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Abstract

The explosive growth of data and information has motivated technological developments in computing systems that utilize them
for efficiently discovering patterns and gaining relevant insights. Inspired by the structure and functions of biological synapses
and neurons in the brain, neural network algorithms that can realize highly parallel computations have been implemented
on conventional silicon transistor-based hardware. However, synapses composed of multiple transistors allow only binary
information to be stored, and processing such digital states through complicated silicon neuron circuits makes low-power and
low-latency computing difficult. Therefore, the attractiveness of the emerging memories and switches for synaptic and neuronal
elements, respectively, in implementing neuromorphic systems, which are suitable for performing energy-efficient cognitive
functions and recognition, is discussed herein. Based on a literature survey, recent progress concerning memories shows that
novel strategies related to materials and device engineering to mitigate challenges are presented to primarily achieve nonvolatile
analog synaptic characteristics. Attempts to emulate the role of the neuron in various ways using compact switches and volatile
memories are also discussed. It is hoped that this review will help direct future interdisciplinary research on device, circuit, and
architecture levels of neuromorphic systems.
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Figure 1: ToC Figure. The functions can be implemented in neuromorphic hardware systems by employing
cross-point arrays, which can be stacked in three dimensions. In the architecture, analog data stored at
synaptic elements can be summed in parallel and the results of arithmetic calculations can be recognized
energy-efficiently.

Introduction

Artificial intelligence has currently become widespread and has permeated social life. Electronic devices are
connected among each other, wirelessly and via other networks, and can constantly communicate. Thus, a
substantial amount of data is generated every second worldwide, and the data creation period is shorten-
ing. With the unprecedented explosion in data, a new industry has been launched to extract more valuable
information and utilize it beyond simply storing and managing data traffic worldwide. For example, driv-
ing skills of autonomous vehicles have advanced rapidly by recognizing information about the surrounding
environment that is constantly being input to the system in real time and accurately classifying them into
specific objects and signals. One of the reasons for the new wave of data-centric paradigms was the devel-
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opment of semiconductor technology in the past few decades. The performance and cost of transistors, a
representative semiconductor device, have been improved due to Moore’s law scaling.[1] Consequently, sev-
eral innovative products have been manufactured at reasonable prices, thereby creating numerous derivative
industries. More specifically, increasing the number of tiny transistor elements integrated into a given silicon
chip allows more versatile processing and arithmetic operations per clock cycle to be performed promptly.
The memory elements based on laterally scaled and vertically stacked structures can also significantly in-
crease memory capacity.[2, 3] As we advance into the big-data era, the demand for improved performance of
computing systems primarily consisting of these two fundamental components, i.e., central processing units
(CPUs) and memories, to handle the exponentially growing amount of data is increasing. However, in the
conventional von Neumann computing architecture, data executed at the CPU must be frequently moved
back and forth to the memory for storage, which can lead to a memory wall or the von Neumann bottleneck,
as shown in Figure 2.[4] Power-constrained computing systems are gaining further importance because all
electronic devices should function continuously in always-connected environments. Analyses of the workload
of traditional computing systems have clearly indicated that real-time applications, such as hand-tracking
services and audio recognition, consume more than half of the total energy when moving and storing their
data rather than performing computations.[5] These problems have necessitated the development of new
computing systems to overcome power inefficiencies by minimizing the sequential processing.

Figure 2: Transition to non von-Neumann architecture where the multiple synaptic array blocks for executing
VMM in the place where the memories are stored in a similar manner are implemented, thereby eliminating
memory wall bottleneck. Instead of binary synaptic weights based on SRAM, nonvolatile analog synaptic
weights are preferred to maximize hardware performance in the view point of recognition accuracy and power
efficiency. Single transistor structure or the resistive memory connected to either the transistor (1T–1R) or
selector (1S–1R) configurations can be suitably used for the architecture, as shown in the bottom box. The
portion of the neuronal elements also needs to be compact by exploring new devices and volatile memories,
as shown in right box.

The implementation of the energy-efficient processor was based on the basic structure of the brain, which
comprises biological synapses numbering on the order of 1015 connected to neurons on the order of 1011.[6] The
data in the form of synaptic weight (w) is transferred neuron-to-neuron through the synapses in parallel.
When the sum of the weights in the neuron exceeds a certain threshold, the neuron responds by generating sig-
nals and passing them to other synapses. Because of the parallel-connected synaptic configuration, high-level
cognitive functions in the brain can be performed by consuming only tens of watts.[7] Based on the expec-
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tation of attractive low-power benefits, understanding the brain’s structure and essential roles has initiated
the development of neuromorphic algorithms through the building of artificial neural networks.[8-12] The
input and output neurons in each layer are linked through hidden layer neurons, which is a perceptron
structure.[13] The basis of the neural network algorithms is to classify specific outputs by multiplying input
vector signals and synaptic weights through forward propagation. Each neuron plays a role in linear (or
binary) classification to determine whether to continuously process the signal based on the sum of the cal-
culations. By inserting more hidden layers to perform additional perceptron processes, the multilayer neural
network enables the solution of complex problems and extension of the functionalities to logical functions
such as Boolean logic. Thus, such deep neural network (DNN) algorithms outperform conventional methods
specifically in case of recognition and classification tasks to determine the desired output from unknown
inputs.

The algorithm relies substantially on iterative arithmetic calculations such as vector–matrix multiplication
(VMM), or multiply–accumulate (MAC) operation, which runs on graphics processing unit (GPUs)-based
platforms[9] that are appropriate for parallel processing or application of specific integrated circuits.[14] The
time-consuming computation is architecturally accelerated by using the cross-point array architecture in
which synaptic elements are positioned between lines carrying input and output signals crossing each
other.[15] Neuromorphic hardware systems are simply described as having multiple synaptic arrays as weight
matrix blocks, as shown in Figure 2.[16] Neurons located on the edge of each array convey inputs and out-
puts to communicate with other segments. The voltage inputs via the word lines (WLs) in parallel reach
the synapses and are subsequently multiplied by the stored synaptic weight encoded in the form of the
conductance (G), according to Ohm’s law. Unlike normal memory operations in the cross-point array that
read conductance at a single selected cell, the multiplication takes place at every cross. The weighted sum
current as a result of the sum of each output along the bit line (BL), based on Kirchhoff’s current law,
is fed to peripheral circuitries (e.g., analog–digital converters and multibit sense amplifiers) serving as the
neuronal element. When the output results differ from the expected values, the signal moves back to the
synaptic array, and the synaptic weights are adjusted using a gradient descent method to reduce errors based
on the back-propagation algorithm,[8] which is the method used by the neuromorphic system to learn newly
acquired information and provide accurate inferences. VMM operations are performed where the weights are
physically stored, alleviating memory wall problems.[17] Therefore, for the in-memory computing platform
based on the cross-point array architecture,[18] selecting the appropriate devices as the fundamental build-
ing blocks for synaptic and neuronal elements is important for implementing the neuromorphic systems in
hardware.

