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Abstract

Modern biotechnological laboratories are equipped with advanced parallel mini-bioreactor facilities that can perform sophisti-
cated cultivation strategies (e.g. fed-batch or continuous) and generate significant amounts of measurement data. These systems
require not only optimal experimental designs that find the best conditions in very large design spaces, but also algorithms that
manage to operate a large number of different cultivations in parallel within a well-defined and tightly constrained operating
regime. Existing advanced process control algorithms have to be tailored to tackle the specific issues of such facilities such as:
a very complex biological system, constant changes in the metabolic activity and phenotypes, shifts of pH and/or temperature,
and metabolic switches, e.g. by product induction, to name a few. In this work we implement a model-predictive control (MPC)
approach based framework to demonstrate: 1) the challenges in terms of mathematical model structure, state and parameter
estimation, and optimization under highly nonlinear and stiff constraints in biological systems, 2) the adaptations required to
enable its application in High Throughput Bioprocess Development (HTBD), and 3) the added value of MPC implementations
when operating parallel mini-bioreactors aiming to maximize the biomass concentration while coping with hard constrains on
the Dissolved Oxygen Tension profile.Modern biotechnological laboratories are equipped with advanced parallel mini-bioreactor
facilities that can perform sophisticated cultivation strategies (e.g. fed-batch or continuous) and generate significant amounts
of measurement data. These systems require not only optimal experimental designs that find the best conditions in very large
design spaces, but also algorithms that manage to operate a large number of different cultivations in parallel within a well-
defined and tightly constrained operating regime. Existing advanced process control algorithms have to be tailored to tackle
the specific issues of such facilities such as: a very complex biological system, constant changes in the metabolic activity and
phenotypes, shifts of pH and/or temperature, and metabolic switches, e.g., by induction of product formation, to name a few.

In this work we implement a model predictive control (MPC) framework to demonstrate: 1) the challenges in terms of math-

ematical model structure, state and parameter estimation, and optimization under highly nonlinear and stiff dynamics in

biological systems, 2) the adaptations required to enable the application of MPC in High Throughput Bioprocess Development

(HTBD), and 3) the added value of MPC implementations when operating parallel mini-bioreactors aiming to maximize the

biomass concentration while coping with hard constrains on the Dissolved Oxygen Tension profile.
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Abstract 26 

Modern biotechnological laboratories are equipped with advanced parallel mini-bioreactor 27 

facilities that can perform sophisticated cultivation strategies (e.g. fed-batch or continuous) and 28 

generate significant amounts of measurement data. These systems require not only optimal 29 

experimental designs that find the best conditions in very large design spaces, but also 30 

algorithms that manage to operate a large number of different cultivations in parallel within a 31 

well-defined and tightly constrained operating regime. Existing advanced process control 32 

algorithms have to be tailored to tackle the specific issues of such facilities such as: a very 33 

complex biological system, constant changes in the metabolic activity and phenotypes, shifts 34 

of pH and/or temperature, and metabolic switches, e.g., by induction of product formation, to 35 

name a few. 36 

In this work we implement a model predictive control (MPC) framework to demonstrate: 1) the 37 

challenges in terms of mathematical model structure, state and parameter estimation, and 38 

optimization under highly nonlinear and stiff dynamics in biological systems, 2) the adaptations 39 

required to enable the application of MPC in High Throughput Bioprocess Development 40 

(HTBD), and 3) the added value of MPC implementations when operating parallel mini-41 

bioreactors aiming to maximize the biomass concentration while coping with hard constrains 42 

on the Dissolved Oxygen Tension profile. 43 

 44 

1 Introduction 45 

Production of recombinant proteins using microbial cell factories has seen a dramatic increase 46 

over the last decades (Huang et al., 2012). However, finding optimal process conditions for the 47 

production of a new protein still remains a challenge, since the number of strains and possible 48 

operating conditions to be tested can be very large (Neubauer et al., 2013). The introduction 49 

of Mini-Bioreactors (MBR), and in particular their combination with liquid handling stations 50 

(LHS), have partially alleviated these problems by enabling high-throughput experiments. 51 

Especially when combined with modeling and simulation tools, such platforms were 52 

successfully applied for model based experimental re-design (Cruz Bournazou et al., 2017), 53 
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strain and process characterization (Anane, García, et al., 2019; Anane, Sawatzki, et al., 2019; 54 

Sawatzki et al., 2018) or conditional screening of mutants (Hans et al., 2020; Hemmerich et 55 

al., 2019). 56 

However, these systems still have problems when it comes to scale-up, because of the 57 

inhomogeneous cultivation conditions in large-scale bioreactors, which are not as pronounced 58 

in such small scale systems (working volume < 20 mL) (Nadal-Rey et al., 2021; Neubauer & 59 

