7). In concordance
with the MRR analyses, distance decay models adjusted using GLMs showed a roughly linear decrease in
community similarity (βSIM) with increasing FRAIBR or ENVPC1-2 distances, with both predictors being
significant (Figure 5).

DISCUSSION

Whole organism community DNA (wocDNA) metabarcoding enabled characterizing the soil microarthro-
pod assemblages of the understudied montane forests of Cyprus and provided insights into the drivers of
metacommunity structure across the topographically complex region of Troodos. By integrating community
metabarcoding with high-resolution topoclimatic and landscape information, we revealed that environmental
filtering induced by forest habitat type and topoclimatic heterogeneity controls different facets of Troodos
soil biodiversity (α, β diversity and community uniqueness), while habitat connectivity mediates disper-
sal dynamics across the highly fragmented Golden Oak habitat. β diversity patterns were very similar at
OTU and ASV levels, but α diversity varied, with OTU richness following an altitudinal gradient and ASV
richness a longitudinal one, likely indicating a decline of genetic diversity eastwards due to anthropogenic
disturbance. Therefore, species richness presumably responded to niche-based processes, while haplotype
richness to historical contingencies. Our results demonstrate the utility of combining OTUs with ASVs ob-
tained by stringent filtering for characterising diversity patterns of complex assemblages across heterogeneous
landscapes.

Forest type shapes regional metacommunity structure

Community composition of soil microarthropods across Troodos was largely explained by forest type, irre-
spective of spatial and topoclimatic variation (Table 2; Table S6; Figure 4), suggesting a primary role of
habitat filtering as a driver of regional metacommunity structure. The importance of habitat type in shaping
the composition of soil microarthropod assemblages has been demonstrated by previous research comparing
forest vs. grassland habitats (Arribas et al., 2021b; Caruso et al., 2012) or different grass and shrub species
(Coulson, Hodkinson, & Webb, 2003; see also Doblas-Miranda, Sánchez-Piñero, & González-Meǵıas, 2009),
but to our knowledge, this is the first study to compare different forest types in a systematic way. Given the
mosaic nature of Troodos (Figure 1), our sampling scheme revealed high turnover among nearby sampling
sites of different woodland habitats (Figure 3), highlighting a major role of underlying forest-specific eda-
phic features for the community assembly of soil microarthropods (Eissfeller, Langenbruch, Jacob, Maraun,
& Scheu, 2013). Leaf litter and vegetation type are documented to influence the soil environment through
changes in microhabitat availability and physico-chemical edaphic properties (Berg & McClaugherty, 2008),
and such local abiotic features might be driving a scenario of species sorting (Leibold et al., 2004) or even
the existence of largely separate metacommunities inhabiting each forest type. In contrast to the general
pattern, the communities of the two highland habitats of Black Pine (Pn ) and Stinking Juniper (Jn ) are
more similar to each other (Figure 3; although still significantly different based on pairwise comparisons),
suggesting that harsh climatic conditions at those high altitudes might be imposing a stronger environmental
filter than forest-associated soil attributes. Alternatively, the spatial configuration of this highland woodland
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. (composed of isolated small stands of Stinking Junipers embedded in a much larger Black Pine matrix) might
facilitate dispersal among habitat patches and partly counteract the effects of habitat filtering (Leibold et al.,
2004; Logue, Mouquet, Peter, & Hillebrand, 2011). These two hypotheses are not mutually exclusive and may
jointly contribute to the higher similarity in community composition between these highland assemblages.