Recently, significant advances in neuromorphic hardware have been successfully reported and demonstrated.
Most studies used static random-access memory (SRAM) with eight transistors arranged as the synaptic
device.[19-21] However, the SRAM with digital synaptic weights “0” and “1” is unable to satisfy the numerous
parameters used in the algorithms.[21] Although the single transistor unit has been significantly reduced to a
few nanometers of technology nodes,[22] the large footprint occupied by multiple transistors creates an area
overhead. This problem has garnered significant attention to emerging memory technologies for compact and
analog weight storage.[23-29] Notably, the newly available memory options are based on resistance changes, in
contrast to the conventional storing of charges in a capacitor or floating gate.[30, 31] Most resistive memories
are thus essentially simple metal–insulator–metal systems, which allow the highest memory capacity in the
lowest occupied cell area. The specific denotation of each resistive memory is determined by how the material
systems respond to external electrical stimuli. Magnetic random access memory (MRAM)[32] utilizes the
orientation of the spin while the rotating objects become dipoles in ferroelectric memory devices.[33] The
reversible phase transition between amorphous and crystalline states in chalcogenide materials leads to a
difference in resistance, known as phase change memory (PCM).[34] Ion migration in most nonstoichiometric
materials, driven locally or globally by an electric field, enables the resistance change as in resistive switching
RAM (RRAM)[35, 36] or electrochemical RAM (ECRAM).[37] State-of-the-art resistive memory technologies,
excluding the ECRAM, have been integrated into [?]20 nm nodes.[38-41] For a fair and systematic comparison,
the latest SRAM is assumed to scale up to a few tens of nanometer nodes.[42] The accelerator performances
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are benchmarked while considering end-to-end design options from the device- and circuit- to algorithm-
level. Unlike the SRAM, the assigned multiple weights are retained even when the power supply is turned
off, thereby minimizing standby leakage power.[43] This implies that by using the resistive synapses that
function optimally with the cross-point array architecture, the entire system can afford superior throughput
and energy efficiency.

The neuron node adjacent to the synaptic array is often neglected in the neuromorphic system study. After
the analog computation in the cross-point array, the weighted sum current at the end of each BL should
be processed (e.g., converted to voltage spike or digital pulse),[44] which is a vital role of the biological
neuron that receives the current from the synapses and thereafter decides whether to activate an action
potential to the next neurons in the neural network. Typically, the silicon complementary metal–oxide–
semiconductor (CMOS)-based neuronal circuits comprising tens of transistors with a capacitor are used for
implementing the integrate-and-fire neuron model.[45] The weighted sum current is first integrated into the
capacitor placed at the end of the BL. When the charged voltage exceeds the threshold, digitized output
voltage spikes are generated through the circuitry. By counting the number of the output spikes that
are designed to be proportional to the amplitude of the read-out current, the neuron node is capable of
determining the output firing strength following activation functions such as sigmoid, tanh, softmax, and
rectified linear unit.[46] However, the complex neuronal circuit with a capacitor clearly occupies a substantially
larger footprint than the BL pitch of the cross-point array. The pitch mismatch problem inevitably causes
a single neuron node to be shared with multiple BLs, which implies that the weighted currents computed in
parallel from the synaptic arrays have to be sequentially processed.

Herein, we first discuss the advances in the PCM and RRAM, where significant progress has been achieved,
to address the requirements of the neuromorphic synaptic devices. Recent strategies based on the prominent
specific characteristics of other candidates such as ECRAM, ferroelectric memory, and MRAM to overcome
relevant challenges have also been explored. Next, we have introduced studies that explored compact neu-
romorphic neuronal devices based on either two-terminal switches or volatile memories, highlighting the
advantages of these devices from an area and energy perspective, as shown in Figure 3. Finally, we have
concluded the article by indicating future study based on the current status to boost neuromorphic system
performances.

Figure 3: Emerging neuromorphic device technologies are presented to emulate non-volatile analog synaptic
and compact neuronal elements.
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. Neuromorphic Synaptic Devices

PCM

Emerging resistive memory technologies are well-developed in the order of MRAM, PCM, and RRAM from
a typical memory application perspective. However, in neuromorphic applications, the PCM led to the
introduction of new analog synaptic weight elements by identifying and defining new important characteristics
(e.g., linearity and symmetry) as well as conventional requirements for the memory functions (e.g., endurance
and retention). The resistance of the PCM depends on the crystal structure of the chalcogenide materials
such as Ge2Sb2Te5 (GST).[47] In general, it is relatively easy to transmit electrons in a crystalline state,
whereas the electrical conductivity is lowered when the structure is transformed to an amorphous state.
The two phases can be reversibly changed by first melting the solid-state chalcogenides into a glassy state
and subsequently controlling the time required for the ions to be rearranged. To effectively generate heat,
a confined electrode serving as a heater is normally used to maximize the current density by reducing the
region in which current flows. Applying a pulse that drives a current induces Joule heating, and the phase
near the electrode begins to melt, resulting in a mushroom-shaped switching area. Instant cutting off of the
pulse satisfies the glassy state of the chalcogenide. It results in a significantly disordered amorphous state,
showing a high resistance state (HRS), known as a reset process. Meanwhile, when sufficient time to relocate
the ions to a thermodynamically stable position is provided during the molten state, the crystalline state
can be formed to obtain a low resistance state (LRS), known as a set process. The analog behavior in the
PCM was observed by subdividing and fine-tuning the intermediate pathways that changed from the HRS to
LRS, or vice versa. It was possible to experimentally achieve a distinguishable 3-bit state corresponding to
the synaptic weight precision by elaborately adjusting the switching current directly related to the volume
of the phase transition.[48]

Two important stages are performed in the neuromorphic systems implemented with the cross-point PCM
synaptic arrays.[49] In the inference phase, weights predefined from the software or external cloud servers,
which is a training (or learning) process, are assigned to each PCM device and mapped to the array to extract
the correct value according to input patterns after the VMM execution. The capability of the multiple
weights in the PCM allows more numerous and complicated input patterns to be recognized accurately. The
accuracy and robustness of the inference are thus related to the state-stability of each state. However, despite
the exclusion of the disturbance contributed by accumulative stress induced by the repeated input voltage,
the states in the PCM were drifted to the HRS over time due to structural relaxation of the amorphous
phase,[48] making it difficult to ensure each state with a reasonable margin of error. To improve state-
stability, an additional metallic liner was introduced to mitigate the drift. Consequently, nearly negligible
drift and noise reduction were achieved.[50]

In addition to inference accelerators, where the system recognizes and categorizes provided information, there
is a demand for the systems to respond in real-time to unknown trends. Because the power consumption
is mostly hindered by data movement, the training should be performed within the hardware itself. In the
training phase, the synaptic weight within the provided dynamic range of the multilevel states is updated
and plays an important role in achieving high recognition accuracy.[49] The resistance in the PCM was freely
modulated in both upward and downward directions, but the amplitude of the reset pulse must occasionally
be higher than the previous step.[48] Identifying a specific-state first and changing the pulse conditions ap-
propriately became an area overhead in the peripheral circuit and extra burden on its complexity, consuming
more power and increasing latency. Therefore, the state should be updated only by the number of identical
pulses having similar widths and magnitudes. In the PCM, however, different switching dynamics from
crystalline to amorphous or vice versa caused an asymmetric response in the resistance states.[47] When the
identical set pulse was applied to the initial HRS of the PCM, the partially crystallized portion expanded
in direct proportion to the pulse number. In the situation in which this conductance increase was defined
using potentiation, the intermediate states were controllable. Meanwhile, the identical reset pulse applied for
depression, which refers to a decrease in conductance, caused a rapid drop in resistance from the LRS and
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reached the HRS promptly. Specifically, the degree of the change in conductance during the potentiation
was initially high during the pulse event and thereafter reduced, resulting in a nonlinear response. This
implies that the PCM devices, which have the states close to the LRS in the array, are not trained properly,
thereby degrading the recognition accuracy of the system. Moreover, the amount of increase or decrease in
any given state of the PCM should be similar because the state of the PCM does not consistently change in
a similar direction in the systems. However, due to the weak linearity and symmetry of the PCM, training
cannot be effectively conducted.