Junne, 2016). Hence, proper experiments must be designed so that findings are also 60 

applicable in a larger scale. The control of the substrate feeding e.g., offers a simple way to 61 

mirror certain heterogeneous process conditions. In this regard, bolus feeding with pulses has 62 

proven to be a simple but powerful approach to model the effect of inhomogeneous mixing in 63 

large-scale bioreactors (Anane, Sawatzki, et al., 2019). Organisms with a high substrate 64 

affinity, as e.g. Escherichia Coli (E. coli), exhibit high oxygen consumption rates. In systems 65 

with a small oxygen transfer coefficient (kLa) such as MBRs, this leads to rapid dynamics of 66 

DOT changes, causing large obstacles, that are difficult to overcome.  67 

Hence, operating such MBR systems using LHS with limited online and at-line measurements 68 

available is still considered a major challenge (Morschett et al., 2021). In this respect, the 69 

current contribution builds on our previous work, where we successfully implemented a 70 

framework for high-throughput cultivation with conditional screening capabilities (Hans et al., 71 

2020). Avoidance of DOT limitation is a crucial part in optimal operation of such devices, since 72 

pulse-based feeding typically leads to drastic stress responses, fast changes in DOT due to 73 

fast substrate uptake and elevated levels of corresponding genes (Schweder et al., 1999) as 74 

well as elevated secretion of several unwanted byproducts like acetate and reduced biomass 75 

yield (Bylund et al., 1998). As already mentioned, with the pulse-based feeding approach used 76 

in this study, violation of this constraint might easily happen. After applying a pulse, the DOT 77 

drops sharply, as the cells start to consume glucose at a high rate. This may even lead to 78 

oxygen limitation and to the induction of anaerobic responses (Schweder et al., 1999). Later, 79 

after depletion of the glucose, the DOT rises again to the pre-pulse value. In this bolus-feed 80 

based setting, conventional (PID) controllers would fail because they can only react after a 81 
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glucose pulse has been added and thus a constraint could have been violated shortly 82 

afterwards. This is especially true for strongly nonlinear systems like the one presented in this 83 

study. Hence, predictive control algorithms like Model Predictive Controllers (MPC) are 84 

required to avoid such conditions. MPC is an advanced control approach based on a dynamic 85 

model of the system which computes the control inputs aiming to minimize a given cost function 86 

and satisfy predefined constraints (Rawlings et al., 2017). While widely applied in chemical 87 

engineering, MPC has only found relatively few applications in bioprocess engineering (see 88 

e.g. the comprehensive review by Mears et al., 2017). One of the first (linear) MPC applications 89 

was presented by Kovárova-Kovar et al. to maximize product formation (Kovárová-Kovar et 90 

al., 2000). Further examples exist for different cases as e.g. slow growing mammalian cells 91 

(Ashoori et al., 2009), yeast (Chang et al., 2016) and bacterial cultivations (Del Rio-Chanona 92 

et al., 2016; Ulonska et al., 2018). Another approach is to perform set point tracking to follow 93 

a predefined trajectory (Craven et al., 2014; Zhang & Lennox, 2004).  94 

The main challenges for the application of linear MPC result from the high nonlinearities and 95 

dynamics of biological systems (Shin et al., 2019). Therefore, in recent years the application 96 

of nonlinear MPC (NMPC) has become more and more prominent (Schwenzer et al., 2021). 97 

MPC is a powerful approach but is limited by the accuracy of the model and by the data 98 

provided to make optimal decisions. In our specific case, i.e. at the early stage of cultivation, 99 

the MPC framework should be able to find an optimal feeding trajectory in real-time time 100 

despite optimal model parameters are not known beforehand and the scarce data on the 101 

strains under investigation. Hence, it is of great importance to have robust adaptive methods 102 

that can perform well under these difficult conditions. The counterpart of MPC, Moving Horizon 103 

Estimation (MHE) is a powerful tool to estimate states and parameters of the model and is an 104 

excellent complement to MPC (Hille et al., 2020). Using MHE for state and parameter re-105 

estimation has been proposed for process engineering for some time and various examples 106 

can be found in the literature (Hedengren & Eaton, 2017; Jabarivelisdeh et al., 2020; Zavala 107 

et al., 2008). The reader is further referred to Elsheikh et al., 2021 for a comprehensive review. 108 
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We will discuss in this contribution how we tackled several issues which are commonly faced 109 

in these constrained and highly perturbed fed-batch cultivations in MBRs as (i) the discontinuity 110 

of the feeding regime, i.e., the bolus type addition of glucose to the reactors; (ii) system delay 111 

to the input, which make predictive control essential to avoid constraint violation; (iii) the 112 

differences in the dynamics of the timescales of the system of differential equations, particularly 113 

regarding growth of biomass and the DOT, where the time dynamics differ by orders of 114 

magnitudes and thus lead to a very stiff system; (iv) the different measurement frequencies 115 

