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Abstract

An initial-boundary value problem for a quasilinear equation of pseudoparabolic type with a nonlinear boundary condition of
the Neumann-Dirichlet type is investigated in this work. From a physical point of view, the initial-boundary value problem
considered here is a mathematical model of quasi-stationary processes in semiconductors and magnets, which takes into account
a wide variety of physical factors. Many approximate methods are suitable for finding eigenvalues and eigenfunctions in problems
where the boundary conditions are linear with respect to the desired function and its derivatives. Among these methods, the
Galerkin method leads to the simplest calculations. In this article, by the Galerkin method to prove the existence of a weak
solution to the initial-boundary value problem for a pseudoparabolic equation in a bounded domain. On the basis of a priori
estimates, we prove a local existence theoremand uniqueness for a weak generalized solution of the initial-boundary value
problem for the quasilinear pseudoparabolic equation. A special place in the theory of nonlinear equations is occupied by
the study of unbounded solutions, or, as they are called in another way, blow-up regimes. Nonlinear evolutionary problems
admitting unbounded solutions are globally unsolvable. In the article, sufficient conditions for the blow-up of a solution in a

finite time in a limited area with a nonlinear Neumann-Dirichlet boundary condition are obtained.
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ABSTRACT. An initial-boundary value problem for a quasilinear equation of pseudoparabolic
type with a nonlinear boundary condition of the Neumann-Dirichlet type is investigated in
this work. From a physical point of view, the initial-boundary value problem considered
here is a mathematical model of quasi-stationary processes in semiconductors and magnets,
which takes into account a wide variety of physical factors. Many approximate methods
are suitable for finding eigenvalues and eigenfunctions in problems where the boundary con-
ditions are linear with respect to the desired function and its derivatives. Among these
methods, the Galerkin method leads to the simplest calculations. In this article, by the
Galerkin method to prove the existence of a weak solution to the initial-boundary value
problem for a pseudoparabolic equation in a bounded domain. On the basis of a priori
estimates, we prove a local existence theoremand uniqueness for a weak generalized solu-
tion of the initial-boundary value problem for the quasilinear pseudoparabolic equation. A
special place in the theory of nonlinear equations is occupied by the study of unbounded
solutions, or, as they are called in another way, blow-up regimes. Nonlinear evolutionary
problems admitting unbounded solutions are globally unsolvable. In the article, sufficient
conditions for the blow-up of a solution in a finite time in a limited area with a nonlinear
Neumann-Dirichlet boundary condition are obtained.

Keywords: Pseudoparabolic equations; nonlinear boundary conditions; Galerkin method;
the existence of a solution; uniqueness of the solution; blow-up of the solution; asymptotic
behavior of the solution.

MSC (2020): 35A01; 35B40; 35B44; 35S16.

1. INTRODUCTION

The first rigorous mathematical study of equations that are not equations of the Cauchy-
Kovalevskaya type is the pioneering work of S.L. Sobolev [1]. The same work aroused
great interest in the study of non-classical equations, called equations of the Sobolev or
pseudoparabolic type. The study of problems for the pseudo-parabolic type began in the
late 1970s. A large number of works are devoted to the study of nonlinear equations of
pseudoparabolic type [3]- [38]. The modeling of physical processes leading to equations
of the Sobolev type and, in particular, of the pseudoparabolic type, are devoted to the
works [3], [4], [6], [7], [15]- [20], [24].

Questions of the asymptotic behavior of solutions of such problems at large times, as well
as the theory of scattering and stability of solutions of the solitary wave type for one-
dimensional and multidimensional equations of the Benjamin-Bon-Mahoney and Benjamin-
Bon-Mahoney-Burgers, Rosenau-Burgers types were considered in [5]- [7]. Oskolkov A.P.,
Antontsev S.N., Kozhanov A.I., SveshnikovA.I., Korpusov M.O. and many other scientists
have made a significant contribution to the study of the solvability of initial-boundary value
problems for equations of pseudoparabolic type.

