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Abstract

In the context of atrial fibrillation (AF), traditional clinical practices have thus far fallen short in several domains such as
identifying patients at risk of incident AF or patients with concomitant undetected paroxysmal AF. Novel approaches leveraging
artificial intelligence have the potential to provide new tools to deal with some of these old problems. In this review we focus
on the roles of artificial intelligence-enabled ECG pertaining to AF, potential roles of deep learning (DL) models in the context
of current knowledge gaps, as well as limitations of these models. One key area where DL models can translate to better
patient outcomes is through automated ECG interpretation. Further, we overview some of the challenges facing AF screening
and the harms and benefits of screening. In this context, a unique model was developed to detect underlying hidden AF
from sinus rhythm and is discussed in detail with its potential uses. Knowledge gaps also remain regarding the best ways to
monitor patients with ESUS and who would benefit most from oral anticoagulation. The Al-enabled AF model is one potential
way to tackle this complex problem as it could be used to identify a subset of high-risk ESUS patients likely to benefit from
empirical oral anticoagulation. Role of DL models assessing AF burden from long duration ECG data is also discussed as a
way of guiding management. There is a trend towards the use of consumer-grade wristbands and watches to detect AF from
photoplethysmography data. However, ECG currently remains the gold standard to detect arrythmias including AF. Lastly,

role of adequate external validation of the models and clinical trials to study true performance is discussed.

Introduction

The ECG has an incredible untapped diagnostic and prognostic potential. This easy to use, omnipresent
technology has been largely unchanged for a century but still remains critical to the everyday clinical work-
flow. It is non-invasive, provides rapid actionable insights, easy to perform and readily available at a low
cost compared to advanced cardiac imaging modalities.! These attributes make it a go-to baseline evaluation
test for many patients across the spectrum of healthcare settings.2

Currently, the ECG is used primarily as a diagnostic tool rather than a broad screening tool for conditions
other than rhythm disorders.?>® This is largely because standard ECG interpretation using analogue or
feature-based approaches lack the negative predictive value to exclude cardiac disease (such as myocardial
or valvular heart disease) in ECGs that ‘appear normal’. Furthermore, the accuracy of results depends
considerably on the interpreter’s competency level. However, this could soon change as technological advances
are breathing new life into this century old modality.

This potential change has come forth due to recent computational advancements which have allowed a
significant improvement in the machine learning algorithms alongside a vast availability of well-annotated
digitalized ECG data.® Particularly important has been the application of a branch of machine learning
known as deep learning (DL) to the ECG” which has allowed investigators to derive new insights from
these voltage-time matrices. It is also now evident that largely undefined markers of health exist that, while
unapparent to an expert cardiologist, can be recognized by deep neural network (DNN) models.® Information
at the point-of-care can also be leveraged to facilitate ‘cardiologist-level’ ECG interpretation,®® and even go



beyond human capability to determine age and sex,'? left ventricular dysfunction,!! predicting hypertrophic
cardiomyopathy!? and atrial fibrillation (AF) from sinus rhythm!! amongst others.

In the context of AF, traditional clinical practices have thus far fallen short in several domains including
identifying patients at risk of incident AF or those with concomitant undetected paroxysmal AF. Innovative
approaches leveraging Al have the potential to provide solutions to solve some of these old problems. In this
review we focus only on the roles of Al-enabled ECG (AI-ECG) as it relates to AF, the potential role of DL
models in the context of current knowledge gaps, as well as the current limitations of these models.

Artificial Neural Networks

Artificial neural networks (ANNSs) are computational predictive analytical systems inspired by the human
nervous system. These consist of a high number of computational nodes (called neurons) that spread across
various layers. In simplest terms, it is comprised of three basic layers with distinct functions.

1. An input layer, in which data (usually multidimensional vector) is ingested and distributed to the
hidden layer.

2. A hidden layer, which makes decisions to assign random weights within each node to determine if
it detriments or improves the output (referred to as learning). When multiple hidden layers are
stacked together to perform a complex pattern recognition task, it is referred to as DL. There are
two fundamental learning approaches, supervised and unsupervised learning. Supervised learning is
most often used for image-based pattern recognition tasks. In this form, for every training set (e.g.,
a single digital ECG), input vectors are associated to one or more pre-assigned labels 3. In contrast
unsupervised learning does not have pre-selected labels, but rather seeks to find clusters of salient
features from the data itself.

