Diagnosing restoration trajectories using demographic modeling and modern coexistence theory Lina Aoyama¹, Lauren Shoemaker², Benjamin Gilbert³, Sharon Collinge⁴, Akasha Faist⁵, Nancy Shackelford⁶, Vicky Temperton⁷, Gyorgy Barabas⁸, Loralee Larios⁹, Emma Ladouceur¹⁰, Oscar Godoy¹¹, Catherine Bowler¹², and Lauren Hallett¹ July 28, 2021 ## Abstract Restoration success is often measured by comparing target species abundance between restored and reference populations. Abundance may poorly predict long-term success, however, because seed addition may initially inflate restored population abundances, and reference population abundances may fluctuate with environmental variation. A demographic approach, informed by modern coexistence theory, may allow for more accurate diagnosis of restoration trajectories. We modeled population dynamics of an endangered plant (*Lasthenia conjugens*) in restored vernal pools and compared them to reference populations over 18 years (2000-2017). Model estimates of *L. conjugens* growth rates were better predictors of long-term trends than observed abundances. Although populations fluctuated in reference pools, annual rainfall variability acted as a stabilizing factor for *L. conjugens*. In restored pools however, invasive grasses and associated litter accumulation overrode the benefits of environmental variability. Our approach improves assessment of restoration outcomes and indicates when management actions, such as grass removal, will improve future trajectories. ## Hosted file sToration final draft.pdf available at https://authorea.com/users/427939/articles/531999-diagnosing-restoration-trajectories-using-demographic-modeling-and-modern-coexistence-theory ¹University of Oregon ²University of Wyoming ³University of Toronto ⁴University of Colorado Boulder ⁵New Mexico State University ⁶University of Victoria ⁷Leuphana Universitat Luneburg ⁸Linkopings universitet ⁹University of California Riverside ¹⁰German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig ¹¹Universidad de Cadiz Campus de Puerto Real ¹²The University of Queensland - Saint Lucia Campus