The systems of nonlinear equations of the Sobolev type (Kelvin-Voigt equations) describe
flows of viscoelastic fluids. Investigations of the mathematical correctness of such equations
are devoted to the works [15]- [17], [33]- [38].
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In the work of M. O. Korpusov, A. G. Sveshnikov [22] a model equation is considered that
describes the relaxation of an initial perturbation in a crystalline semiconductor in the case
when its electrical conductivity depends nonlocally on the field.

q
g (Au—u) — </ d:vVu) Au =0,
3 Q

ulyo =0, u(z,0) =up(x).
For certain initial parameters, the effect of finite time "cooling down" is proved to occur. For

other parameters, the first term of the longtime asymptoticsis found and the remainder of
the asymptotic expansion is estimated.

In the work of [21] studied the mathematical model of wave processes in semiconductors in
an external electric field, taking into account dissipation and the non-local connection of the
current density with the strength of an electric field:

0

q
Gt(Au —u — |u|u) + Au + uy, + un,, — (/ da:Vu) Au =0,
Q

ulyo =0, u(z,0) = up(x).

Sufficient conditions for the blow-up of a strong generalized solution are obtained. This
article is devoted to the study of the problems of local and global solvability in time and the
effect of the blow-up in a finite time of solutions of the initial-boundary value problem for
nonlinear Sobolev-type equations.

1.1. Formulation of a problem. Determining the solution. We consider the quasilin-
ear equation

e?t(“ —xAu) = (a0 + ay | Vul3%?) Au = bz, t)[ul"2u + f(2,1), (z,8) €Qr  (11)
with the nonlinear boundary
gz + k(z, t)|u|"2u ) =0, I'=00Q x (0,7T), (1.2)
and with the initial conditions
u(z,0) = up(x), x € Q. (1.3)

Here Qr = {(x,t): € Q, QC R", 0 <t <T}isacylinder, 2 C R", n > 3is a bounded
domain, with a sufficiently smooth boundary 02, so p, ¢, ag, a1 and o are positive constants.

This problem is a mathematical model of wave processes in semiconductors in an external
electric field, taking into account the dissipation and nonlocal connection of the current
density with the electric field strength [19], [20], ( [25], Chapter 7, p.516).

The functions b(z,t), f(x,t), k(z,t) and uy(x) satistfy the following conditions:

0 <by <b(x,t) <b <00, 0<b(x,t)<b <oo, V(r,t) € Qr;
0 < ko < k(x,t) <k < oo, 0< 2D < gy Bl < fe, (1) € Qr; (1.4)

If(z,0)l50 < Co, Ve [0,T], uolx) € Wi(Q).
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Definition 1. A weak generalized solution to problem (1.1)-(1.3) is a function u(z,t) from
the space W3 (0, T; W3 (Q)) N Ly(T), which satisfies the integral identity
Iy fQ ( v+ xVu - Vo + (ao +ay || Vull3% 2) Vu - Vo ) dxdt—
f Jo bz, t)|u[P~2uvdudt+
+J s ((aO +ay [ Vull3?) B, 6)|ul"=2u + xhi(w, £)|u|”=?u) vdldt+
+x(oc —1) fo Jo k(, t)|ul”2uodldt = fOT o fodadt,

for all v(z,t) € Lo(0,T; W3 (Q)).
We will give an equivalent definition of this Definition 1 (see [25], [26]):

Definition 2. A weak generalized solution to problem (1.1)-(1.3) is a function u(x,t) from
the space W21(0 T; W3(Q))N L,(T'), that satisfies the integral identity

fo fQ ( )+ xp(t)Vu - Vo + (ao + a4 ||Vu||§q52) o(t)Vu - Vv) dxdt—
=y Jo, bz, t ]u\p 2uv(z)p(t)drdt+

+ fp((a0+a1 IVull3%,?) k=, t)|u]”‘2u+xkt(a: £)u)”~2u )v( )oo(t)dTdt+

+x(o—1) fo Jo B, t)|ul"2u(x)e(t)dldt = fo Jo fo(x)e(t)dadt,

for all p(t) € Ly(0,T), v(z) € W3 (Q).