Topoclimate as a driver of within-habitat structure

Analyses performed at within-habitat scale revealed the importance of both environmental and spatial va-
riables on community composition in most cases (Table 2; Table S6), which is in line with previous research
on soil microarthropod communities (Arribas et al., 2021b; Bahram et al., 2016; Ingimarsdóttir et al., 2012;
Lindo & Winchester, 2009). Disentangling the relative contribution of environmental vs. spatial processes
has proven to be challenging as environmental variation is often spatially autocorrelated, which can lead to
a spurious inflation of the inferred environmental contribution (Clappe, Dray, & Peres-Neto, 2018; Vellend
et al., 2014). In our study, spatial predictors generally explained less variance than topoclimatic factors in
mvGLMs (Table S6), and their effect became non-significant after applying a forward selection approach in
dbRDA (Table 2; Table S5). These results along with the relatively low degree of collinearity between spatial
and topoclimatic axes (VIF <7; Vittinghoff, Glidden, Shiboski, & McCulloch, 2012), emphasize the role of
environmental filtering as a key driver of metacommunity structure (Brown et al., 2017). Our results would
complement several morphology-based studies suggesting that community composition of soil microarthro-
pods is driven by environmental filtering, primarily in response to gradients of edaphic parameters (Caruso
et al., 2019; Gao et al., 2016; Gan, Zak, & Hunter, 2019; Grear & Schmitz, 2005). However, they appear to
contrast with the recent wocDNA metabarcoding study of Arribas et al. (2021b), where dispersal limitation
was identified as the main driver of community assembly at within-habitat scale. This discrepancy cannot be
attributed to taxonomic resolution, as both studies used very similar protocols to retrieve ASVs and OTUs,
but it could be partly explained by differences in sampling scale, as the generally broader sampling extent of
our study could enhance the role of environmental filtering as a consequence of encompassing higher envi-
ronmental heterogeneity (Chase, 2014). Yet we also found environmental filtering to prevail in our narrowly
distributed habitats (e.g., Cb, Pn) with observational scales slightly smaller (<7 km) than those of Arribas
et al. (2021b). Additionally, the overall stronger effect of environmental filtering in our study system may
reflect context-dependency (Soininen, 2014), with environmental processes playing a more important role in
systems characterized by high topoclimatic heterogeneity. While in Arribas et al. (2021b) there were only
moderate altitudinal gradients (˜200-670 m elevation difference), our sampling spanned a steep elevational
(1470 m elevation difference) and environmental gradient, with topoclimatic conditions varying greatly even
across short distances, both within and across habitats (Figure S1). This phenomenon may be common
in topographically complex regions, where dispersal limitation may actually be imposed by environmental
heterogeneity rather than by geography per se (Liu et al., 2018), and points out the relevance of detailed
topoclimatic characterization for understanding metacommunity structure within mountainous landscapes.
However, it is noteworthy that the total variance explained by some models was relatively low (R 2

ADJ<5-
10%, Table 2). This was not unexpected, as it is a common finding among metacommunity studies (Cottenie,
2005), and has been traditionally attributed to other ecological processes that are not frequently measured
(Vellend, 2010). Particularly, stochastic demographic processes including ecological drift in the absence of
dispersal limitation (Bahram et al., 2016; Zinger et al., 2019) or priority effects via niche preempting (Fuka-
mi, 2015) have been hypothesized as relevant forces potentially interfering with community assembly in the
soil environment. Additionally, we have not considered explicitly the effect of edaphic variables (e.g., organic
matter, nutrient content or pH; Gao et al., 2016; Gan et al., 2019), although some of their variation is likely
captured by forest habitat type and by certain topoclimatic variables, which are thought to influence specific
soil attributes (horizon depth, moisture; Florinsky, 2012; Hillel, 2008).