(high for DOT and low for biomass, glucose, and acetate); and (v) the uncertainty in the 116 

parameter values of the model, which are unknown prior to the cultivation and might be only 117 

based on rough knowledge about the strains. Thus, in a limited amount of time, the MHE needs 118 

to solve the highly nonlinear and non-convex parameter estimation problem with sufficient 119 

accuracy for the MPC to compute inputs that guide the real process to the expected results. 120 

To demonstrate the advantages and challenges of our approach, the production of Elastin Like 121 

Proteins (ELPs) in E. coli was chosen as an interesting case-study. ELPs are derived from 122 

natural tropoelastin and are promising examples of biocompatible, self-assembling and flexible 123 

high-performance materials with a great potential for various applications (Huber et al., 2015; 124 

Huber et al., 2022; MacEwan & Chilkoti, 2014). The properties of the protein depend on the 125 

sequence composition, i.e. the amino acids in the repetitive pentapeptide sequence, as well 126 

as the length of the protein (Huber et al., 2014; Schreiber et al., 2019). In order to develop 127 

specific characteristics, large clone libraries with different strains are created, for which optimal 128 

process conditions for production are yet to be identified. Due to the diverse use of individual 129 

amino acids at the fourth position of the repeating sequence and a limited set of core amino 130 

acids used (especially proline and valine) the optimization of ELP production depends on 131 

multiple parameters such as feed strategies and oxygen supply. Therefore, this case-study is 132 

highly interesting to test the MHE/MPC framework to find an optimal feeding trajectory without 133 

prior knowledge of the strains. 134 

 135 
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2 Materials and Methods 136 

2.1 High throughput bioprocess development facility 137 

All experiments were conducted on our high-throughput bioprocess development platform. The 138 

platform comprises two liquid handling stations (Freedom Evo 200, Tecan, Switzerland; 139 

Microlab Star, Hamilton, Switzerland), a mini bioreactor system (48 BioReactor, 2mag AG, 140 

Munich, Germany) and a Synergy MX microwell plate reader (BioTek Instruments GmbH, Bad 141 

Friedrichshall, Germany). The MBRs have a working volume of 8-12 mL and are equipped with 142 

fluorometric sensor spots (PreSens Precision Sensing GmbH, Regensburg, Germany) to 143 

measure DOT and pH. The LHS performs feeding by adding defined volumes of concentrated 144 

glucose solution to the reactors (bolus feeding) in a predefined timeframe. Sampling is 145 

automatically performed in regular intervals and the optical density at 600 nm (OD600), 146 

fluorescence (as measure for the product concentration) as well as concentrations of glucose 147 

and acetate are automatically analyzed at-line on our high-throughput bioprocess development 148 

platform. The reader is referred to Haby et al., 2019 for a detailed description of the facility, the 149 

sampling and feeding procedure.  150 

 151 

2.2 Strain and cultivation conditions 152 

All experiments were carried out with E. coli BL21(DE3), carrying the plasmid pET28-NMBL-153 

eGFP-TEVrec-(V2Y)15-His, expressing a recombinant fusion protein of ELP and eGFP, under 154 

the isopropyl‐β‐D‐thiogalactopyranosid (IPTG) inducible lacUV5‐promoter. Detailed 155 

information about the plasmid can be found in Huber (Huber et al., 2014) and Schreiber 156 

(Schreiber et al., 2019). The linkage of the actual target protein, ELP to an eGFP allows a 157 

simple non-invasive measurement of the protein concentration. The amount of product, i.e. 158 

ELP is calculated based on a conversion factor from the fluorescence measurements which 159 

was determined in previous studies. All chemicals were purchased from either Roth, VWR or 160 

Merck if not stated otherwise. For the first preculture, 10 mL LB medium, containing 16 g L-1 161 

tryptone, 10 g L-1 yeast extract and 5 g L-1 NaCl, were directly inoculated with 100 µL cryostock 162 

and cultured in a 125 mL Ultra Yield flask (Thomson Instrument Company, USA) sealed with 163 
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an AirOtop enhanced flask seal (Thomson Instrument Company, USA) for 5 h at 37°C and 200 164 

rpm in an orbital shaker (Adolf Kühner AG, Birsfelden, Switzerland). The second pre-culture 165 

was performed with 25 mL EnPresso B (Enpresso GmbH, Berlin, Germany) medium with 166 

9 U L-1 Reagent A. The composition of the EnPresso B is the same as the main medium used, 167 

besides the glucose polymer. This system allows for constant glucose release from the 168 

polymer in a fed-batch like manner in a 250 mL Ultra Yield flask, and thus prevents overfeeding 169 

even in the preculture. After 12 h, while in exponential growth phase, appropriate volumes of 170 

the pre-culture were used to inoculate the MBRs to an OD600 of 0.25. The minimal medium in 171 

the actual bioreactors consisted as derived from Glazyrina et al., 2010 of mineral salt medium, 172 

containing (per L): 2 g Na2SO4, 2.468 g (NH4)2SO4, 0.5 g NH4Cl, 14.6 g K2HPO4, 3.6 g NaH2PO4 173 