2. GALERKIN’'S APPROXIMATIONS

Let us choose in H' () some system of functions {¥;(z)} forming a basis in this space.
Such a system certainly exists, because the H' (Q) - is a separable space. We will seek an
approximate solution to problem (1.1)-(1.3) in the form

oV, oV

J
Z /Q [\ykqf +XZ o, axi]dﬁr

(0 —1) Z / T, 1)U |72, U d D+
r

u oV DV,
+ 3 Co(t) (a0 + ar |V [15%,%) Z ay

P 0x; axz
(2.1)

m

3 Coalt) (a0 + [V 35%) [ bla Dl 200,04
I

k=1

—I—XZka(t)/kt(x,t)]um]“2\Ilk\Ilde‘—
I

k=1

m

= C’mk(t)/Qb(x,t)|um|p_2\1/k\lljdx = /Qf Wide, j=1,..,m

k=1
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Co(0) = / U (O W4dz, tmg = tn(0) = 3 Corn(O) W1 = 3 Wy, (2.2)
k=1 k=1
moreover
Umo — Up strongly in H' (Q) at m — oo. (2.3)

We introduce the notation Cp, = {Cm(t), ..., Coum (1)},

g = [ 00+ X (00, 95)) o +x(0 = 1) | bl 200,07
r

b = <a0+a1 IV l5% 2)/(vwk,v\p-)d:p—

— (a0 + a1 IVl 2)/ B D)l 200,00 — xS Couelt /kt(:c,t)]um|”2\lfk\lfjdl“+
k=1

+/ b(2,t) |Um|P 20,0 dx + / f-¥Yde.
Q0 Q

A (G) = o (Gu)} . G (G) = fe(6)}

Then the system of equations (2.1)-(2.2) takes the matrix form
AnChy =G (Cn), Cn(0) = @, (2.4)

The matrix A,, is invertible. In fact quadratic form

ST ari&eé; =/ !n\zdwrx/ \VnPdz, n="> &
k.j=1 Q Q =1

is equal to zero if and only if n = 0. Considering the positivity of the matrix A,,, the problem
(2.4) can be reduced to the following form

Cl, = A,1Gr (C), Cn(0) = a0, (2.5)

According to Cauchy’s theorem, the problem (2.5) has at least one solution C., in some time
interval ¢ € (0,7,,), T,, > 0. At the next step, we obtain the a priori estimates which prove
that the Cauchy problem (2.4) has the global solution in the interval [0, T].

3. A PRIORI ESTIMATES

3.1. Local in time estimates in presence a source inside the domain 2. We multiply
both sides of equality (2.1) by C,,;(t) and sum over j = 1,m. As a result, we obtain the first
energy equality
L+ ag [o [Vup|*dz + a; (fQ |Vum|2dx>q
(ao + a; HVumH2q 2) Jo k(, t)|uy,|7dD = (3.1)
o 0@, t)|up|Pdx — X [ k(2 8)|um|7dD + [ f - umdz,
where

B() = 5 [ llonl? + X[V}

Next, we will use the following statements.

k(x,t)|un,|°dr.
r
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Lemma 1. ( [29], [30]. For any function u(x ) € W3(Q), the following inequalities hold
lulls o < Co (IVull3 g + HUH§Q> lullfle”" <

910 (129)p 9 9
< Gy (IIVul3 0+ Ilull3g) ® < (xIVulli o+ lull3q)

[S]4S)

where C = max{l, ;}(%) 0—p2)”<1 2<p< 2 n>3.

Lemma 2. (First local estimate) Let conditions (1.4) be satisfied and ¢ > 1, 2 < p <
%, n >3, 0 > 1. Then there exists Ty > 0 such that the function u,,(x,t) the estimates
are fair:

E(t) < Cy, forall t€]0,T), T < Ty,

N (fgyvum ]2d:c+(fQ]Vum (t)[2dx)") dt+
+ Jy (a0 + a1 [Vunl35?) Ji k(@ )lum|7dldt < Cs,

where the constants Cy, Cs does not depend on m € N but depend on 0 <t < Tj.