The role of habitat connectivity in the assembly of the Golden Oak metacommunity

Habitat fragmentation has been shown to alter the relative importance of spatial vs. environmental processes
as drivers of metacommunity structure (Jamoneau, Chabrerie, Closset-Kopp, & Decocq, 2012), but the way
we measure spatial distances among habitat patches and account for the effects of the surrounding matrix
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. may affect our interpretation of the predominant processes (Resasco & Fletcher, 2021; Watling, Nowakowski,
Donnelly, & Orrock, 2011). In the case of the highly fragmented Golden Oak (Qa) habitat, circuit theory-
based connectivity modelling demonstrated that isolation estimates accounting for fragmentation and matrix
resistance consistently performed better at explaining turnover than those based on topography, with the
latter performing better than null models assuming a homogeneous matrix (Table 3; Table S7). This finding
aligns with recent studies that have documented the ecological importance of dispersal corridors for com-
munity assembly across different taxonomic groups (Firmiano et al., 2021; Marrec et al., 2021; reviewed in
Fletcher, Burrell, Reichert, Vasudev, & Austin, 2016). However, this approach relies on the assumption that
all species of the metacommunity respond similarly to landscape heterogeneity. Future studies integrating
metabarcoding with morphological information derived from local ‘voucher’ reference collections could fa-
cilitate the implementation of species-specific analyses accounting for ecological and trait variation (Brodie
& Newmark, 2019; Hartfelder et al., 2020). Despite these limitations, our results provide empirical evidence
of an important effect of habitat fragmentation on soil microarthropod metacommunity structure across
the Golden Oak forest patches, with the role of environmental filtering remaining equally significant (Ta-
ble 3). Interestingly, we also obtained equivalent distance-decay of community similarity curves based on
connectivity or on topoclimatic distances (Figure 5), although the topoclimatic variables were not spatially
autocorrelated (Mantel test, r <0.103, p-value >0.188) and their shared variance with connectivity-based
predictors was very low (<2%; Table 3). The similar slopes of the decay curves for ASVs and OTUs based
on spatial distances are compatible with a neutral dispersal-constrained model (Baselga et al., 2015), while
the equivalent pattern based on topoclimatic distances could be generated under certain scenarios of high
dispersal and narrow ecological niches (Baselga et al., 2013). Taken together our results suggest that dispersal
limitation and niche-based processes have jointly shaped turnover patterns across the Qa habitat, although
each process may affect different fractions of the metacommunity (e.g., some species and/or intraspecific en-
tities may have low dispersal propensity and wide topoclimatic niches, while others might be good dispersers
with narrow niches). Future species-specific analyses may help to refine these conclusions.

The utility of ASVs for community ecology

All the above conclusions about the predominant processes shaping community composition of soil microar-
thropods across the Troodos forests were very similar when based on OTUs or ASVs, contributing to the
broader discussion about whether OTUs should be replaced by ASVs in metabarcoding studies (Callahan et
al., 2017; Porter & Hajibabaei, 2020). As recent read-filtering methods have overcome the need of clustering
to account for amplification and sequencing errors, the user-defined OTUs (traditionally used as proxies of
species-level entities) could be redundant. However, the exclusive use of ASVs could affect the biological
conclusions drawn from biodiversity analyses, as patterns of haplotypic diversity can reflect demographic at-
tributes of populations, and do not always coincide with diversity patterns at the species level (Martin et al.,
2021). In our system, while β diversity estimates at ASV and OTU levels were correlated and likely shaped
by the same ecological processes as described above, we observed distinct α diversity (richness) patterns
between them, which were explained by statistically significant differences in geographic or topoclimatic
predictors. OTU richness per site was primarily explained by topoclimatic conditions, with assemblages
hosting fewer OTUs as elevation and precipitation increased and temperature decreased (Table 1; Figure
S3), thus following the general rule of declining species richness with increasing elevation (Rahbek, 1995),
commonly interpreted as an outcome of environmental filtering driven by temperature or productivity gradi-
ents (Graham et al., 2014; Peters et al. 2016). In contrast to OTUs, ASV richness varied significantly along a
longitudinal axis with local communities harbouring more haplotypes westwards (Table 1; Figure S3), which
might be interpreted as a signature of higher on average intraspecific genetic diversity in the Western part
of the mountain range, which has historically been less affected by anthropogenic disturbance (Delipetrou
et al., 2008). This finding is in accordance with population genetic studies of forest trees that observed high
genetic diversity in the western populations of Pinus brutia (Eliades, Aravanopoulos, & Christou, 2018) and
Cedrus brevifolia (Eliades, Gailing, Lenemann, Fady, & Finkeldey, 2011). This is potentially a consequence
of the local topography facilitating the maintenance of higher effective population sizes in this region dur-
ing the Pleistocene climatic oscillations, and/or of less intensive historical human impact (livestock grazing