3. An output layer where, in the case of supervised learning, a system output is compared to the preset
label output and backpropagated to the previous layers with the goal of reducing classification error
as much as possible by tuning the weights.

Convolutional neural networks (CNN) are similar to traditional ANN, but are particularly well suited for
image recognition tasks, and thus reduce the parameters required to set up the model. The capability of
these models to analyze subtle details from abstract data is remarkable and far superior to humans. More
details on these models are described elsewhere.'*

The AF Epidemic

AF has emerged as a major public health problem and global epidemic.'®*¢ Not only is it the most common
arrythmia but it is also responsible for more morbidity than any other rhythm disorder.'”!'® Data from
the Framingham Heart Study revealed a lifetime risk of approximately 1 in 4 for men and women of age
40 years or older.'® This signifies a substantial burden on healthcare costs with approximately 350,000
hospitalizations, 5 million office visits, 276,000 emergency visits and 234,000 outpatient visits attributable to
AF annually within the United States translating to an estimated cost of treatment at 6.65 billion dollars.!®
The prevalence is further estimated to increase 2.5 to 3-fold which projects to 5.6 million affected Americans
2050.2° Additionally, global AF burden is not well known and is most likely underestimated in many regions
outside of North America and Europe.?!

AF is vastly heterogenous with a myriad of causes, presentations and complications. There is a need
to improve contemporary practices as the prevention and treatment outcomes in AF are sub-optimal.??
AF is an independent predictor of all-cause mortality, hemorrhage, left ventricular dysfunction and
thromboembolism.?3?* A global collaborative effort to deal with the growing concern of AF is underway
especially in the past 2 decades in areas of basic sciences, epidemiology, genetics along with clinical studies
and now with the use of Al

Current Computerized ECG Interpretation Models
Computerized algorithms designed to interpret 12-lead standard (12 SL) ECGs have been commercially



available since early 1980s.25 Currently, computer generated ECG interpretations are widely used to provide
‘first pass’ interpretations which are then over-read by trained technicians and physicians. Most of these
models use traditional statistical algorithms and require intensive feature extraction and engineering to com-
pute. Misdiagnoses are not uncommon with this approach especially if the reliance on computer generated
interpretation is high.'32% For instance, in a retrospective review computer interpreted diagnosis of AF was
incorrect in 35% of the 1085 patients.?” Furthermore, the physician ordering the ECG failed to correct the
interpretation in 10% of these patients. This has significant downstream effects e.g., inappropriate man-
agement and unnecessary testing.?” In one recent study, about 10% misinterpretation rates were reported
for AF- 47% of which were not corrected by overreading primary care physicians.?® Analysis from the SAFE
(screening for atrial fibrillation in the elderly) trial, assessing diagnostic accuracy of general practitioners
(from 49 practices) and traditional computer interpretations to diagnose AF revealed 20% missed AF cases
and 8% false positives compared to reference standard cardiologists.2? These studies highlight the limita-
tions of current computer algorithms used to interpret ECGs and the devastating consequences on patient
outcomes when there is an overreliance on them.

AI-Enabled ECG Interpretation Model:

30,31 This change could

27,32,33

There is much room for improvement in the current automated ECG interpretation.
likely translate to better outcomes as incorrect labels are associated with incorrect physician overreads.
End-to-end DNN models to interpret ECG have recently shown great promise to replace the ‘feature-based’
computer algorithms currently used.