One of the approaches used to overcome the asymmetric response of the PCM was to only use a potentiation
regime that exhibits analogous conductance by periodically resetting (or refreshing) all information to its
original state.[51] For this technique, a pair of two PCM elements for positive conductance (G+) and negative
conductance (G-) comprise a single synaptic device to encode actual weight (w = G+ – G-) and also represent
its negative value. The weight was increased to a target value by a single step of applying the identical
pulses. To lower the weight, depression was performed using a two-step method in which the both PCMs
were reset to the initial state. Thereafter, one of the PCMs in the pair, which is responsible for the positive
conductance, was only activated again by the pulses while the other PCM representing negative conductance
maintained its state. A multilayer perceptron comprising 500 × 661 PCM arrays using the technique has
been experimentally implemented.[49] A recognition accuracy of [?]82% was achieved for Modified National
Institute of Standards and Technology (MNIST) dataset; however, it was lower than the expected level of
97% due to imperfect PCM device characteristics.

RRAM

The relevant findings, as detailed in previous sections, regarding the device guidelines for an analog synapse
using the PCMs have highlighted the potential of RRAMs. In case of the RRAMs, which generally represent
devices that use oxygen vacancies (or oxygen ions) as mobile species, oxygen vacancies are created by breaking
the bonds between metal and oxygen either at the bulk oxide or interface.[35, 36] Alternatively, cations are
supplied from electrodes such as Cu or Ag outside the materials, which is known as conductive-bridge RAM
(CBRAM).[52] Whether the mobile species are anions or cations, the ions driven by the applied set field are
clustered, eventually bridging the two separate electrodes. Instantaneously, high current can thus be observed
in the RRAM through the formation of a conductive filament. Meanwhile, as the opposite reset voltage
spreads the oxygen vacancies from the filament, the filament starts to dissolve through an electrochemical
reaction. The current flow is limited as the filament is disconnected. In general, a compliance current
that limits excess current over a preset value is applied to the RRAM to prevent permanent breakdown.
The magnitude of the compliance current directly determines the amount of current flowing through the
RRAM, which implies that the size of the filament is provided. As the filament thickens by increasing the
compliance currents, a lower LRS is continuously achieved. In contrast, the higher negative voltage removes
more oxygen vacancies from the filament, thereby forming a switching gap between the electrode and the
remaining filament. The extended gap can have multiple HRS in the lower direction.

Through using a cross-point array with only a single RRAM[53, 54] or one-transistor and one-resistor (1T–
1R) configuration,[55-59] diverse classification and recognition features and functions have been explored and
demonstrated experimentally. A two-layer perceptron has been constructed by the building of 128 x 64
Ta/HfOx/Pt (from top to bottom) based 1T–1R arrays.[55] The conductance toward a higher level was
precisely tuned by the gate voltage of the monolithically integrated transistor. Due to the use of the two
pairs of the RRAM as the single synaptic element discussed in case of the PCM, the conductance in the
lower direction was achieved by first applying the reset pulse to initialize the state, and the gate voltage was
thereafter increased. The tunable linear and symmetric update of the conductance with minimal variation
allowed the hardware neural network to be trained properly, experimentally achieving an accuracy of 91.71%
of the MNIST dataset.

Although the inference task has been successfully demonstrated using the well-trained analogous conductance
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Figure 4: Materials and device engineering of the RRAM underlying filamentary switching mechanism
allowed the conductance to be adjusted linearly and symmetrically through identical pulses. Reproduced
with permission.[

56] Copyright 2016, IEEE.

states, the neuromorphic hardware system can further be made to be energy efficient by making a device
environment, where the weight update can be driven by an identical pulse scheme,[60] as discussed earlier.
As identical pulses are successively addressed to the HfO2-based RRAM, the asymmetric response of the
conductance due to nonlinear potentiation was observed,[56] which was an exactly opposite property of the
PCM. Once abrupt conductance jumped at the initial pulse due to the formation of the filament, no more
conductance increase was observed in the potentiation. The conductance was adjusted by the number of
negative pulses and the slope of the decrease in conductance was determined by the amplitude and width of
the pulse. A microscopic physical description of the RRAM that investigated the link between the filament
evolution and the electrical behavior revealed that the formation of a strong filament caused the binary state
during the potentiation.[61] In contrast, it was discovered that an alternative scenario, where the radial size
of the filament is changed, is preferred to have a linear current response. The first attempt was to engineer
the filament dynamics from the next cycle as desired because an abruptly grown filament in the initial state
was difficult to control in working principle. Introducing an additional barrier layer of AlOx featuring a
slower oxygen mobility compared with that of the HfO2 caused the dissolution process of the filament during
the reset to be retarded, as shown in Figure 4.[56] It resulted in an incompletely disconnected filament. In
the subsequent set cycle, the weakest constriction part of the filament, where the bilayer was contacted,
was to be a plausible switching region by moving back-and-forth in the vacancy while the filament was still
connected between two electrodes. Instead of growing in a vertical direction, the lateral expansion of the
filament was discovered to be facilitated to update the conductance linearly, depending on the identical
pulses. Other methodologies to manage the generation and migration of the oxygen vacancies in the initial
stages, prior to these vacancies making the strong filament, have been proposed. By using a thermal barrier
of TaOx with low thermal conductivity, the heat that is produced during the device operation can be
confined into the HfO2 layer.[62] The heat spreads the distribution of the vacancies extensively while the
vacancies were electrically driven to form the filament as is normal. The laterally expanded filament shape
seemingly enabled the analog set transition in the I –V curve and pulse switching. In addition, to exploit
the temperature as another kinetic terminology in ion transport, formation energy of the vacancies was
reduced to lower the probability of generating the vacancies using an electric field.[63] It was realized that
by incorporating dopants into the HfO2 matrix, bonding strength was reduced. The uniformly distributed
dopants facilitated the broad making of multiple filaments, resulting in analogously updated behaviors in both
polarities. Even at a high temperature, the multiple states were distinguishable, ensuring the information at
the peripheral sensing circuit was accurate. Thus, hardware systems with eight processing blocks comprising
128 × 16 TaOx/HfO2-based 1T–1R analog synapse arrays were successfully integrated to implement a five-
layer convolutional neural network to perform MNIST image recognition.[58] The clear distribution of 1024
RRAM devices in 5-bit state within the current range of 0.4–4 μA without any overlap was also achieved by
an identical pulse train with a substantially fast speed of 50 ns. Consequently, a high accuracy of more than
96% can be achieved. More importantly, the neuromorphic systems indicated that more than two orders of
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magnitude resulted in better power efficiency, whereas one order of magnitude resulted in better performance
density compared with the CPU-based accelerator.

Similar hardware performance was also verified through mass-produced Ta2O5/TaOx -based 1T–1R
synapses.[59] The uniform analog states linearly tuned from 20 to 50 μA with a verification technique that
allowed a maximum recognition accuracy of 90% on the MNIST database. The 180 nm Ta2O5/TaOx -based
RRAM exhibited a similar number of synapses per unit area when compared with a 65 nm SRAM. However,
due to the reduced operational power of the RRAM device, the efficiency in performance and acceleration
inference was more than three times, which was sufficiently high to enable a real-time recognition service.
Furthermore, due to the local filamentary switching, the RRAM was scaled in a 40 nm test-chip, the ef-
ficiency running the neural network workloads can be further improved. In Table 1, reported array-level
RRAM-based synapses were compared to identify the normal range of the conductance states and the pulse
conditions that were typically required to control the states in most of the HfO2 device stacks. Considering

Con-
fig-
u-
ra-
tion

Device
stack

Ar-
ray
size

Dynamic range of
conductance

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
note-0002 73

Ref.