Proof. We estimate the right-hand side of identity (3.1) in the following way

[S4S]

< by lumlllg < boCr (x IVull3q + llullsg)” - (3.2)

/Q (e, )|t P

|k (, t)\ X/
7dr| < _— dI < K1 & 7dr .
| U/kt(x ) |um|’d U/r k(o) k(z,t)|ty,]|7dl < 1 Fk:(:v,t)|u,n,~b| ar, (3.3)

2 2
o f - umdz| < [ flo ltmllag < 315150 + 3 lumlsg <
2 2 2
< I+ 3 (X IVunls o + lumllsg) -

(3.4)

Substituting the obtained inequalities (3.2) and (3.4) into identity (3.1), we arrive at the
inequality

W+ 0 Jo [Vum e +ar (f; |gum|2das)q (a0 + a1 [IVum|35?) fi (2, ) um|7dD
< GE®) ++CE®)E + | fll50

where Cy = max { Ufill; 1}, C5 = byCy. We introduce the function

(3.5)

2(t) = e 'E(t).

Then (3.5) can be rewritten as

dZ P
— < Co b= 2 2
7 S Cse Hz(t)]

Integrating the latest from 0 to ¢, we obtain

t . N 1 t
z(t) < z(0) + 03/ 602723[z(s)]5ds + 3 / e 028 Hf||§Q ds.
0 0

Using condition (1.4) we arrive at the nonlinear integral inequality

+ 5| fllzq -

N | —
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2(t) < 2(0) + 2002 + 03/0 "5 2 (s)] B ds.

Applying the Gronwall Bellman-Bihari lemma [39], we arrive at the estimate

2(0) + 3%

2(t) < ot

ll -0+ )7 & (¢ 1)]H

if ¢ satisfies the inequality
Cs
Ca

(602”%2&1)< L o<t<r
(=0 + )" |
that is

t<Ty= 02(])2_2)11& (1 + gz ( (0) + 206?2)2> = G(2(0)).

Then we arrive at final the inequality

E(0)+ o ) eCat
B(t)< (o) :

[1—(E<o>+fc°2) T (ecfft_l)] ”TQ' (3.6)

From this estimate, we can conclude that there exists Ty > 0 such that

1 —1
5 (I3 g + X [ Vumll3 o) + XUU/Fk(x,t)Hum]"dF <y, forall te0,T], T < Ty,
(3.7)
where () is a constant independent of m € N but depends on .
Returning to (3.5) and taking into account (3.7), we obtain one more inequality:
T q
Jo (o |V [2dz + ([, |Wm|2da;) ) dt+ 38)
+f0 ((10 +a ||Vum||2q 2) fl" Z, t |um|"dth < 05
O

Lemma 3. (Second local estimate) Let conditions (1.4) and estimates (3.7), (3.8), as well as
the inequalities of Lemma 1 are performed , then the functions u,,(x,t) satisfy the estimate:

A(t) < Cg, t €(0,Tp),
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¢
A(t) == / (/ (\8tum|2 + X|8tVum|2) dr + x(oc —1) / k(x,t)|um\"2|8tum|2df> dt
o \Ja r

and Cg constant does not depend on m € N.

Proof. Now we multiply equality (2.1) by C () and sum over j =

expression over 7 from 0 to ¢, we arrive at the relations

A + 9 IVumllsq + ||Vum||m+ =
= [ bz, t) |t |Pde — lfo Jo b (2, t) [t [PdcdT—
—ffr (a0+a1 HVumHQq 2) (@, £)|um|7dl+

Loy ) HVum||§qQ4 QVumV8 Unpd [ k(2 ) |up|7dDdT+
+1 fo (a0 + ax HvumH?q ?) Jy B (0, )ty | 7 dT 7 —

fr (2, 1) |t |7dD + X fo fF (T t)|um|"dFdT+

+fo fﬂfa s + % [V (2,0)[3 + 50 IV (2, 0) 5%,
—fQ z, 0)| Uy, (z, 0)|pdx—|—
F1 T (a0 + ay [ Vet 0) |25 2) k(, 0) (2, 0) "

We estimate the right-hand side of identity (3.9)