× 2 H2O, 1 g (NH4)2-H-citrate and 1 mL antifoam (Antifoam 204, Sigma). Before inoculation, 174 

the medium was supplemented with 2 mL L−1 trace elements solution, 2 mL L−1 MgSO4 solution 175 

(1.0 M) and kanamycin to a final concentration of 50 mg L−1. The trace element solution 176 

comprised (per L): 0.5 g CaCl2 × 2 H2O, 0.18 g ZnSO4 × 7 H2O, 0.1 g MnSO4 × H2O, 20.1 g 177 

Na-EDTA, 16.7 g FeCl3 × 6 H2O, 0.16 g CuSO4 × 5 H2O, 0.18 g CoCl2 × 6 H2O, 0.132 g 178 

Na2SeO3 × 5 H2O, 0.12 g Na2MoO4 × 2 H2O, 0.725 g Ni(NO3)2 × 6 H2O. In all bioreactor 179 

cultivations, the initial glucose concentration for the batch phase was 3 g L−1. At the end of the 180 

batch phase, indicated by a sharp rise of DOT, the MHE/MPC controller was started to fit the 181 

model to recent available data and start calculating an optimal feeding regime. Feeding was 182 

performed by adding glucose pulses (solution with a concentration of 200 g L-1 glucose) every 183 

10 min by the LHS. This type of feeding exposes the cells to a high glucose concentration for 184 

a short time, which is characterized by a steep drop in DOT. After the cells have consumed 185 

the glucose, the DOT rises again, resulting in the characteristic oscillating DOT profile. These 186 

oscillations come from the fact that DOT drops steeply after the addition of a feeding pulse, as 187 

soon as the cells begin to take up glucose. After all glucose is depleted in the pulse period, the 188 

DOT rises back to its pre-pulse value. Immediately after the pulse is added, the DOT drops so 189 

sharply, that a violation of the constrain of having at least 30 % DOT in the reactors can quickly 190 

occur. The pulse feed trajectory for the cultivations which were not controlled by MPC was 191 



7 
 

calculated according to (1) and then integrated over each pulse duration (10 min) to find the 192 

volume to be added within a single pulse. 193 

𝐹(𝑡) =

(
𝜇𝑠𝑒𝑡

𝑌𝑋 𝑆⁄
+ 𝑞𝑚) ∗ 𝑋 ∗ 𝑉

𝑆𝑖

∗ 𝑒𝑥𝑝(𝜇𝑠𝑒𝑡 ∗ 𝑡) 
(1) 

Here 𝐹 [L h-1] describes the feed rate over the time 𝑡 [h], 𝜇𝑠𝑒𝑡 [h-1] the specific growth rate, 𝑌𝑋 𝑆⁄  194 

[g g-1] the yield coefficient of glucose per biomass, 𝑞𝑚 [g g-1 h-1] the specific glucose 195 

consumption for maintenance (0.02 g g-1 h-1 were used in this study), 𝑆𝑖 [g L-1] the glucose 196 

concentration in the feed and 𝑋 [g L-1] as well as 𝑉 [L] respectively the biomass concentration 197 

and volume at the end of the batch phase. All liquid additions as well as the sampling volumes 198 

are stored in the database, so that the current volume and corresponding dilution effects can 199 

be always calculated accurately.  200 

 201 

2.3 Sampling / Analytics 202 

Throughout the cultivation, DOT and pH were measured online, using the photometric sensors 203 

at the bottom of the MBRs. Due to the position of the sensors and because the sensors were 204 

calibrated under process conditions, gas bubbles in this process do not represent a 205 

disturbance of the sensors. For the other state variables, samples were taken every 20 min 206 

from one of the replicate columns and directly inactivated with dried 2 M NaOH in 96 well plates 207 

and stored at 4°C until further analysis. After collection of 3 columns of samples, the plate was 208 

automatically transferred to the Hamilton robot for at-line analysis of OD600, fluorescence, 209 

glucose, and acetate concentration. The reader is referred to Haby et al., 2019 for a detailed 210 

description of the analysis process.  211 

 212 

2.4 Principles of the MHE/MPC framework 213 

The objective of this study is to find optimal process conditions for strains with little a prior 214 

knowledge of their growth behavior. Therefore, a model-based framework was created 215 

consisting of an MHE and an MPC part: a moving horizon estimator to estimate the parameters 216 

and initial states of the model based on recent measurements; and a model predictive control 217 
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part to calculate an optimal feeding profile for each condition. Since the strain under 218 

investigation was cultivated under 6 different conditions in three replicates, a total of 𝑁𝑟 = 18 219 

mini bioreactors were used. Each of the bioreactors 𝑟 ∈ 𝑅 = {1, … , 𝑁𝑟} can be described by the 220 

nonlinear dynamics: 221 

�̇�𝑟(𝑡) = 𝑓(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃𝑟) 