1T–
1R

Ta/HfO2/Pt128
×
64

100–1100 μS Varying V g from 0.6 V
to 1.6 V (500 μs)

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0055

1T–
1R

TiN/HfO2/AlOx/TiN[?]K 20–60 μS V g = 1.2 V, VBL = 0.9
V (100 μs)/V g = 1.5

V, V SL = 1 V (100 μs)

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0056

1T–
1R

TiN/TaOx/HfAlOx/TiN128
×
8

0.4–4 μA a) V g = 3.5 V, VBL = 1.8
V (50 ns)/V g = 8

V, V SL = 1.9 V (50 ns)

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0057

1T–
1R

TiN/TaOx/HfOx/TiN128
×
16

2–20 μS V g = 1.8 V, VBL = 2 V
(50 ns)/V g = 4.7

V, V SL = 1.8 V (50 ns)

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0058

1T–
1R

Ir/Ta2O5/TaOx/TaN4
m

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
note-0001 78

Varying V g https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0059

1R Pt/Ti/TiO2–
x/Al2O3/Pt

20
×
20

10.5–100 μS Tuning algorithm https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0053

1R Pd/WOx/Au54
×
108

2.17–4.67 μS 1.8 V (82 μs)/–1.8 V (82
μs)

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0054

1R Pt/AlOx/TiN/PCMO/Pt32
×
32

7–50 nS 3 V (1 ms)/–3 V (1 ms) https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0064

3D
1R

Ta/TaOx/TiO2/Ti4
×
4

80–130 nS 3 V (5 ms)/–3 V (5 ms) https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0065

Table 1: Considerations for the synaptic characteristics based on array-level RRAMs. a) The value was
represented in the form of current. b) In the 1T–1R configuration, bit-line voltage (V BL) was applied for
the potentiation, whereas source-line voltage (V SL) was used for the depression. The state was tuned by
adjusting the gate voltage (V g)

the operating power, the maximum conductance of the synaptic device is one of the key governing factors
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in determining and boosting the neuromorphic hardware performance. This is because if the conductance is
significantly high, the size of the transistor of the 1T–1R and peripheral circuit (e.g., multiplexer) should be
increased to avoid voltage drop.[42] Significant area overhead occurs and the systems operate slowly, resulting
in longer latency and reduced throughput. Accordingly, the noticeable advantage of the RRAM over the
PCM is a lower operating current due to non-Joule heating-related switching mechanism, implying synaptic
weights in a lower conductance range. However, in practice, non-negligible parasitic components such as
line resistance are involved in the cross-point array.[66] The voltage drop due to the line resistance is sponta-
neously increased when the feature size of the interconnect line is scaled. In the column of the array nearest
to the voltage source, most of the applied read voltages are delivered properly to the synaptic devices without
any noticeable loss, accurately executing the multiplication. However, the read voltage decays along the line,
and the voltage is significantly lowered in the farthest cell. The weighted sum current is thus lower than
expected because the lowered read voltage is multiplied even though the given weight remains unchanged. It
has been reported that the operating current of the RRAM can be reduced to [?]1 μA.[67] Note that the low
current operation in the RRAM indicates that the filament weakly comprises a lesser number of vacancies
and no longer ensures metallic behavior exhibited by the stronger filament clustered from denser vacancies.
Consequently, in the current–voltage (I –V ) curve, the current at the LRS started to get distorted nonlinearly
with respect to the voltage. It caused the conductance measured at the reduced read voltage to be lowered
exponentially, and deviation of the actual computed weighted sum results became pronounceable. Therefore,
studies have been conducted to carefully design electrode materials that can modify the conical shape of the
filament to dissipate heat appropriately[68] or to compensate the nonlinearity with circuits.[69] Strengthening
the I –V trace of the RRAM linearly allows the achievement of constant conductance, which can be less
affected by the voltage drop.

Nonideal factors such as nonlinearity, asymmetry, and limited conductance range have been intensively stud-
ied in device and system-level analysis,[70] but reliability concerns such as data retention, cycling endurance,
variability, and failure have been less discussed and explored.[71, 72] The conductance states can be affected
in unexpected ways by various reliability issues. For simplicity, the conductance degradation trends were
categorized in two major ways by considering whether the weighted sum current was consistently changed
toward a certain direction or not. When the external parasitic components such as line resistance or con-
ductance drift were considered at a specific BL, the output current was always changed uniformly due to
the lowered input voltage or changed conductance with respect to the time, causing accuracy deterioration.
Due to the consideration of the variation of the RRAM as a true stochastic behavior due to an inherent
working principle, each weight could either be lower or higher than the criterion (e.g., the median). Thus,
the lowest weight was compensated by the highest weight at the selected BL. This result indicated that the
total weighted sum at the end of the BL was near the expected value. This explains the reduced effect of
the non-uniformity of the individual devices on the accuracy of the recognition. The non-uniformity can
introduce advantages that can help overcome the challenge depending on neural networks.[73] Learning with
a gradient descent scheme allows finding the optimum value defined by the global minimum; however, the
learning process can converge to the local minimum level and be stuck while finding a route. The variation
in the weights caused by non-uniformity can act as the driving force to escape the minimum area.

To minimize spatial and temporal variations in the filamentary RRAMs that affect accuracy, a novel ma-
terial engineering technique was proposed. Instead of filaments formed randomly during device operation,
dislocations in the material were deliberately threaded to confine the path.[74] Thus, ions preferred to travel
through the 1D channels, significantly improving uniformity. In the early stage of the RRAM-based synaptic
element, an electrical barrier, such as Schottky barrier modulation, which is smoothly controlled by the
movement of ions in the entire active area along the electric field, was used as a more uniform switching
mechanism.[64, 65, 75] The gradual conductance update that is proportional to the number of identical pulses
was available, but the conductance increase (or decrease) was substantial at the very first step from the
initial HRS (or LRS), respectively. It resulted in a highly asymmetric conductance response versus the pulse
number. A slow speed of a few ms to drive the ions over the entire area was also another critical problem
(see Table 1). Therefore, the exploration on the interfacial mechanism has been rarely studied currently in
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two-terminal device structures, but a similar ion movement mechanism has regained substantial attention
and expanded by using a three-terminal structure and new materials, as will be discussed below.

ECRAM

The ECRAM, which was only designed for ultimate linear and symmetric synaptic characteristics, has been
proposed due to the need to improve the controllability of ion transport. By using the traditional three-
terminal transistor structure, the channel conductance between the source and drain is precisely tuned by the
number of mobile ions provided by the gate. Motivated by the principle of a solid-state ion battery in which
mobile Li ions stored at the cathode are transported to the anode,[76] a channel material of LiCoO2, which is
capable of providing Li ions due to weak bonding, was used as the channel material.[37] To promote effective
migration of the Li ions, LiPON material was used as an electrolyte. When a negative voltage was applied to
the gate and source (V GS), the intercalated Li ions in the LiCoO2 channel were pulled to the gate, which was
a write operation. In the empty position where the Li ion was released from the LiCoO2, the valence of Co ion
was changed from 3+ to 4+ to maintain charge balance, generating positive charge. When the n-type oxide
semiconductor MoO3 was used as the channel, due to the formation of the electrons at the positions where
Li ions were removed, an increase in conductance was observed by applying a positive gate voltage.[78] The
read path was decoupled with the write operation by applying voltage to the drain and grounding it to the
source with a zero V GS signal source. The current (I SD) flowing between the source and drain separated by
a long channel distance of 2 μm can thus be analogously adjusted by the proportionally modulated quantity
of the Li ions moved under the number of applied V GS signals. The conductance continued to increase
when V GS was simultaneously provided. A steady and constant current was observed when the gate voltage
was removed to identify the altered channel state. In general, the changed conductance lasted for several
weeks, and it was expected to continue to last for several months.