In one study, a DNN model was trained on a dataset of 91,232 ECGs to detect 12 rhythm classes from a single
lead, patch based ambulatory monitor.% Results showed an AUC>0.91 and a superior model performance
compared to separate annotations made by 6 cardiologists. AUC of the model for AF was as high as 0.96
but the small testing dataset of only 328 ECGs limits the reliability of results for any individual class 34. For
external validation, the model was trained and tested using 2017 Physionet Challenge data with a relatively
larger testing dataset (performance for AF diagnosis- F1 score 0.84). However, the testing dataset was
not randomly selected, and more rare diagnoses were purposefully included which makes the results less
generalizable.5

In another proof-of-concept study, a DNN model was trained using over 2 million ECGs to detect 6 ab-
normalities from 12 SL ECG.” However, individual diagnostic accuracy for the 6 abnormalities selected is
hard to comment on due to a smaller testing dataset used to assess several distinct diagnoses. For instance,
testing dataset included only 13 AF cases.”

PhysioNet/computing in cardiology challenge 2017,3%allowed an opportunity for external validation of algo-
rithms from 75 teams which were trained using a common training dataset of 8,528 single lead ECGs. These
then competed head-to-head on a hidden dataset to diagnose AF amongst the 4 labeled outputs (normal, AF,
other, noisy). Winning algorithms (F1 score 0.83) varied from hand featured models using random forest,
extreme gradient boosting to CNN and recurrent neural networks. However, the authors concluded that
training set was not sufficient to allow an advantage for more complex algorithms that require enormous
data for parameter and hyperparameter tuning. Furthermore, although training set was relatively larger
(3,658 ECGs with 311 AF cases), only 27.3% of it was used to rank the algorithms.3?

A preliminary study demonstrated that triaging patients in emergency care setting from interpretation of
12 SL ECG using a CNN.36 The results were also compared to their conventional ECG algorithm currently
in use. Output was mapped to 16 pre-specified groups to provide actionable information. Results showed
slightly better performance than the traditional interpretation but was statistically significant. One of the
limitations was again a small testing dataset which included few emergency readings (total 60).3¢

Our group has developed a DNN model to make a comprehensive 12-lead ECG interpretation using 2.5 million
standard 12 SL-ECGs from 720,000 patients.®3” A ‘transformer model’ was also incorporated to translate
the output into 66 discrete readable ECG diagnostic codes and make a multilabel prediction comparable to
current computer automated programs. We previously showed the performance of this model according to all



individual 66 codes included using a testing dataset of 499,917 ECGs.3” The overall performance was an AUC
of [?]0.98 for 62 of the 66 reported codes. Recently, the performance was evaluated head-to-head against the
traditional ECG interpretation software currently in use at our institute and the final cardiologist over-read
diagnosis.” Results showed an average ideal or acceptable diagnosis of 91.8% (Al-enabled interpretation) vs
86.6% (computer generated interpretation) vs 94% (final clinical diagnosis). In some ways these studies show
the potential of DNN models to provide a level of ECG interpretation previously confined to the realms of
field experts.

Challenges in Screening

There are many uncertainties regarding our current approaches to AF screening. Remaining questions
include which subgroup of patients to screen, the best modality to use for screening and the subset of
subclinical AF (SCAF) cases likely to benefit from oral anticoagulants (OAC). Two recently published large
screening studies have produced somewhat contradictory results but provide important new insights about
such questions.

In the ‘clinical outcomes in systematic screening for atrial fibrillation’ (STROKESTOP)?® trial, population
aged 75 to 76 years without an earlier diagnosis of AF were screened using intermittent ECG recordings over
2 weeks yielded 3% detection of new AF cases with 90% patients eventually put on OAC.3? AF detection
rate was only 0.5% from the first ECG used to screen.?® This highlights the low yield of using a single ECG
for screening even in elderly population because of a paroxysmal nature of the arrhythmia. With further
continuation of this study (median follow up 6.9 years), screening resulted in a slight benefit in outcomes
(i.e., stroke, emboli and bleeding) compared to standard of care.?® These results suggest that screening is
safe and beneficial in elderly population.3®

In contrast, the ‘implantable loop recorder detection of atrial fibrillation to prevent stroke’ (LOOP)40 trial
screened patients aged 70-90 years, with at least one additional stroke risk factor.“? In the intervention
group, implantable loop recorders were used for prolonged monitoring to detect AF and started on OAC
if AF lasted more than 6 minutes. Results showed 3 times increase in AF detection and OAC initiation
however, it did not result in better outcomes (stroke and emboli prevention) compared to the control group.
Different results from this study have been attributed to detection of very short episodes of AF with loop
recorder which might not benefit from anticoagulation.