11
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. and logging) than in Eastern Troodos (Eliades et al., 2018). The decline of haplotypic diversity in soil mi-
croarthropod assemblages eastwards may therefore indicate incipient biodiversity loss, as genetic variation
tends to be eroded more quickly than species diversity under scenarios of global change (Balint et al., 2011).
However, such differences between species and haplotype diversity were not reflected in patterns of commu-
nity uniqueness, as our ASV- and OTU-based estimates of LCBD (local contribution to β diversity) were
correlated and similarly explained by topoclimatic variation (Table 1; Figure S3), without any clear signature
of historical contingencies, as those likely affecting longitudinal haplotypic richness patterns across Troodos.
Our results therefore highlight the complementarity of OTUs and ASVs for community metabarcoding, as
such side-by-side comparisons can help to detect processes that produce uncoupled patterns between the two
levels of diversity (e.g., Reisch & Schmid, 2019).

Our ASV-level analyses were facilitated by the application of the metamate tool that utilised local and
public reference sequence databases to discard non-authentic ASVs and retain only true biological sequence
variants (Andújar et al., 2021). Although applying the most stringent filtering in metamate might have
caused the removal of valuable rare biological haplotypes, appreciable intraspecific genetic variation (on
average 2.35 ASVs per OTU) was still retrieved and produced reasonable haplotype diversity patterns as
explained above. Based on our results, we advocate stringent ASV filtering, as it can provide informative
datasets without compromising the required reliability for haplotype-level metabarcoding. Even if we cannot
be fully confident that all erroneous haplotypes were filtered out, as the performance of the approach depends
on the completeness of the reference sequence catalogue (Andújar et al., 2021), the future incorporation of
intraspecific genetic data in local reference databases will provide further confidence and the opportunities
for intra-OTU analyses of ASV variation (Elbrecht et al., 2018; Zizka, Weiss, & Leese, 2020).

CONCLUSIONS

This study highlights the power of haplotype-level community metabarcoding, enabled by the application
of stringent filtering strategies, for the description of spatial biodiversity patterns of complex communities
in understudied regions (Cyprus) and environments (soil), overcoming previous limitations of the taxonomic
impediment, low-resolution data and noise due to the presence of spurious sequences. The wide implemen-
tation of harmonised field, lab and bioinformatic protocols for community metabarcoding of unexplored
assemblages will increase the comparability of datasets from across the globe (Arribas et al., 2021a), provi-
ding the basis for broad-scale analyses of metacommunity patterns that would enable drawing more general
conclusions on the consistency or context-dependency of ecological processes across spatial scales and frac-
tions of biodiversity. Additionally, the ease with which all species in local communities can be characterised
at the population genetic level using metabarcoding with stringent filtering raises the prospect for modelling
demographic processes for each of the component species (Overcast, Emerson, & Hickerson, 2019; Overcast
et al., 2021). Such an approach has the potential to elucidate historical and contemporaneous community re-
sponses to environmental heterogeneity and dispersal limitation at a much finer resolution than the summary
statistics currently applied in whole-community metabarcoding.
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TABLE 1 Results of model selection and averaging testing for the relationship between average richness (α
diversity, RICH) or local contribution to β diversity (LCBD) at ASV and OTU levels as response variables
and topoclimatic variation (ENVPC1 and ENVPC2; see Table S3) as explanatory variables. Latitude (Lat)
and longitude (Lon) were included as covariates. Predictors excluding the value 0 in their 95% confidence
intervals (CI) are indicated in bold and their effects were considered significant. For each final model including
only predictors considered significant (in bold), marginal (R 2

m, variance explained by fixed effects) and
conditional (R 2

c, variance explained by both fixed and random effects) coefficients of determination are
reported.

Models R2
m R2

c Predictors Estimate ± adjusted standard error Lower 95% CI Upper 95% CI
ASVs (haplotypes)
RICHASV 0.185 0.384 Lat -6.326 ± 21.575 -48.613 35.961