Other mobile cations such as H ion that emulates the role of the Li ions have also been examined, as
shown in Table 2.[77, 79-82] Unlike the Li ions embedded in the host material, the gate voltage pushed the
cations (e.g., H ion) toward the bottom of the electrolyte of WO3 while attracting the electrons to the top
of the channel.[82] It was discovered that the film quality and physical properties of each layer played a
crucial role in determining the dynamic range of conductance. Recently, a fully CMOS compatible ECRAM
device was reported by exploiting fab-friendly oxygen anions and metal oxides as the mobile source and elec-
trolyte/channel, respectively.[77] The ECRAM satisfied the requirements of the basic synaptic characteristics,
and it was also experimentally demonstrated in small-sized arrays.[83]

However, the achievable conductance range and operating conditions such as speed and voltage seemed to
be strongly and sensitively correlated to the materials and geometry of each layer. Therefore, it is important
to consider and design a material aimed at specific applications such as defining the required array size
and implementing appropriate drive circuitries. Moreover, similar to the challenge of the interface-type
RRAM, the ECRAM required a long pulse to drive ions through the entire area. Although the operation
was demonstrated in less than 10 ns, the tunable conductance range became very short as a result of a
trade-off relation.

Ferroelectric Memory/MRAM

When the device structure is not limited to the compact two-terminal structure, it is expected that highly
uniform and reliable synaptic characteristics will be achieved by exploring domain switching dynamics in
ferroelectric (or magnetic) materials instead of the ion migration that accompanies the inevitable inherent
stochasticity. As the voltage is applied to the ferroelectric oxides such as PbZrTiO3 or SrBiTa2O5, the dipoles
in the material begin to be rotated.[33] The orientation of the dipoles aligned in a similar direction allows a
spontaneous polarization and holds the state even when the voltage is removed. The ferroelectric material
can directly be implemented to the gate dielectric of the transistor, resulting in ferroelectric field-effect
transistor (FeFET).[84] However, the complex ternary oxide systems require a substantial thickness (greater
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Mo-
bile
ions

Electrolyte Chan-
nel

Linearity
(potentia-
tion/depression)

Dynamic
range of
conduc-
tance

Device size
(length ×

width)

Write
speed

Ref.

Li LiPON Li-
CoO2

0.1 150–250
μS

– 2 s https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0037

Li Li-
ClO4/PEO

MoO3 0.31 42–75 nS – 10 ms https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0078

Li LiPON WO3 0.35/0.27 1–3 nS 80 × 100
μm2 (smallest
size of 0.3 x

0.3 μm2)

1 s
(down
to 5
ns)

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0079

Li LiClO4 dis-
solved in

polyethyle-
ne

oxide

LiTiO2 – 40–80 μS 10 × 8 μm2 10 ms https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0080

Li Li3POSe Li-
CoO2

1.33/–0.34 2.5–40
nS

20 × 50 μm2 1 s https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0081

H H: SiO2 WOx0.44/–1.21 0.3–0.9
μS

– 1 s https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0082

H PEDOT:
PSS

Nafion – 50–100
nS

125 × 45 μm2 50 μs
(down
to 200

ns)

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0083

Oxy-
gen
va-

cancy

Metal
oxide/HfO2

WO3 0.6/–0.58 – 20 × 80 μm2 0.5 s
(down
to ¡ 10

ns)

[77]

Table 2: Comparison of characteristics of ECRAM-based synapses reported to date

than 100 nm) to realize the ferroelectricity, making it difficult to integrate into the FeFET structure. The
discovery of the ferroelectric behaviors in thin HfO2 materials (less than 20 nm) has led to the renaissance
of the ferroelectric memory toward the semiconductor industry[85] To realize the ferroelectricity, it has
been believed that phases of the HfO2 film need to be transformed to a particular orthorhombic phase.
Additional dopants such as Al, Zr, and Si have been proposed to facilitate structural evolution and stabilize
the metastable phase, as well as high-temperature (or pressure) annealing as a driving force.[86] Due to
the use of the HfO2 for the gate dielectric, a thinned ferroelectric layer that meets CMOS compatibility
simultaneously enables the scaling potential to be regained. It was proved that the latest FeFETs have been
demonstrated in 14[87] and 28 nm[39] technology nodes.

The FeFET operation is the similar to that of the FLASH memory. Applying positive gate voltage (V g) not
only induces the channel inversion in the p-type silicon substrate as is normal but also causes spontaneous
polarization in the ferroelectric gate dielectric that promotes the accumulation of electrons. Due to the
ease of supply of sufficient electrons, the condition of creating an inversion layer is satisfied at a lower
threshold voltage (V th) than that expected in the nFET. Meanwhile, the negative gate voltage switches
the direction of the dipoles in the doped HfO2 and negatively polarized charges induced near the channel,
pushing electrons away. As the V th is shifted in the positive direction, the memory window in V th is
exhibited. As the polycrystalline-doped HfO2 comprised multiple ferroelectric domains, it was possible to
be partially polarized, enabling fine-tuned threshold voltages.[88, 89, 94, 95] Consequently, continuous channel
conductance can be extracted from diverse traces of I ds–V g of the FeFET. For the FeFET-based synapse,
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three available pulse schemes were evaluated. The identical pulse showed the gradual potentiation, whereas
several states were only achieved due to a significant drop in the depression. By modulating the pulse width,
the nonlinear response in the depression was improved. This is because the long pulse sufficiently converts the
dipoles in the domain. Instead, the amplitude modulation scheme at a given pulse width of 50 ns increased
the amount of the switched domains each time the pulse was applied, exhibiting the highest states (5-bit) and
its symmetry. Due to the uniform synaptic behavior operated at a high speed, the neuromorphic system’s
performance indirectly verified by circuit-level macro simulators was discovered to have better accuracy of
[?]90% on the MNIST and faster latency than other emerging memory-based synaptic candidates.

It has also been presented that the ferroelectric layer was implemented into more advanced transistor struc-
tures such as finFET[90] and nanowire FET.[91] Interestingly, both scaled FeFET-based synaptic devices
seemed to have analogous conductance controlled by the identical pulse train. However, the linearity devi-
ated from the ideal trajectory, which caused a reduced accuracy of [?]80% compared with that of the planar
FeFET-based synapse (see Table 3).
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Config-
uration

Ma-
teri-
als

Dynamic range of
conductance

De-
vice
size

(length/width)

Pulse condition
for potentia-

tion/depression

Linear-
ity

(poten-
tia-

tion/depression)

Ref.