The best approach to population wide screening also remains unresolved. Systematic screening using (pulse
palpation alongside an ECG) has not been shown to be superior to opportunistic screening (pulse palpation
followed by ECG if the former is positive) in various clinical trials.?9:4142

Benefits and Harms of Screening

There is 30% first year mortality rate amongst AF patients who have stroke and another 30% are permanently
disabled.**Therefore, one would expect that there is merit in detecting AF cases early in the course at
the stage of paroxysmal and subclinical stage before considerable remodeling has occurred to allow for a
higher likelihood of spontaneous conversion, early OAC to prevent strokes, and overall better outcomes for
patients.** Meta-analyses data consistently show lower risk of primary composite outcomes of stroke and
emboli in AF patients treated with warfarin and direct acting OAC.*5-47

Implementation of a risk modification plan (such as weight reduction, decreasing alcohol intake, treatment
of obstructive sleep apnea) in patients identified to be at a future high risk of developing AF could also
alter the overall outcomes.*® Especially as considerable research efforts to identify risk factors of AF are
transpiring, an effective screening plan could eventually become crucial.

Lastly, another important consideration is harm from screening which is not extensively studied.*® Potential
harms include misinterpretation of ECGs, with false positive results leading to unnecessary testing and
treatment with OAC. Additionally, with increasing screening modalities being employed, anticoagulation
rates are bound to increase and thus, there is a need to be mindful of increased bleeding risk.*"



Ideally, the screening modality needs to be cheap, widely available, non-invasive and non-cumbersome for
the patient. Stratifying patients who are at higher risk is likely beneficial to increase diagnostic yield of any
modality, to be cost effective and reduce unnecessary testing and distress to patients. Thus, having a tool
which can make prediction of incident AF using only a 12 SL. ECG has potential to affect patient outcomes.

AI-ECG AF Model

To tackle the complex problem of screening for AF, especially pertaining to paroxysmal and SCAF, our group
developed a unique model to predict the likelihood of a person having underlying hidden AF from a sinus
rhythm ‘apparently normal’ ECG without any additional information.!! The rationale for this study was
that mechanical remodeling in the form of myocyte hypertrophy, fibrosis and chamber enlargement might
lead to ECG changes yet undefined and too subtle to be studied effectively by human potential. For instance,
evidence of interatrial block (Bayes syndrome) which is seldom reported on ECGs correlates to both risk of
incident AF and stroke.?%:%!

Over 20 years of ECG data from 180,922 patients and 649,931 normal sinus rhythm ECGs were analyzed.
Patients were randomly assigned into 3 groups- 70% for training dataset, 10% for internal validation (opti-
mization and selecting hyperparameters) and 20% testing set (previously unexposed ECGs). Within each
dataset there were 2 groups- patients with at least one ECG confirmed AF/atrial flutter diagnosis and pa-
tients with no AF rhythms recorded. A 31-day window period preceding the AF recorded ECG was taken
in the disease group and all sinus rhythm ECGs were included from the control group. This short 31-day
period prior to AF diagnosis was taken to include ECGs with the maximum potential markers associated
with AF and left atrial remodeling.

To optimize performance, eight independent leads (leads I, II, and V1-6) were selected because any linear
function of the leads could be learned by the models (8x5000 matrix). The model was then tested on a
dataset of 130,802 sinus rhythm ECGs (3051 verified AF cases) (Table 1). Model performed well with an
AUC of 0-87 when a single ECG was used with no additional information and an AUC of 0.90 when multiple
ECGs were used.

Potential Applications of AI-ECG AF Model

AT-ECG model thresholds can be adjusted to be more specific for patients with low pretest probability such
as healthy population. This could help make a more cost-effective strategy to rule in patients for further
testing (Figure 1).