𝑥𝑟(𝑡0) = 𝑥0,𝑟 

(2) 

The dynamic states are denoted by the vector of ODEs �̇�𝑟 and include biomass, the substrate 222 

glucose, DOT, product (measured via fluorescence), bioreactor volume as well as acetate. The 223 

control inputs for each mini bioreactor are 𝑢𝑟 ∈ 𝑅𝑁𝑢, while 𝜃𝑟 ∈ 𝑅𝑁𝜃 denotes the unknown 224 

parameter vector of the reactors and cultivation conditions and 𝑥0,𝑟 are the initial conditions for 225 

each reactor. The inputs are applied as time-discrete bolus-type pulses. This leads to a highly 226 

discontinuous operation with jumps in the volume and concentrations of the other state 227 

variables. Thus, after each pulse, the concentrations are recalculated based on the previous 228 

concentrations and the pulse volume. The time-series evolution of the denoted states can be 229 

described by a system of ordinary differential equations (ODE). The ODE system exhibits 230 

dynamics in very different timescales, especially regarding biomass growth and DOT, leading 231 

to a very stiff system. Since the dynamics of DOT are usually very fast compared to the other 232 

dynamics, they can be expressed in a reduced form as an algebraic equation and thereby 233 

reduce the stiffness of the system significantly building a differential-algebraic system of 234 

equations (DAE) (Duan et al., 2020). Since the actual DOT (𝐷𝑂𝑇𝑎) can be only measured with 235 

a first order delay, the measured DOT (𝐷𝑂𝑇𝑚) is also considered as a state variable, taking 236 

the response time of the sensor into account. The model has 6 differential states, 1 control 237 

input and 18 parameters in total. A complete overview about the equations of the macro kinetic 238 

growth model and the meaning of the respective parameters can be found in Kim et al., 2022. 239 
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 240 

Figure 1: Flowchart of the MHE/MPC framework. During the cultivation, samplings are taken in regular intervals, 241 
processed for at-line analysis and used for subsequent parameter estimation and MPC calculations. 242 

An overview about the workflow is depicted in Figure 1. Following this procedure, the 243 

parameter set is continuously updated and used for MPC calculations. Considering the 𝑁𝑀𝐻𝐸 244 

last measurements, the optimization problem for obtaining a new set of parameters and initial 245 

states of the new horizon window can be written as: 246 

𝑚𝑖𝑛
𝜃,𝑥0,𝑟

1

2
‖𝑥0,𝑟 − 𝑥0,𝑟,𝑜𝑙𝑑‖

𝑊𝑥

2

+
1

2
‖𝜃 − 𝜃𝑜𝑙𝑑‖𝑊𝑃

2

+ ∑
1

2
‖ℎ(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃) − 𝑦𝑚𝑒𝑎𝑠(𝑡)‖𝑊𝑦

2

𝑁𝑀𝐻𝐸

𝑘=0

 

(3) 

s.t. 

�̇�𝑟(𝑡) = 𝑓(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), θ) 

𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 

(4) 

The objective function is composed of the following parts: The estimate for the states at the 247 

initial point of the window 𝑥0,𝑟 and the prior estimate for that state 𝑥0,𝑟,𝑜𝑙𝑑 as well as the 248 

difference between the current parameter vector 𝜃 and the previous parameter estimate vector 249 

𝜃𝑜𝑙𝑑. The final optimal parameter set is denoted as 𝜃. The last term is the summed difference 250 

between the predicted outputs ℎ(∙) as function of the states 𝑥𝑟(𝑡), the inputs 𝑢𝑟(𝑡) and 251 

parameters 𝜃 and the available measurements 𝑦𝑚𝑒𝑎𝑠(𝑡).  ‖𝑥‖𝑊𝑖

2 = 𝑥𝑇𝑊𝑖𝑥 denotes the squared 252 

norm, weighted by the matrix 𝑊𝑖. The subscript 𝑟 indicates the respective set of MBR 253 
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replicates. 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 refer to the lower and upper boundaries of the parameter vector. The 254 

penalty on the parameter changes in the objective function (𝜃 − 𝜃𝑜𝑙𝑑) assures that, in each 255 

iteration, the parameters are not adapted too much considering their previous values. 256 

The MPC calculates optimal inputs to maximize biomass at the end of the feeding phase, 257 

considering that the DOT should not drop below a predefined threshold of 30 %. A detailed 258 

description of the MPC and its mathematical formulation can be found in Kim et al., 2022. The 259 

general problem can be written as follows: 260 

𝑚𝑖𝑛
𝑢𝑟

− 𝑊𝑀𝑋𝑟(𝑡 + 𝑁𝑀𝑃𝐶𝛥𝑡) − 𝑊𝐿 ∑ 𝑋𝑟(𝑡 + 𝑘𝛥𝑡)

𝑁𝑀𝑃𝐶−1

𝑘=0

 (5) 

s.t. 