Planar
FeFET

Si:HfO2/SIONhttps://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
note-0003 135

500
nm/500

nm

Nonidentical
pulse + 3 to +5
V (1 μs)/–2 to

–4 V (1 μs)

– https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0094

Planar
FeFET

HfZrO/SiO2 0–65 μS 0.6
μm/20
μm

Nonidentical
pulse + 2.85 to

+4.45 V (75
ns)/–2.1 to –3.8

V (75 ns)

1.75/1.46 https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0088

Planar
FeFET

HfZrO/InGaZnO0.01-0.2 μS 300
μm/50
μm

Nonidentical
pulse +2.7 to
+4.3 V (10

ms)/–2 to –3.6
V (10 ms)

–0.8/–
0.7

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0095

Junc-
tionless

fin-
shaped
FeFET

HfZrO/SiO2 9–45 nS 120
nm/50

nm

Identical pulse
+ 3.7 V (100
μs)/–3.2 V (100

μs)

1.58/–
7.57

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0090

Nanowire
FeFET

Al2O3/HfZrO/GeOx– 105
nm/32

nm

Identical pulse 5
V (50 ns)/–5 V

(50 ns)

1.22/–
1.75

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0091

FTJ HfO2/SiO2 1–3 nS – – – https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0092

FTJ HfZrO 15–40 μS – Identical pulse 3
V (100 ns)/–3 V

(100 ns)

– https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0093

FTJ HfZrO/Al2O30.25–1.5 nS – Nonidentical
pulse +4.5 to
+8.85 V (10
μs)/–4 to –8.35

V (10 μs)

– https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0096

Table 3: Comparison of device structures and synaptic parameters for ferroelectric memory-based synapses

The ferroelectric capacitor alternatively denoted as ferroelectric tunnel junction (FTJ) was also used as a
stand-alone memory.[92, 93, 96] Unlike the FeFET-based synapse, where the conductance from the source to
drain is adjusted by polarization change occurring in the ferroelectric oxide between the gate and silicon
substrate, conductance through the FTJ is directly affected by up or down direction of the dipole. The
conductance of the FTJ is transmitted smoothly by the identical pulse. Due to the simple structure, the
FTJ-based synapse can be integrated into a 3D vertical NAND structure, where the FTJ is formed on the
sidewall.[92] Inherently low conductance range from 1 to 3 nS of the usual FTJ can slow down the system
during the read operation. However, the neuromorphic systems usually sense the weighted sum of the
multiple FTJs. Thus, the weight mapping and array size must be carefully designed to calculate the proper
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output current that does not affect the speed read by peripheral circuitries.

Meanwhile, MRAM utilizes the orientation of the spin rotated by the direct voltage or magnetic field of
magnetic metal electrodes placed on either side of a thin tunneling oxide, which is a magnetic tunnel junction
(MTJ) structure. Due to the achievement of only two HRS and LRS in the MRAM driven by spin-transfer
torque (STT), implementation is expected for limited neuromorphic systems that routinely perform inference
on the small-sized input data by adopting binary neural network (BNN) algorithms, where the weights
were quantized and binary.[97, 98] The digital state can be further extended while the multiple MTJs are
stacked.[99] Recently, a new writing mechanism called spin-orbit torque (SOT) has been suggested by passing
the write current through an additional in-plane SOT layer, typically composed of heavy metals such as Pt
and Ta.[100-102] The current flowing via the SOT layer creates a spin current in the vertical direction, where
the MTJ is located, due to spin Hall effect. The resistance state of the MTJ can be fine-tuned because the
write current flows through the low-resistance heavy metal to generate spin-orbit coupling (see Table 4).
However, as the range of achievable resistance is small, the MRAM has been studied primarily as memory
applications so far. It is a preliminary stage for the synaptic applications, so a lot of parts need to be further
studied.

Writ-
ing

mecha-
nism

Device stack State Dynamic range of conductance Ref.

STT CoFeB/MgO/reference
layer

Bi-
nary

0.33–0.53 mS https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0098

STT Multiple MTJs
(CoFeB/MgO/reference

layer)

Ana-
log

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
note-0004 152

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0099

SOT CoFeB/MgO/CoFeB/WBi-
nary

– https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0100

SOT Ta/Pt/Co/Ta/Co/AlOxAna-
log

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
note-0005 155

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0101

SOT Ta/MgO/Co/[Co/Ni]/PtMn/Pt/TaAna-
log

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
note-0005 157

https://onlinelibrary.wiley.com/doi/full/10.1/aisy.202000111#aisy202000111-
bib-0102

Table 4: Comparison of synaptic behaviors for magnetic memory-based synapses. a) The value was shown
in the form of resistance. b) The value was shown in the form of Hall resistance

Novel Hybrid Synaptic Configuration

To date, several studies have attempted to improve the linear response of the conductance as a function
of voltage and identical pulse train in the analog emerging memories for weighted sum and weight up-
date operations, respectively. The absolutely small dynamic conductance step adversely becomes the most
significant problem to have considerable effect on the accuracy of the hardware level beyond unit device
improvement. Therefore, to compensate the imperfect synaptic devices, hybrid synaptic configuration has
been proposed.[103, 105] The purpose of the configuration is to subdivide the role in the training, thus relaxing
stringent demands to be satisfied by a single synaptic device. Depending on the numerical importance in
the neuromorphic systems, two pairs of conductance elements were newly configured to be a single synaptic
element as follows
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?=?(?+-?-)+(?+-?-)w=F(G+-G-)+(g+-g-) (1)

where F defines a significant factor that indicates the numerical significance of the weight, G+ and G- denote
the normal conductance values of the higher significant conductance (HSC) pair, and g+ and g- represent
newly introduced conductance values of the lower significance conductance (LSC) pair. It has been recently
discovered that the use of capacitors can result in significantly linear conductance update.[104] More specif-
ically, the capacitor based synaptic configuration comprised three parts: 1) a readout FET connected to
the capacitor, 2) a p-type FET (pFET), and 3) an n-type FET (nFET) for adding and subtracting charge
to the capacitor, indicated in 3T–1C configuration. The charge on the capacitor represented the synaptic
weight, and it was elaborately varied by the gate voltage for charging and discharging to the capacitor node.
However, intrinsic volatile properties of the capacitor, which take natural decay of the charge, should be
refreshed periodically. Through exploiting the benefit of the linearly updated synaptic weight even for a
short duration, the volatile component was defined to be LSC (g+ and g -). In other words, during training,
only the LSC pair was updated linearly and bidirectionally. The trained weights were thereafter transferred
to the nonvolatile PCM devices serving as HSC (G+ and G -), so that the weights could be stored for a
long time. Consequently, the 3T–1C and 2 PCMs represented the weight. This approach enabled software-
comparable hardware performance with accuracy of [?]98% and 88% for the MNIST and Canadian Institute
for Advanced Research (CIFAR)-10, respectively.

As an extended concept, the role of the volatile capacitor component was replaced by a nonvolatile FeFET
device, thereby saving the area and power substantially.[106] The pFET and nFET were used for a similar
purpose of providing and distracting charges, but the degree of the charge accumulation proportional to
the gate automatically affected the polarization in the FeFET. Gate voltage was applied to update the
weight induced through the polarization; thus, the update was automatically encoded at the FeFET. This
simplified process in the two-source transistors and one-FeFET (2T–1F) can eliminate leakage concern due
to the nonvolatility and minimal device area occupied by the capacitors and 2 PCMs. These hybrid synapses
were expected to exhibit better training accuracy at the expense of the area.