Lon -24.975 ± 7.970 -40.597 -9.353
ENVPC2 -0.842 ± 1.536 -3.854 2.169

LCBDASV 0.698 0.807 ENVPC1 -2.979 × 10-4 ± 7.938 × 10-5 -4.534 × 10-4 -1.423 × 10-4

ENVPC2 -6.160 × 10-4 ± 2.148 × 10-4 -1.037 × 10-3 -1.949 × 10-4

OTUs (3% lineages)
RICHOTU 0.278 - Lon -5.199 ± 5.026 -15.049 4.651

ENVPC2 -3.115 ± 0.777 -4.639 -1.592
LCBDOTU 0.488 0.512 ENVPC1 -5.524 × 10-4 ± 9.684 × 10-5 -7.422 × 10-4 -3.625 × 10-4

TABLE 2 Best-fit models from distance-based redundancy analyses (dbRDA) on community composition
(Simpson dissimilarity index, βSIM) of sampling sites at ASV and OTU levels, performed either with all sites
(across habitats) or separately for each of the forest habitat types. The explanatory variables were forward
selected from full models containing three sets of predictors: forest habitat type (HAB), spatial (SPAPCNMi)
and topoclimatic (ENVPCi) variables. The adjusted coefficient of determination (R 2

ADJ) for each model
is provided. The Pinus nigra (Pn) and Juniperus foetidissima (Jn) sampling sites were both separately
and jointly analyzed according to results of NMDS-based ordinations (Figure 2). Predictor information for
models with no significant variables (null) is replaced by dashes.

ASVs (haplotypes) ASVs (haplotypes) ASVs (haplotypes) ASVs (haplotypes) ASVs (haplotypes) OTUs (3% lineages) OTUs (3% lineages) OTUs (3% lineages) OTUs (3% lineages) OTUs (3% lineages)
Dataset Predictors F p-value R2

ADJ Predictors Predictors F p-value R2
ADJ

Across habitats HAB 3.311 <0.001 0.204 HAB HAB 3.225 <0.001 0.195
SPAPCNM2 1.824 <0.001 SPAPCNM1 SPAPCNM1 1.422 0.026
SPAPCNM5 1.383 0.029 SPAPCNM2 SPAPCNM2 1.963 <0.001
ENVPC1 1.951 <0.001 SPAPCNM5 SPAPCNM5 1.409 0.026
ENVPC2 1.565 0.006 ENVPC1 ENVPC1 1.608 0.002

ENVPC2 ENVPC2 1.460 0.013
Pinus brutia (Pb) ENVPC1 4.808 0.048 0.024 ENVPC1 ENVPC1 1.650 0.003 0.067
Quercus alnifolia (Qa) ENVPC1 1.618 0.002 0.058 SPAPCNM1 SPAPCNM1 2.892 0.002 0.231

SPAPCNM2 SPAPCNM2 1.850 0.007
Cedrus brevifolia (Cb) ENVPC1 4.808 0.041 0.388 ENVPC1 ENVPC1 3.602 0.006 0.420

ENVPC2 ENVPC2 2.014 0.024
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. Pinus nigra (Pn) ENVPC1 1.805 0.005 0.103 ENVPC2 ENVPC2 1.621 0.035 0.081
Juniperus foetidissima (Jn) Null - - - Null Null - - -
Pinus nigra (Pn) + Juniperus foetidissima (Jn) ENVPC1 1.459 0.047 0.030 ENVPC1 ENVPC1 1.687 0.026 0.092

SPAPCNM3 SPAPCNM3 1.755 0.018

TABLE 3 Multiple matrix regression with randomization (MRR) analyses on community composition
(Simpson dissimilarity index, βSIM) of Quercus alnifolia (Qa) sampling sites at ASV and OTU levels. The
explanatory variables were backward selected from full models containing the following distance matri-
ces: ‘flat’ scenario (NULLIBR), topography (SPATWD), topoclimate (ENVPC1-2), topographic complexity
(TRIIBR) and forest fragmentation (FRAIBR). The significance of both explanatory terms retained in the
best-fit model and those rejected during the backward selection procedure are reported. The independent
(R I

2) and joint coefficient of determination (R J
2) of each predictor retained in the best-fit final model are

provided.