�̇�𝑟(𝑡) = 𝑓(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃) 

𝑥𝑟(𝑡0) = 𝑥0,𝑟 

𝐷𝑂𝑇𝑟(𝑡) ≥ 30 %, 𝑢𝑟(𝑡) ≥ 3 µL 

(6) 

The optimization problem is composed of two parts: the terminal cost term (also called Mayer 261 

term) 𝑊𝑀𝑋𝑟(𝑡 + 𝑁𝑀𝑃𝐶𝛥𝑡) and the stage-cost term (also called Lagrangian term) 262 

𝑊𝐿 ∑ 𝑋𝑟(𝑡 + 𝑘𝛥𝑡)𝑁𝑀𝑃𝐶−1
𝑘=0 . 𝑊𝑀 and 𝑊𝐿 denote the weighting matrices for the respective terms. 263 

𝑥0,𝑟 refers to the last point of the previous MHE timeframe, which is in turn the first element of 264 

the new MPC frame. 𝑋𝑟 is the biomass, which should be maximized in the control horizon 𝑁𝑀𝑃𝐶 265 

and 𝛥𝑡 is the timeframe between two pulses. The system is subject to the constraints of 266 

keeping the DOT above 30 % and to pipette at least 3 µL in every pulse. In every cycle, the 267 

MHE fits the model to the recent measured values by updating the parameter values and 268 

predicting new values for the initial state of the MPC. With the updated parameters, the MPC 269 

is started and calculates new inputs until the end of the feeding phase and beginning of 270 

induction. By using an efficient nonlinear program solver (IPOPT) and parallelization, the total 271 

calculation time for MPC for 24 bioreactors does not exceed the 10 minutes control interval. A 272 

schematic overview about the workflow is depicted in Figure 2.  273 
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 274 
Figure 2: Overview about the MPC workflow. Glucose pulses (the inputs) are given every 10 min as indicated by 275 
the circles. The current control inputs for each interval are represented by the green solid lines. Every 10 min, the 276 
MHE updates the model parameter (purple lines) by fitting the model to the most recent data. The updated model 277 
is used for the MPC to calculate new feeding inputs until induction. The updated inputs are represented by the 278 
dashed green lines. 279 

 280 

The MHE/MPC framework implemented using an adapted version of do-mpc (Lucia et al., 281 

2017) was compared with a conventional screening approach, which tested the boundaries of 282 

the design space to identify optimal cultivation conditions as shown in Table 1 (A-D). The 283 

growth rates and respective induction strengths chosen for the conventional approach are 284 

based on initial screening experiments and indicate that a possible optimum is in this range 285 

(data not shown). 286 

Table 1: Overview about the experimental layout. Depicted are the 6 experimental layouts, stating if MPC was 287 
applied (+) or not (-) and in case the DOT constraint, the growth rate, and the induction strengths. The first 4 designs 288 
comprise the boundaries of the design space and are based on early screening results, while the latter 2 were 289 
controlled by MPC. 290 

Exp. setting 
MPC (DOT 
constraint) 

µset [h-1] IPTG [mM] 

A - 0.15 0.05 

B - 0.30 0.05 

C - 0.15 2.00 

D - 0.30 2.00 

E + (30 %) Controlled by MPC 0.05 

F + (30 %) Controlled by MPC 2.00 

 291 
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3 Results 292 

3.1 Identifying optimal process conditions and avoiding adverse DOT limitations 293 

Finding optimal cultivation conditions is a significant task during the development of a new 294 

biotechnological process. Many biotechnological processes depend on aerobic conditions, 295 

since oxygen limitation would lead to a substantial change of the internal metabolism and lead 296 

to a considerable stress response of the cells (Schweder et al., 1999). To reduce the number 297 

of necessary experiments until optimal process conditions are found, our previously available 298 

HT cultivation system has been extended by an innovative MPC approach. The MPC 299 

framework tries to find an optimal feeding rate according to the last generated data, but it has 300 

to take into account that the DOT does not drop below 30 % and the system cannot pipette 301 

less than 3 µL. Considering these constraints, an optimal feeding profile was found, which 302 

maximizes the biomass at the end. Figure 3 shows such an optimal trajectory at one iteration, 303 

where the color-coded constraints were considered. 304 

 305 
Figure 3: Optimal trajectory avoiding infeasible regions. Shown is a possible trajectory calculated by the MPC 306 
framework to obtain high biomass with a pulsed based feeding. Indicated are the infeasible regions (colored areas) 307 
as are low levels of oxygen (< 30 %) or low pipetting volumes (< 3 µL). The new suggested input from the MPC is 308 
indicated in black. 309 

The MPC framework optimized the feeding trajectory to maximize biomass at the end of the 310 

feeding rate while complying with constraints, using the parameters obtained from fitting the 311 

model to the data which are measured. Accurate estimates for the parameters of the underlying 312 