S
<a

1 t
‘ / / by (2, )| [P
PJo Ja

t
/f@Tumd:L‘dT
0o Ja

boC N Ne:
< °p1(x||wu§,9+uuu§,9) < Oplx/Off-

Cylag + a,CI)

g

1
- / b(x, t)|um,|Pdx
0

p
1
’ (a0+a1 ||Vum||2q 2)/k(m,t)|um|°dF <
r

— fo |Vu m||2 . fQ Vi, Voyumde [ k(x,t) |um\"dFdT’ <
= fo ”V mHQ(q 2 Hvumuzg ||vatum||29fr €, t |um’0drd7 <
fo ||Vatum||2§2 T < Xfo ||V(9tumH29dT+ aq ;’ 1) Czq ’T

fF ki, )t |70 + X [0 [ i (2, ) [ |7dT 7| <
< X [ Bk, 1), |7dT+
+X fo fr k;éx: x, T) || 7dldr < 2K fr x, t) |ty |7dl+
+X Ky fo fr 2, 1) [ug[7dldr < XK Cy + K0T,
N (ao + a4 HVumH2q 2) Jr ke (2, t) \um]UdFdT‘ <
< Hag+arCf ) fy Jp et ‘k 2, 7) U7 dldr <
< %(ao + a104_1)C4T

Lo 1 2
< [ fllaq 10-umlla g, < 5 1fllzq, + 5 10rtmllzq, -

Substituting the obtained inequalities into identity (3.9), we obtain

t
<h / / |t |Pddr < 0161 Cht < b CUT.
p Jo Ja p p

,m. Integrating obtained

(3.9)

(3.10)

(3.11)

(3.12)
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t “ w
zfo fn o [ 4+ X1 V) dardr + % [Vl + 52 [V 3+
fo fr ) [ |7 2|8 um|2dFdT < Cs.

Thereby received the estimate

T
/ (/ (|6tum|2 + X|(9tVum|2) dx + x(oc — 1) / k:(x,t)|um|g_2|8tum|2df‘> dt < Cg. (3.13)
0 0 r

O

3.2. Global in time estimates in presence an absorption b < 0.

Lemma 4. Suppose that in addition to (1.4) and ¢ > 1,p > 1,0 > 1 the term b(x,t) satisfies
the conditions

0< b(] < —b($,t> < b1 < Q. (314)

Then the Galerkin approximations for all t € [0,T)] satisfy the estimates

supreioaY (um (), 1) + i A (un(t),1)dt < 262 ([ £115,0, + Y (w(0),0) +1),  (3.15)

where

V001 5= (5 ([0 + 0090l 72 [ 0ol = 0

A(u,, (t),t) == ag [o |V [*de + ay (fQ \Vude:z:)q + o, boltm |Pdz
+ (a0 + ar | Vi 5%5%) Jr k@, t)[um|7dl > 0.

Proof. Using (3.14), (1.4) and (3.1) we get the inequality
LY (u (t),t) + Alu,,(t),t)

3.16
< o - wdal < 3 Jo P+ Y (0, (8).1). (310
Integrating last one we arrive at estimate
Y (u,, (), )+ fy e *Alu,,(s), 5)ds
T 2 T 2 (317)
< e (Y (1, (00,004 [1fl50,) < € (Y (u(0), 0+ 1 fll5.0, +1)-
From here we obtain
Supte[o,T]Y + fo m dt < 2¢*T (Hf”z Qr + Y( (O)» 0) + 1) . (3-18)
The estimate (3.15)is proved. o

Now let us prove the second global estimate under conditions (3.19).
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3.3. Global estimates in the presence a source b > 0. First global estimate for b > 0.
Now we assume that

2(n—1)

p<o, p<2q p< —5 0 < ko < k(x,t). (3.19)

Lemma 5. (First global in time estimate in the presence a source inside the domain 2,
i.e. b > 0 and in the presence of an absorption on the boundary i.e.k > 0.) Assume that,
in addition to (1.4), conditions (3.19) are satisfied. Then, for all m and any finite T, the
following estimates

E(t) < Cq, forallt e [0,T], (3.20)
q
Jo (Jo IVt (@) Pda + (fy [V (t)2dz) ") dt+
+ [y (a0 + ay [Vunl5%57) Jp bz, O)|um|dldt < Cs,
hold. Here the constants Cr, Cs does not depend on m € N but depend on T'.