ASVs (haplotypes) ASVs (haplotypes) ASVs (haplotypes) ASVs (haplotypes) ASVs (haplotypes) ASVs (haplotypes) OTUs (3% lineages) OTUs (3% lineages) OTUs (3% lineages) OTUs (3% lineages) OTUs (3% lineages) OTUs (3% lineages)
Predictors Coefficient t p-value RI

2 RJ
2 Predictors Coefficient t p-value RI

2 RJ
2

Explanatory terms Explanatory terms Explanatory terms Explanatory terms
FRAIBR 0.078 2.745 0.014 0.112 0.013 FRAIBR 0.246 4.434 0.003 0.246 0.020
ENVPC1-2 0.106 3.889 0.000 0.210 0.013 ENVPC1-2 0.172 3.464 0.005 0.158 0.020
Rejected terms Discarded terms
SPATWD -0.209 0.839 SPATWD 0.442 0.654
TRIIBR 1.911 0.272 TRIIBR 0.569 0.704
NULLIBR -1.843 0.257 NULLIBR -0.250 0.827

FIGURE 1 Geographical location of sampling sites throughout the Troodos mountain range in Cyprus (top
panel) and distribution of the main five forest habitat types (bottom panel). Sampling sites and forest habitat
distribution are coloured as follows: Pb, Pinus brutia (light green); Qa, Quercus alnifolia (orange); Cb, Cedrus
brevifolia (blue); Pn, Pinus nigra (black); Jn, Juniperus foetidissima (purple). Top panel: Background map
displays elevation at 90 m resolution (SRTM Digital Elevation Data, http: // srtm. csi. cgiar. org/ ).
Bottom panel: Data from the Department of Forests (Ministry of Agriculture, Rural Development and
Environment, Republic of Cyprus; https: // www. data. gov. cy/ ). Green hatched areas represent zones
where Pinus brutia (light green) forests are present according to our own surveys but whose extent has not
been mapped in the publicly available cartography, likely because they are the result of plantations, have
been affected by fires, and/or present very low tree densities.
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FIGURE 2 Average richness (α diversity, top panels) and community uniqueness (local contribution to β
diversity - LCBD, bottom panels) across sampling sites, as estimated at ASV (left panels) and OTU (right
panels) levels, per forest habitat type. Colours and habitat codes as in Figure 1. Inset graphs show the
contribution of each taxonomic group (Acari, dark grey; Collembola, grey; Coleoptera, light grey) to the
cumulative richness (γ diversity) per forest habitat type. Shared letters below the box-plots indicate that
differences between the respective habitats are not statistically significant (p-value >0.05) after post-hoc
Tukey’s tests.

FIGURE 3 Non-metric multidimensional scaling (NMDS) ordination of sampling sites according to com-
munity dissimilarity (Simpson dissimilarity index, βSIM), at ASV (left panel) and OTU (right panel) levels.
Circles correspond to sampling sites, with circle size representing sample richness. The percentage of ex-
plained variation (R 2) and the significance of forest habitat type as grouping factor based on PERMANOVA
are reported on the top of each plot. Colours and habitat codes as in Figure 1.
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FIGURE 4 Venn diagram illustrating the partitioning of explained variance in community composition
among the three sets of explanatory variables (forest habitat type, spatial and topoclimatic predictors) and
their intersections. Variance partitioning was conducted on the best-fit dbRDA models, which only included
significant variables after a forward selection procedure (Table 2). Analyses were performed on the Simpson
dissimilarity index (βSIM) community dissimilarity matrices at ASV and OTU levels. Percentages refer to
adjusted coefficients of determination (R 2

ADJ). Percentages below 0.25% are not shown.

FIGURE 5 Distance decay of community similarity across the Quercus alnifolia (Qa) habitat. Distances
among Qa sampling sites were calculated either based on the isolation-by-resistance (IBR) scenario reflecting
the spatial distribution of Qa forest patches (FRAIBR, left panel) or on the topoclimatic distances among
sampling sites (ENVPC1-2, right panel). Community similarity was estimated using the Simpson similarity
index (1 - βSIM) at ASV (filled circles, solid regression line) and OTU (open circles, dashed regression line)
levels. For display purposes, the decay curves were fitted using generalized linear models (GLMs) with a
negative exponential function. Regression slopes, coefficients of determination (pseudo-R 2) and p-values
are provided on the top of each panel. See Table 3 for multivariate matrix regression analyses assessing the
independent contribution of each predictor to community dissimilarity.
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