13 
 

dynamical model are essential to ensure truly optimal inputs for the real process.  The MHE 313 

updated the parameter values every 10 min via fitting the model to the most recent 4 h of the 314 

process. Figure 4 shows a parameter estimation which was performed after the experiment to 315 

show the capabilities of the model to describe the data and find good parameter values. This 316 

emphasizes that the model and framework used are capable of estimating good parameter 317 

values that can be used in the MPC framework to calculate optimal feeding. While biomass is 318 

slightly overestimated by the model during the fed-batch phase, there is good agreement for 319 

substrate and the measured DOT signal in the batch phase, even though the fitting accuracy 320 

deteriorated during the induction phase. Acetic acid is underestimated by the model, especially 321 

in the beginning of the feeding phase, but the measured values are still in a low range and the 322 

prediction error is small. Underestimating the acetate could lead to wrong predictions of the 323 

substrate, since acetate is inhibiting biomass growth.  324 

 325 
Figure 4: A posteriori parameter estimation. Shown is the output of the parameter estimation after the process 326 
was performed from 3 replicate reactors (colored dots, each color representing one of the triplicate bioreactors). 327 
Note the differences in time scales between batch and fed-batch phases. In this setting, product refers to the ELP-328 
eGFP fusion protein (which was measured via Fluorescence and converted to g L-1 with previously calibrated 329 
conversion factor). The dash-dotted line at around 8 h indicates the point of induction.  330 
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 331 

The MPC framework generated a good feeding trajectory to reach a high biomass, while 332 

considering that the constraints are not violated. The results of the experiments following the 333 

layout of Table 1 are depicted in Figure 5. After a batch phase of around 4 h, typically detected 334 

by the sudden increase in the DOT signal, the feed and MPC controller were started. For the 335 

conventional approach, 4 experiments (in triplicates) according to the experiments A-D in 336 

Table 1 were fed with a predefined feed at a μset of 0.30 h-1 or 0.15 h-1. The other two 337 

experiments (also in triplicates) were fed with individual feeds (Figure 6 E and F) which were 338 

calculated from the MPC controller and updated every 10 min. The reactors with the higher 339 

feed rate reached higher biomass values at the end of the process compared to the reactors 340 

with the lower feed rate (Figure 6 A and C) and therefore also higher values for the product 341 

concentration as depicted in Figure 5. However, especially after induction, the DOT signal 342 

drops below the threshold of 30 % in those reactors and cells entered overflow metabolism, 343 

which is also indicated by glucose accumulation and higher levels of acetate. Induction 344 

strength has only minor impact on the production. The cultivations with the higher IPTG 345 

concentration showed slightly higher product concentration levels normalized to the biomass 346 

than the cultivations with lower IPTG. In the reactors, which were controlled by the MPC 347 

framework (Figure 6 E and F), the biomass reached comparable levels between the high and 348 

the low predefined feeding rate as shown in Figure 6A and B. All reactors which were controlled 349 

by the MPC framework satisfied the constraint of having oxygen levels over 30 %. Glucose 350 

accumulation was only observed after induction in those reactors with the high induction level 351 

and acetate remained almost constant during the course of the cultivation. Product 352 

concentration levels were also as high as in the cultivations with the predefined feed. As a 353 

result, the biomass obtained was similar to the high μset but without violating the DOT 354 

constrains. This is an increase of approx. 50 % compared to the non-controlled cultivations 355 

that stayed within bounds was achieved. 356 

  357 
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Figure 5 Results from the first cultivation. In the figures A-D are the cultivations depicted with low (0.15 h-1) and 358 
high (0.3 h-1) feeding rate as well with low (0.02 mM) and high (2 mM) induction with IPTG. The part figures E and 359 
F show the comparison of the processes which are controlled by MPC, again with the low and high induction. 360 
Depicted are the measurements for measured DOT, biomass (circles), glucose (circles), acetate (x) and product 361 
per biomass (x). The dashed vertical line indicates the start of the feed and the dash-dotted vertical line the start of 362 
the induction.  363 
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Figure 6: Comparison of the feed profiles and the biomass. Depicted are the different bolus feed volumes at 364 
each feeding time during the exponential feeding phase (A) and the measured cell dry weight for the high and the 365 
low predefined growth rate as well as for the cultivation which was controlled by the MPC framework (B). The 366 
dashed line indicates the start of the feeding. Open circles indicate when a cultivation has violated the constraint of 367 
having at least 30 % DOT. 368 