(3.21)

Proof. First of all we derive a presentation for any function u(z) € W3 (Q) = H*(Q).

According with the formula (7.12) page 71 from [2], any function u(z) € W3(Q) = H'(Q)
may be presented by the formula

u(z) = ug + Q(Vu, x), (3.22)
where
Q(Vu,r) = XjNJ M%r:u—m,
Qp=1 "

wi, k=1,..,n, are smooth functions and wug is a constant. Integrating both sides of the last
expression over I' we obtain

"y = |1£| < /F udl — /F Q(Vu,x)dF) | (3.23)

Respectively we arrive at the formula

u(z) = é‘ ( /P udl — /F Q(Vu,x)dl“) +Q(Vu, ). (3.24)

We raise both sides of the last equality to the power of p and integrate over 2. Then we
arrive at the estimate

/Q|u(m)|pd$ <C ((/F |u|dF> + /Q |Q(Vu, ) dQ) , (3.25)

where C' = C(|T'|, |©2|, p,n). Using properties of integral operators and embedding theorem

+ /F Q(Vu,x)dl’ ’

P B 2(n—1
/Q(Vu,m)dF <C(IVul3e)®, p< <n_2) (3.26)
T
. 2 \5 2n
Q(Vu,2)dQ| d2 < C (|Vull3a)®, p < : (3.27)
QO Q ’ n — 2
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/Q u(2)Pde < C ((/F |u|dP>p n (HVU”%}Q)Q) | (3.28)

Then, combining (3.24)-(3.28) and using the inequalities

p
(/ |u|dr) sc(/ |u|"dr+1), C=Clhnop), p<o
I I

(IVul3e)” <6 (IIVul3q)” + C(6), 6€(0,1), p<2g

we estimate

and taking into account (3.19), (1.4), we can rewrite (3.28) in the form

/ blu(z)Pdz < C (/ k|u|dl + 1) +0(IVull3a)’ + C(0), 6€(0,1), p<2g (329
Q T

where C' = C(p, by, ko, 0,4, 9).

Choosing ¢ sufficiently small in comparison with a;, similarly to (3.2)-(3.3), we arrive at the
inequality

By ag [ [Vum|?de + ay (fQ |Vum|2dx>q + (ao +a; ||Vum||§q§2) Jp k(2 t)|um|7dD <
<C(E®+fl50+1),

(3.30)
Integration of the last inequality completes the proof of the lemma. O

Lemma 6. (Second global estimate under conditions (3.19)) (Second global in time estimate
in the presence a source inside the domain €2, i.e. b > 0 and in the presence of an absorption
on the boundary i.e.k > 0.)

Assume that, in addition to (1.4), conditions (3.19) are satisfied. Then, for all m and any
finite T', the following estimates

A(t) < Cy, t€[0,T), (3.31)

t
A) = / (/ (190t + X|0 Vo ?) dar + x (o = 1) / k;(x,t)\um|"2|8tum|2dF> dt
0 Q T

hold. Here the constant Cy does not depend on m € N but depend on T

Proof. We will use the relations (3.9),(3.10)-(3.12) and inequality (3.29) to estimate [, blun,|°.
Taking into account Lemma 5, estimates (3.11)-(3.12) are carried out in a completely similar
way, but for any fixed finite moment of time. Repeating the arguments of the Lemma 5 ends
the proof.



12 1,2, 3,4, AND 3
4. PASSAGE TO THE LIMIT AS m — 00. LOCAL AND GLOBAL EXISTENCE THEOREMS.
The estimates obtained in Lemmas 2,3 (local in time) and in Lemmas 4-6 (global in time)

allow us to draw the following conclusions. Here and below T < Ty in the case of local
estimates and T is an arbitrary finite number in the case of global estimates

Uy, limited in Lo (0,T; H'(Q)), (4.1)

ul, limited in Lo(0,T; H*(Q)), (4.2)

k() )| tn| "2t limited in Log(0, T; Lo/ (D)), o = — >l (4.3)
.