Neuromorphic Neuronal Device

The cross-point array of densely arranged analog synapses used for producing VMM results for the inputs
discussed in this article represents one of the layers of the neural networks. Identification of the outcome
and communications between the arrays is typically conducted via the silicon-based CMOS neuron circuit
by converting the weighted sum, in analog manner, to digital bits or spikes. It is discovered that a crucial
function of the neuronal device is to turn on and off depending on the inputs, similar to the switch element.
Fortunately, the selector serving as the two-terminal switch has been intensively studied and developed for
constructing large memory arrays and stacking them in three dimensions.[107] Based on a particular V th, the
current difference of off-state (Roff) and on-state (Ron) of the selector occurred because of several orders of
magnitude. This threshold-switching behavior has been demonstrated in Mott insulators such as VO2 and
NbO2 that are driven using a metal–insulator transition (MIT) mechanism.[108] Various binary, ternary, and
quaternary chalcogenide systems also exhibited the current response known as ovonic threshold switching
(OTS) due to a lone-pair electrons in the chalcogen atoms.[109]

Threshold Switching for Integrate and Fire Neurons

Selector with Capacitor for Neuron

When specific conditions are met, the selector supplies high current temporarily, thereby serving as the
CMOS circuits in the neuron designed for the fire function. The input spikes, which are related to the
amplitude of the weighted sum, were consequently addressed, and charging and discharging at the capacitor
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occurred repeatedly. No output response was initially detected until the capacitor was completely charged.
When the charged voltage of the selector reached the V th, spike currents began to be generated.[110] The
rate of output spike generation can increase and decrease by modulating either input pulse interval or device
parameters of the threshold switch such as Roff, Ron, and V th related to how sensitively charging and
discharging is performed at the given input conditions.

The threshold-switching behavior can be also realized in the aforementioned CBRAM.[112] When the amount
of the sources such as Cu (or Ag) ions constituting the filament or the repulsive force between each ion
inside the filament was respectively limited or increased, the resultant instability of the filament promoted
spontaneous dissolution. This resulted in the CBRAM returning to the off-state when the applied voltage
was removed. Using the volatile memory with a Pt/Ag/Ag: SiOx/Ag/Pt structure,[111] the output spike
generation adjusted by the spacing and amplitude of the input signals was demonstrated. In addition
to the unit neuronal element, a prototype of fully integrated emerging devices based on neuromorphic
systems showing the interactions between the nonvolatile RRAM-based synapses and the volatile RRAM-
based neurons with capacitors were demonstrated experimentally. To perform an inference task on letter
patterns, the synaptic weights were pre-encoded in the 1T–1R device with the Pd/HfO2/Ta structure as we
discussed earlier. For each pixel of the pattern, different amplitudes of the input voltage were given and
fed into the synapse array. The VMM results were concurrently filtered, activating corresponding neuron
properties.

Capacitor-Less Neuron Design Exploiting Selector

For accumulation that dynamically tracks history of the addressed input signals, the selector-based neuron
seems to inherently require the capacitor. Attempts have been made to get rid of the capacitor, and the idea
here is to deliberately make the selector devices vulnerable to the external stress using glassy materials for the
volatile memory[113] or by strengthening the Joule heating mechanism on the VO2-based selector.[114] Even
when a voltage below V th was applied to the selector, the input pulses were stimulated to migrate the ions
to form the filament in the volatile memory or induce the phase transition in the selector. This continued
to steadily lower the Roff and eventually turned on the selector, which implied that a single selector could
emulate both integrate and fire behaviors. The degree of sensitivity of the accumulation of the damage under
stress in the selector with weak immunity determines the integration and timing of fire in this capacitor-less
neuron design.

Meanwhile, the progressive evolution of the HRS and its reach to the LRS in the nonvolatile PCM[115] and
FeFET[116] observed during the potentiation have achieved integration and fire functions. However, at the
cost of the nonvolatility of the memories, the reset process to restore the initial state corresponding to the
HRS for the next neuronal function should be processed periodically with additional circuitry. Accordingly,
the MRAM has been proposed as an alternative.[117] The binary resistance of the MRAM was reversibly
changed through spin-torque transfer. However, during normal operation, the LRS unexpectedly returned to
the HRS due to a back-hopping oscillation, which was considered as one of the failure mechanisms. Therefore,
the switching on and off was regularly observed at the specified pulse. Although the obtained frequency of
the on/off switching was a stochastic and probabilistic, frequency was discovered to be proportional to the
output current intensity. The 4-bit precision that can be distinguished by the MRAM-based neuron without
a capacitor and reset circuit achieved an accuracy of 82% to be obtained for the CIFAR-10 image recognition.

Threshold Switching for Oscillation Neurons

The fired output can be represented in different ways. When the NbO2-based selector was connected to a
load resistor, where the load resistance (Rload) is in between Roff and Ron of the selector (i.e., Roff > Rload >
Ron), in a voltage divider configuration, an oscillation in voltage was monitored in real time.[118-121] Most of
the voltage was initially applied to the selector because the Roff of the selector was greater than the Rload. As
the charged voltage at the selector exceeded the V th, the off-state of the selector was rapidly switched to the
on-state. Because the Ron of the selector was now lowered, the voltage began to discharge until the voltage
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remaining on the selector reached a hold voltage (V hold), which is the minimum driving force required to
maintain the on-state, below which the on-state of the selector was promptly switched to the off-state. The
reversible transition of the selector repeatedly induced the back-and-forth voltage charging and discharging,
causing an oscillation with a specific frequency in the range of V hold and V th. Taking one step forward
based on the single oscillation neuron with an off-ship discrete load resistor, an 1D 12 × 1 crossbar array that
structurally resembles a column of the weight matrix, where one neuron is connected with multiple synapses
in parallel for on-chip integration, has been demonstrated, as shown in Figure 5.[122] The single input pulse
was delivered to only one of the RRAM-based synapses, and the remaining synapses were floating. The input
pulse multiplied by the conductance at the selected RRAM was expected to be observed as a read-out current
along the BL at the NbO2-based neuron, resulting in an oscillation with a slow frequency of 110 kHz. When
more input vectors were loaded into the multiple rows of the synaptic array, larger amounts of the weights
were summed along the BL, resulting in a larger read-out current corresponding to the equivalently reduced
total resistance. Faster oscillation frequency was measured to be proportional to the analog column current.
This compact neuron facilitated the number of synaptic columns shared by one neuron to be reduced, thereby
outperforming the conventional silicon neuronal circuit in latency, area, and energy consumption.
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Figure 5: The input information can be judged by identifying the frequency of oscillation observed in
NbO2-based neuron. The integration of the neuron at the edge of the RRAM synaptic array, which con-
verts the weighted sum to the oscillation frequency, was experimentally demonstrated. Reproduced with
permission.[

122] Copyright 2019, IEEE.