 369 

4 Discussion 370 

4.1 Optimal process control with limited a priori knowledge 371 

In this study, we have extended our existing automated high-throughput bioprocess 372 

development platform with an MPC framework that allows new E. coli strains, about which little 373 

prior knowledge is available, to be cultured at their maximum growth capacities. By using online 374 

and various at-line measurements, it is possible to measure the key state variables at high 375 

frequency and generate sufficient data to fit our mechanistic model of the organism to these 376 

data. Unlike previous examples of MPC in bioprocesses, the parameter values of the model 377 

do not need to be known in advance, but are adaptively fitted to the measured values during 378 

the model (Jabarivelisdeh et al., 2020). This made it possible to determine better cultivation 379 

conditions in a single run than would be the case with classical feeding profiles. However, 380 

further tuning of the framework is still needed to further optimize the optimal feeding trajectory. 381 

Furthermore, we show that this MPC based control of the process is necessary to meet the 382 

A 

B 
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constraints (DOT > 30 %) even though a bolus-based feeding is used. A classical PID 383 

controller, on the other hand, could not respond until a glucose pulse was given, which could 384 

lead to a violation of the constraint in this system (Santos et al., 2012). In addition, Kager et al. 385 

compared stability and performance of a PID controller with MPC and found that the PID 386 

controller often cannot cope with the nonlinear dynamics and is unstable, and MPC furthermore 387 

achieves better performance. e.g., higher yield (Kager et al., 2020). In addition, a PID controller 388 

cannot handle nonlinear process constraints such as oxygen limitation. These constraints can 389 

only be met with the help of model knowledge in the form of mathematical optimization. 390 

 391 

4.2 MHE/MPC guides to optimal process conditions 392 

Operating a high-throughput MBR system is a challenging task and violation of several process 393 

constraints might easily happen (Hemmerich et al., 2018). This is especially true when 394 

screening a new strain for optimal process conditions, where the biological parameters are 395 

unknown before the experiment. The MPC controller successfully managed to maintain the 396 

process within the predefined bounds. The approach was compared to a classical approach 397 

with predefined feeding rates: Two different feed rates were applied to the process which are 398 

often applied in bioprocesses of E. coli: µset = 0.15 h-1 or µset = 0.3 h-1, respectively. The low 399 

feeding rate did not achieve the high biomass outputs that would be possible with the strain. 400 

On the other hand, cultivating the cells with the higher feed-rate led to significant oxygen 401 

limitation as can be seen in Figure 5 and Figure 6. An adaptive computation of the optimal 402 

profile was necessary to maximize biomass concentration without violating process 403 

constraints.  404 

Even though the feeding calculated with the MPC led to significantly better results than with 405 

the predefined feed, the optimal feeding profile was not achieved. This is mainly due to plant-406 

model mismatches and inaccuracies of the measurements, which have great influence on the 407 

simulation outcome (Nagy & Braatz, 2004). Due to the uncertainties of the parameters which 408 

are currently not considered in the nominal MPC, the actual optimal feeding rate could have 409 
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been higher. Further tuning of the MPC framework, which would make it more aggressive and 410 

penalize constraint violation less, could lead to higher yields. 411 

 412 

4.3 Control under uncertainty 413 

In particular, uncertainties inherent in the model as well as uncertainties in the parameters lead 414 

to sub-optimal feeding profiles. Especially after induction, the model is less accurate to 415 

describe the process. The use of hybrid models could improve model predictions and reduce 416 

dependence on individual parameter values (Stosch et al., 2014). However, this requires very 417 

large data sets to train such models well. In addition, they are sometimes worse at generalizing 418 

for unknown strains. Furthermore, the use of data-driven approaches such as PCA (Thombre 419 

et al., 2019) could be supported. In contrast, other approaches in MPC such as multi-stage 420 

MPC or stochastic MPC would likely predict more cautious feeding rates so that they do not 421 

violate constraints even in the presence of large uncertainties (Lucia et al., 2013). 422 

 423 

5 Conclusion and outlook 424 

Finding optimal experimental conditions in early bioprocess development is time consuming 425 

and laborious. Even though the combination of liquid handling stations and MBR have 426 

decreased the bottleneck in the screening phase, it is still not easy to find optimal process 427 

conditions which yield e.g. high biomass or product concentration without violating predefined 428 

constraints which might be adverse to the process under investigation. However, cultivating 429 

bacterial strains at their maximum capabilities while fulfilling the constraints is essential for a 430 

fast and robust bioprocess development framework. We have described how an MPC 431 

approach based on a macro-kinetic growth model can be successful to maintain DOT 432 

constraints while maximizing biomass production in the exponential growth phase. Hence, 433 

within a single parallel run it is possible to identify close to optimal process conditions. Using 434 

an adaptive approach like MHE to estimate states and parameters can support the MPC to 435 

deliver optimal control inputs. However, the current framework is limited by the uncertainties 436 

in the parameters, the model structure, and the time evolution of the system dynamics. Other 437 
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implementations are suggested, as e.g. also consider a Kalman Filter, to deal with these 438 

uncertainties and plant-model mismatches to ensure a sufficiently accurate parameter 439 

estimation and optimal control. 440 
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