To rule out patients with AF, a higher sensitivity is needed such as in patients with cryptogenic stroke.
Patients with a higher likelihood of AF could then undergo more extensive monitoring (eg., beyond the
recommended 30-day monitoring period) (Figure 1).52

As part of a risk score to predict 5- or 10-year probability of incident AF, which may have utility in prevention
trials and screening programs.®® Previously this has been attempted with various risk scores, such as the
Framingham AF and CHARGE-AF risk scores.>»®> Although not developed for this purpose, the usefulness
of the model as an independent predictor of future AF has been externally validated in a population-
based Mayo Clinic study of Ageing.?® In the study, both CHARGE-AF score and AI-ECG AF model had
similar performance (C statistic of 0.69 for both). Combining the two resulted in a slight increase in overall
performance. Participants with an AI-ECG AF model output of >0.5 had a cumulative incidence of 21.5%
at 2 years and 52.2% at 10 years.?®

In another recent study, a methodology similar to AI-ECG AF model was used to create an ECG-based
algorithm for AF prediction. This model was trained using sinus rhythm ECGs at baseline and a window
of interest for ECG was at least 1-3 years before AF diagnosis (compared to within a 30-day window in the
Mayo Clinic model). They evaluated the performance of this model using UK Biobank data and showed an
overall comparable performance to the CHARGE-AF risk score. There was a modest improvement in model
performance when the AI-ECG was added to CHARGE-AF. These studies demonstrate that the ECG holds



value in predicting AF (not just detecting concomitant AF) and that the clinical features captured by
CHARGE-AF likely explain a lot of the predictive poster of the AI-ECG model.?”

As a tool to guide management, for instance, identification of a high-risk subset of patients with ESUS may
help determine who may benefit from empirical anticoagulation. This utility is currently planned as a follow
up study to the BEAGLE trial.?*

It may have utility to guide management in difficult cases when AF is highly suspected but has eluded
diagnosis (case report).5®

Cryptogenic Stroke

Cryptogenic strokes are defined as symptomatic cerebral infarcts for which no probable cause is identified
after thorough standard evaluation.?® About one-third of transient ischemic attacks % and ischemic strokes
are of undetermined etiology (cryptogenic).5® These numbers have decreased over time from as high as 40% in
1970’s%! to as low as 10-15% today in advanced centers with extensive testing modalities.??:52 This highlights
the importance of better ways to investigate patients in order to initiate an appropriate and timely secondary
prevention strategy.

AF prevalence as high as 24.6% has been noted in patients presenting with first time ischemic strokes and
was especially high amongst elderly females.®3%% In CRYSTAL AF (Cryptogenic Stroke and Underlying
AF) trial, AF detection was compared between insertable cardiac monitors > and conventional follow-up
in patients with cryptogenic stroke or TIA.%® Results showed detection rate of AF at 8.9% vs 1.4% at 6
months and 12.4% vs 2% at 12 months for ICM vs conventional follow-up respectively. This proves that
many cases go undetected after the first thromboembolic event and foreshadow a recurrence which could
have been prevented. In the same trial, mean time in AF was only 4.3 minutes a day and about 74% patients
were asymptomatic, highlighting the increasingly difficult diagnosis of paroxysmal AF in these patients.5?
Since prolonged monitoring is inconvenient and expensive, the authors called for further studies to determine
which risk factors could better delineate which patients would derive the most clinical benefit from extensive
monitoring.

Current recommendation for patients with cryptogenic stroke is that a prolonged rhythm monitoring of
about 30 days within 6 months of index event is reasonable.’® Furthermore, even though a single 1-hour
episode of AF during 2 years of monitoring doubles the risk of stroke, the treatment benefit of anticoagulants
vs antiplatelet agents is not clearly defined amongst low burden paroxysmal AF patients.