Conclusion and Outlook

To perform cognitive and recognition workloads in the most efficient manner, hardware systems that im-
plement neural network algorithms are required. A typical performance metric for computing systems, tera
operation per second (TOPS), is extended to account for energy efficiency as TOPS per watt (TOPS/W).
This study showed that nonvolatile resistive memories and selectors are attractive technologies that not
only boost the TOPS/W in the systems up to a few tens of magnitude, which was a sufficient class to be
used for recognition in real time but also ensure software-equivalent accuracy on various recognition tasks.
Compared to digital SRAM as the binary synapse, the resistive memories stored analog information even in
the small cell area. However, for accelerating the neural network computations on the entire neuromorphic
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system rather than single device, the multiple states of the analog resistive synaptic element needed to be
tuned linearly by identical voltage pulses. Therefore, the aim of this review was to address recent progresses
and strategies to solve the problem, considering the underlying working principle of each memory candidate.
In summary, benchmarking and comparing key performance indicators was shown in Figure 6 to provide
design options for building neuromorphic systems. Due to the commercialization of the PCM in the memory
field, a solid understanding of physical mechanism and thorough reliability analysis that lead to the develop-
ment of reliable devices with advanced compensation circuits can continue to expand the possibilities of the
PCM for the neuromorphic computing systems. In addition to DNN, another spiking neural network for the
next-generation neural network was implemented on PCM-based neuromorphic chips,[123] motivating and
highlighting the need and importance of analog synaptic devices. However, the PCM seemed to be far from
the ideal synaptic device due to the limited achievable conductance states and its nonlinear and asymmetric
response to the consecutive identical pulses; hence the degradation of the recognition accuracy during the
training. This is because the phase-change behavior is very sensitive to the compositions of the chalcogenide
material. The composition of well-known GST materials was the result of optimizing the trade-off rela-
tionship between speed and operating current, making it difficult to modify the composition and materials
to improve synaptic properties. Therefore, the studies have primarily attempted to subdivide the synaptic
components such as arranging two PCM devices and adding 3T–1C devices to offset the shortcomings of
unit PCM. The RRAM, which can operate at a lower operating current than the PCM and can be scaled
at 10 nm, has been extensively studied for the synapses and has reasonably satisfied most requirements.
In addition to achieving linear and symmetric weight update through innovative material and device en-
gineering, defect-tolerant algorithms and circuitries have been developed to evaluate the reliability of each
state and various failure modes. For memory applications, the range from 1 to 10 μA was the preferred
operating current required for unit RRAM device considering the array size and sensing speed. Meanwhile,
for neuromorphic VMM accelerators, most RRAM devices in the column may be required for simultaneous
reading depending on the input vector in the worst case. Thus, the number of the RRAM devices placed in
the column is related to the quantity of current that the external drive and sense circuits can handle, con-
straining the maximum allowable array size. In addition, it should be considered that a reduced current level
of the RRAM distorted I –V linearity induces an actual weighted sum current that is lower than expected,
causing inference error. The most neuromorphic test-chips with peripheral circuits have been demonstrated
with the PCM and RRAM synapses with 1T–1R configurations. The three-terminal transistor will eventu-
ally be replaced by the two-terminal selector depending on the applications. The area improvement is clear
with the introduction of the selector, but conductance linearity as a function of voltage sweep and pulse
for weighted sum and weight update, respectively, can be affected.[66] The increase in the operating voltage
in the 1S–1R synapse due to the additional selector needs to be optimized while considering the operating
power consumptions. The ECRAM that utilizes the ion transport across the entire area, not locally, is
still in the early stages of research. The lateral conductance states can be maximally achieved because the
ions provided vertically were sophistically controlled from the gate in the ECRAM. However, the dynamic
range of the conductance extracted from minimum and maximum levels was low. Even at the expense of
the occupied area loss, the nearly perfect synaptic behaviors of the ECRAM was attractive to be used as
synaptic elements dedicated for on-chip training. The slow speed to drive the ions and uncertain reliability
issues that can be affected by scaling need systematic further investigation through a deep understanding
and linking of each role of the selected ions. The use of the ferroelectric polarization mechanism rather
than ion-migration-enabled reliable conductance of the FeFET synapses to be controlled symmetrically and
promptly. Nevertheless, the conductance related to the number of ferroelectric domains that are rotated in
the device and updated by energy- and area-inefficient nonidentical pulse scheme. The variability, which is
one of the noticeable reliability issues in the other resistive synaptic devices, is significantly low, but the
retention and endurance of the multilevel conductance should be further verified. To date, the synaptic
properties have been evaluated in the usual FeFET fabricated for memory applications. Specific engineering
methodologies aimed at neuromorphic applications leave design spaces to allow for conductance update in
the ferroelectric materials through the identical pulse. Device-level studies on the FeFET-based synapses
have been improved in recent years, but it is noteworthy that simulation modeling that accurately describes
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the physical ferroelectric behavior and matches the experimental results is well-established.[124] Design ex-
ploration for kernel operation of convolutional neural networks and DNN accelerators based on simulated
FeFET devices has been extensively studied to pioneer more diverse and appropriate options for using the
FeFET synaptic elements.[125] For the MRAM with the highest maturity among the emerging memory tech-
nologies from manufacturing process and physics perspectives, the analogous behavior beyond reliable binary
state has been observed by adopting a new writing mechanism called SOT. However, application flexibility
is expected to be low because it is difficult to control the current range that can be obtained and the small
on/off ratio ([?]2×). Using different types of resistive memories and conventional devices in a hybrid confi-
guration is considered the fastest way to implement fully functional neuromorphic systems compared with
developing a single universal memory to perfectly satisfy all the tough criteria. This approach complemented
the drawbacks of each memory with other devices, relaxing and alleviating requirements of synaptic devi-
ces. It also increases the degree of the freedom to use certain resistive memories that exhibit particularly
prominent features such as excellent linearity of the conductance within a very short duration.

Figure 6: Benchmarking overall performance indicators for the analog synaptic candidates.

For ultimate parallel computing systems, to process what is computed at the synapse in neuron, preference
is given for the implementation of the devices with the same size as the BL of the synapse array. Utiliz-
ing the capability to provide instantaneous current by the selector-based compact neurons enabled effective
classification of the analog weighted sum current based on integrate-and-fire or oscillation frequency modu-
lation technique. By precisely fine-tuning the ion migration and phase transition to have multiple states of
the nonvolatile PCM and RRAM for the analog synapse, and intentionally enhancing the volatility of the
memory for the neuron, all emerging memory-based neuromorphic systems have been reported.

Several aspects of the implementation and utilization of the neuromorphic hardware have remained unex-
plored. Hence, important features of the synaptic and neuronal devices may differ from speed, energy, and
capacity perspectives depending on the applications ranging from cloud, fog, and edge computing. In par-
ticular, unlike the conventional silicon transistors, in which performances have been improved primarily by
geometrical scaling and cell design, the synaptic and reliability characteristics of each emerging device are
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strongly related to the materials used. Further, we believe that unconventional computing platforms are
not limited to emerging device technologies, and it can be realized by CMOS and new devices integrated
systems.[126] Mixed CMOS-emerging memories hardware can make cognitive tasks more efficient, and will be
an intermediate step before ultimately implementing future computing systems implemented entirely with
non-CMOS devices. Therefore, it is hoped that the findings and approaches discussed in this article will be
a stepping stone toward significant technological advances that can lead to social change beyond building
neuromorphic hardware systems.
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• 37 E. J. Fuller, F. E. Gbaly, F. Léonard, S. Agarwal, S. J. Plimpton, R. B. Jacobs-Gedrim, C. D.
James, M. J. Marinella, A. A. Tlin, Adv. Mater. 2017, 29, 1604310.

• 38 J. G. Alzate, U. Arslan, P. Bai, J. Brockman, Y. J. Chen, N. Das, K. Fischer, T. Ghani, P.
Heil, P. Hentges, R. Jahan, A. Littlejohn, M. Mainuddin, D. Ouellette, J. Pellegren, T. Pramanik, C.
Puls, P. Quintero, T. Rahman, M. Sekhar, B. Sell, M. Seth, A. J. Smith, A. K. Smith, L. Wei, C.
Wiegand, O. Golonzka, F. Hamzaoglu, IEEE Int. Electron Devices Meeting, IEEE, San Francisco,
CA 2019, pp. 2.4.1– 2.4.4.

• 39 S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B.
Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D.-A. Löhr, P.
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• 85 J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P.

Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Ge-
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