In addition, due to the conditions imposed on p:

2
U [P~ 2y, limited in Lo (0,75 L (), 2<p < 7?12’ n > 3. (4.4)
p—1 n —

From(4.1) follows, that there exists a subsequence w,,, of the sequence w,,, *-weakly con-
verging to some element u,, € Lo.(0,T; H*(2)), that is

U, — u *-weak in L.(0,T; H'(Q)).
Similarly, it follows from (4.2)-(4.4) that there exists a sequence {uy,, } C {ux}, such that
w,  — ' limited in Ly(0,T; H'(Q)).

mg

By the Sobolev theorem Wi (Qr) € Ln(Qr), m < 2 This embedding is compact if

n—1

m < % By the Rellich-Kondrashov theorem, the embedding of W, (Q7) in Ly(Qr) is
compact. This means that the sequence u,, can be chosen so that w,, ~— w in the norm

Ly(Qr), and hence converging almost everywhere (see [40], Theorem 16.1, p. 123.)

From (4.3) it follows that k(z,t)[un|” ?um € Lo(0,T; Ly(T')), o = =% > 1 converges
almost everywhere in (0,7").

The boundedness of \/k’(:c, )| tm| =2y, in Ly(0,T; Lo (I')), o' = %5 > 1 implies the weak
convergence in this space of the subsequence k(z,t)|um, | 2y, of some function x(z,t).

By Lemma 1.3, proved in [31], it follows that x(z,t) = k(z,t)|u|”?u.

Remark 1. Convergence of norms ||Vu;(t)||5 and strong convergence Vu;. We consider
the sequence of functions

Li(t) = |[Vui(t)l2.0, t €[0,77. (4.5)

According to Lemmas 2, 3 and estimates (3.20),(3.21) (in the local case) and Lemmas 5, 6
and estimate (3.51)(in the global case) this sequence is uniformly bounded and moreover
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TdL(t) 9 2
| *(t)dt < 4 sup. [Vui(t) |20l Vulls o, < C- (4.6)
0 dt telo, T

Hence, it follows that

t
Vui(t) — Vu(1)||2.0 < / | Vs ||2.0ds < C|t — 7|2, (4.7)

Thus, the sequence I;(t) is compact in the space C*[0,T] with any 0 < o < 1/2. Therefore,
we can single out a subsequence I, (t) = ||V, (t)|[3q, converging in C*[0,T]. We show
that the corresponding subsequence Vu,, (x,t) ((henceforth, we retain the previous notation
Vu;(x,t)) that converges weakly in Lo(Qr) to Vu(x,t) will also converge strongly. We will
use the formula

/ |Vu — V| *dedt = ||Vui||§7QT — ||Vu||§7QT (4.8)
Qr

+2/ (Vu — Vu;) Vudzdt.

Here
IVuill3 0, — IVulls o, — 0,

by virtue of the convergence of norms and
2/ (Vu — Vu,;) Vudzdt — 0,
T
by virtue of the definition of a weak solution.

The above considerations make it possible to go to the limit in (2.1). But first, we multiply
each of equalities (2.1) by d;(t) € C[0,T] and sum both sides of the resulting equality over
j = 1,m. Then we integrate over ¢ from 0 to 7', we get

n 2 n
Do s ot E 5
_fo fQ T, 1 |Um’p QUdexdt+ (4.9)
+ foT fr ((aO +a ||Vum||2q 2) (2, t)|wm|” 2 um + xke(z, t)|um|"’2um> pdldt+
+x(o fo fr T, 1) |t |7t Tt = fOT fQ fudzdt,

where pu(x,t) = Y01, d;(t)V;(r).

Taking into account the inclusions and convergence obtained we can pass in to the limit
n (4.9) as m — oo and obtain (1.5) for ¢(t)v(z) = p(z,t). Since the set of all func-
tions p(z,t) is dense in Wy (0,T; W3(Q)), then the limit relation holds for all v(x,t) €
Ly(0,T; W5 () N Lo (T).

