Simulation of the liquid flow distribution in laboratory-scale additively manufactured packings Nadin Sarajlic¹, Johannes Neukäufer², Mohamed Ashour², Thomas Grützner², Sebastian Meinicke³, Carsten Knösche³, Jürgen Paschold³, Harald Klein¹, and Sebastian Rehfeldt¹ March 12, 2022 ## Abstract This paper demonstrates that a newly designed packing structure can be additively manufactured, and that a more uniform liquid distribution is achieved with it. Preliminary computational fluid dynamics simulations eliminate the necessity to manufacture every developed geometry when optimizing packing structures. This work simulates the liquid flow inside two packing structures with an enclosing wall at laboratory scale. The periodic setup permits simulations of the liquid distribution in a large part of the column even for complex packing structures. A novel method for the systematic evaluation of the liquid distribution is applied to the simulation results and subsequently validated with experimental data. The results are used to improve the liquid distribution inside laboratory-scale packing structures. ## Hosted file Manuscript_AIChE_CFD-Liquid-Distribution.pdf available at https://authorea.com/users/407048/articles/559610-simulation-of-the-liquid-flow-distribution-in-laboratory-scale-additively-manufactured-packings ¹Technical University of Munich ²Ulm University ³BASF SE