A large subgroup of cryptogenic strokes (80-90%), in which the cause is almost always embolic (superficial
or deep large infarcts) is termed embolic stroke of undetermined significance (ESUS).*’Low burden paroxys-
mal AF forms an important underlying cause for these patients. However, empiric anticoagulation is not
recommended as bleeding risk seems to outweigh the benefits.67:68

Therefore, knowledge gaps remain regarding the best way to monitor patients with ESUS and who would
benefit most from oral anticoagulation. The AI-ECG AF model is one potential way to tackle this complex
problem as it could be used to identify a subset of high-risk ESUS patients most likely to benefit from
empirical oral anticoagulation. In a retrospective study of stroke patients, we found a strong association of
probability output >0.2 as noted by the AI-ECG AF model and detection of AF by ambulatory cardiac
monitoring OR of 5.47 (95% CI 1.51-22.51; P = 0.01).52 However, we were limited by the detection rate of
AF amongst the ESUS patients due to a shorter average monitoring time. A clinical trial ‘batch enrollment
for Al-guided intervention to lower neurologic events in unrecognized AF’ (BEAGLE) is currently underway
to assess the use of this model.>* Participants are selected using natural language processing tools if they
are at high risk for incident AF as identified using the algorithm and are eligible to receive anticoagulation
if AF is detected. Enrolled patients are then mailed a device to continuously monitor for up to 30 days. This
is a completely off-site trial and will allow vetting and validation of the model in a real-world scenario.?*

AF Burden



Currently, AF is classified as paroxysmal, persistent or permanent, but treatment generally relies on a binary
classification (i.e., presence or absence of AF to determine the decision for anticoagulation).®® A quantitative
approach to define the burden of AF has been suggested. This factors in the number of episodes or the
proportion of time a patient spends in AF during a particular monitoring period.”® AF burden has been
noted to have a predictive value for AF-related strokes and thus, could guide management.”®"! However,
even with wearable and implantable technologies allowing longer monitoring durations, burden of AF is
difficult to determine. Also, the minimum AF duration required for anticoagulation is not well defined.”

Another scenario in which AF burden becomes important is SCAF. Higher AF burden along with the
traditional risk factors (CHA2DS2-VASc score) are more likely to benefit from oral anticoagulants than low
to medium burden of AF and without risk factors.” A general rule of thumb for anticoagulation, regardless
of indication, is the need to maintain efficacy while minimizing the bleeding risk.”*However, the exact cut-
offs are not well defined and leads to considerable variation in management depending on the provider.™
With advancements in wearable and intracardiac monitoring techniques as well as their wider availability,
detection of SCAF is also increasing and the knowledge gaps need to be addressed more clearly. Two highly
anticipated trials Apixaban for the Reduction of Thrombo-Embolism in Patients With Device-Detected Sub-
Clinical Atrial Fibrillation”” and Non-vitamin K Antagonist Oral Anticoagulants in Patients With Atrial
High Rate Episodes™ will likely help inform management in these patients.

A preliminary study using DNN model has been able to assess AF burden from 24-hour Holter monitor
data.™ Although this proves feasibility of developing the prototype, translation of such models into clinical
use would require validation and clearer guidelines as to the importance of AF burden and duration for
guiding anticoagulation therapy.

Deep Learning Approach to AF Detection Using Photoplethysmography Data

Photoplethysmography (PPG) data is a pulse pressure waveform detected using a light source and a
photodetector.®? This technology has been successfully used previously to detect oxygen saturation, heart rate
and respiratory rate. On PPG data, AF is manifested as variable pulse-to-pulse intervals and morphologies.2°
Several studies have tested DL algorithms on PPG data to detect AF, although many of these included very
few patients.3:82

There is also a trend towards the use of consumer-grade wristbands and watches to detect AF. In Huawei heart
study, of the 187,912 individuals who used smart devices for PPG analysis, only 0.23% received ‘suspected
AT’ notification.®2 Out of those undergoing an effective follow up, 87% were confirmed as having AF. These
results show an impressive positive predictive value of 91.6%.83

In Apple Heart Study, Apple smartwatches were used to detect AF using a proprietary PPG based
algorithm.®* Of the 419,297 patients enrolled over an 8-month period, only 2161 (0.52%) received a no-
tification for irregular pulse. After a telemedicine visit, ECG patches were mailed to the patients to be worn
for up to 7 days. Among 450 patients who returned patches with analyzable data, only 34% were diagnosed
with AF, even though the algorithm was designed to maximize specificity. Furthermore, sensitivity and thus
usefulness as a screening tool could not be assessed from this study.®*

The Fitbit Heart Study- another large prospective study applying a similar methodology is currently
underway.®® These studies highlight the barriers to mass screening for AF in healthy populations parti-
cularly given the low benefit to cost ratio.

