High-resolution snow depth prediction using Random Forest algorithm with topographic parameters and an ecosystem map: a case study in the Greiner Watershed, Nunavut Julien Meloche¹, Alexandre Langlois¹, Nick Rutter², Don McLennan³, Alain Royer⁴, Paul Billecocq¹, and Serguei Ponomarenko⁵ November 24, 2021 ## Abstract Increased surface temperatures (0.7 per decade) in the Arctic affects polar ecosystems by reducing the extent and duration of annual snow cover. Monitoring of these important ecosystems needs detailed information on snow cover properties (depth and density) at resolutions (< 100 m) that influence ecological habitats and permafrost thaw. As arctic snow is strongly influenced by vegetation, an ecotype map at 10 m resolution was added to a method with the Random Forest (RF) algorithm previously developed for alpine environments and applied here over an arctic landscape for the first time. The topographic parameters used in the RF algorithm were Topographic Position Index (TPI) and up-wind slope index (Sx), which were estimated from the freely available Arctic DEM at 2 m resolution. Ecotypes with taller vegetation with moister soils were found to have deeper snow because of the trapping effect. Using feature importance with RF, snow depth distributions were predicted from topographic and ecosystem parameters with a root mean square error = 8 cm (23%) (R² = 0.79) at 10 m resolution for an arctic watershed (1 500 km²) in western Nunavut, Canada. ## Hosted file Snow_randomForest_V12.docx available at https://authorea.com/users/447864/articles/546782-high-resolution-snow-depth-prediction-using-random-forest-algorithm-with-topographic-parameters-and-an-ecosystem-map-a-case-study-in-the-greiner-watershed-nunavut ¹Université de Sherbrooke ²Northumbria University ³Arctic Research Fondation ⁴Universite de Sherbrooke ⁵Polar Knowledge Canada