Some key limitations of using PPG data include high false positive rate due to detection of other arrythmias
mimicking AF, low signal to noise ratio and motion artifacts.® One study showed that almost 40% of
the signal was unusable.®® Due to these limitations, the 12-SL. ECG remains the gold standard to detect
arrythmias including AF.

Scalability

In primary care settings and emergency units, there is often a lack of trained specialists to interpret complex



ECGs and make rapid diagnosis.®” Even the combined accuracy of practitioners in these settings with current
computer interpretations for AF diagnosis remains insufficient.?? This need is even greater in less developed
countries which contribute about 75% to the overall cardiovascular mortality.” As discussed previously,
automated AI-ECG interpretation could enable expert level diagnoses and streamline clinical workflow in
these settings.

A network once trained can be fine-tuned to widespread applications and smart devices. For instance, we
have shown the application of an algorithm trained using 12 lead ECG to detect serum potassium levels and
applied it to a single lead ECG recorded using a smartphone.®®

To bring these tools to the point-of-care we have incorporated AI-ECG tools into the electronic health record
as an ‘AI-ECG Dashboard’.® With the click of a button, clinicians can have all the ECGs available for that
patient analyzed with AI-ECG probability outputs for various diagnoses. A major advantage of incorporating
AI-ECG algorithms into practice is their ability to keep learning indefinitely as more information is added.
This essentially creates a self-improving healthcare system.36

The application of DNN models to long duration signals like 24-hour Holter monitor data to detect par-
oxysmal AF has shown good preliminary results.”® This has broad applications for development of a new
generation of real-time analytical tools to detect AF from the growing number of ambulatory monitoring
devices.

Limitations

After the development of an AI-ECG model, rigorous external validation in diverse populations and clinical
trials to demonstrate superior clinical outcomes to the standard of care is needed. To date, most models have
not undergone rigorous evaluation and thus their results remain confined to their own datasets. Furthermore,
due to the several knowledge gaps surrounding AF, it becomes challenging to prove immediate benefits in
clinical outcomes.

A limitation to widespread applicability of these models is the need to be tailored to the target application.
Although, cross domain utility of a pre-trained model to perform the same function has shown promising
results. For instance, in a study a DNN model was trained to detect paroxysmal AF from 24-hour Holter
ECG and then fine tuned to a completely different input data of smartwatch PPG signal with superior results
(AUC of 0.97).7 However, as noted by authors, this study was limited by a lack of gold standard labels to
study true performance.79

Several other limitations surrounding Al such as data security, perpetuating bias, physician acceptance and
regulatory considerations are also important to be addressed and have been discussed elsewhere in more
detail 589

Conclusion

Algorithms using Al to interpret ECGs in various new ways have been developed. While still much work
needs to be done, these technologies have shown enormous potential in a short span of time. With further
advancements and continuous research, these novel ways of interpretation may well become part of everyday
clinical workflow. However, rigorous testing is key with development of new models. Testing datasets need to
be large to show accurate results, especially when several different outputs are being considered. Finally, the
models need to undergo appropriate external validation and clinical trials to note generalizable benefits in
diverse populations when compared to the standard of care. This may also help alleviate some of the current
hesitance in clinicians from acceptance of Al tools.

Figures/Tables
Table 1

Summary (non-exhaustive) list of various DL models, with performance discussed in context of AF for this
article.



( AF: Atrial Fibrillation; AUC: Area under the receiver operating characteristic curve; DNN: Deep neural
network; F1: F1 score; S12L-ECG: 12 lead standard ECG; SN: Sensitivity; SP: Specificity)

Figure 1

Overview of performance, validation, potential uses and ongoing work with AI-ECG AF model from Mayo
Clinic.

(AF: Atrial Fibrillation; AI: Artificial Intelligence; AUC: Area under the receiver operating characteristic
curve; ESUS: Embolic stroke of undetermined significance; RCT: Randomized controlled trial)
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