Then we formulate the following theorems.
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Theorem 1. (Local existence) Let conditions (1.4) be satisfied, and also 2 < p < =5, n > 3,

qg>1,2<o0< (: U Then on the interval (0,T7), T < Ty, there exists a weak genemlized
solution u(x,t) of problem (1.1)-(1.3), and the following inclusions take place:

u € Loo(0,T; H'(Q)), us € Ly(0,T; H'()),

"2 € Lo(0,T; Lo/(T)), o = —2 =
O’ —_—

[ulP~?u € Loo(0,T; Lp%l(Q))

Theorem 2. (Global existence) Let the conditions of Lemma (4) (or of Lemma (5)) and,
accordingly, estimates (3.14), (3.15) (or (3.20), (3.21)) be satisfied. Then the solution u(x,t)
to the problem (1.1)-(1.3) exists on any finite time interval T < co.

5. THE UNIQUENESS OF A WEAK GENERALIZED SOLUTION.

Theorem 3. Let us assume that

2 2
2<0 <24+, 2<p<2+4 —— n>3,¢>2
n— 2 n—2

Then the weak generalized solution u € Wy (0,T; W3 (2)) N Ly(T') to problem (1.1)-(1.3) is
unique on the interval (0,T).

Proof. Suppose that problem (1.1)-(1.3) has two solutions: u;(z,t) and us(x,t). Then their
difference u(x,t) = wuy(x,t) — ug(z,t) satisfies the condition u(x,0) = 0. Take ¢(t) = 1 in
equality (1.5) . Then we will have equality for almost all ¢ :

N G e
+a0/ / ( ) (‘(3; g;) dxdr+
+a1/ <|]Vu1|]2q 2 [y om
// T, T) ]u1|p’ u1—|u1\p’2u1) vdzdr—
+a0/ / x,T (|u1| 2uy — |ug|”” u2) vdl'dT+

+a1/ / z,T) |u1|” Uy ||Vu1|]2q  —ugl” 2u2|]Vu2||2q 2) vdldr+

+X/ / x, T |U1‘o_2u1 — |U2‘o_2U2) vdldT+

+x(o—1) / / x,T) |u1|”_2(97u1 — |u1|"_2(9Tu1) vdl'dT = 0.

Ay O
V|55, Zaij Ui )dr—
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This implies
" Ou Ov
d
/Q<uv+xizl o, &Ei) T+
t " Ou Ov
—l—ao/o / (Z o, 8%) dxdr+
t

*“3/‘<!Vuﬂfq2 G e~ [Vl [ 35 ) ar-
0 i O

t
—/ b(x,T) ]ullp’ Uy — |u1\p’2u1> vdxdr—
0

£
+ay / k(x,T) ]ul\"’Qul - |u2\"’2u2) vdldT+
0

o f

—l—x/ k(x,t) (|u1\" 2uy — g |7 2u1) vdl' = 0.

r

ke, ) (Ju|72uy [ Vul[3% 2 = [ua] " 2ua || Vuz|[5%%) vdldr+

—~

We now put v(x) = u(z,t). Then, we get

/ (Jule, O + xIVu(z, OI?) dz + X/Fk(m) (Jusl™2uy — e[~y ) iz, )T+

" Ou Ju(zx,t)
—l—ao/ / ( oz, 8@ ) dxdt+
Ouy Qu(x,t)

o /(“v e Z@x

Q=1

3uQ 8u )
dr — || Vus |55 Z :c) dr—
o0x; 7 Oz 8:01 (5.1)

// x,T) \ullp 2uy — |ug [P~ 2u1) u(x, t)drdr—

0
/ / x,T (]u1|" 2uy — |ug|” ’LL2) u(z, t)dldr+
/ / z,T) ]ul\g uy HVulH2q I [P HVugqu 2) u(z,t)dldr = 0.
Using the following inequalities
|[ur|Pur — Jua|fus| < (g +1) (Jua]? + |uo|?) Jur — usf at ¢ > 0,
|(Jug[Tuy — |ug|Tus) (uy — usg)| > Juy — us|?t? at g > 0,
[lu]? — |ugl?] > |ug — us|? at ¢ > 0,

e b, ) (|72 = Jua|”2uz) wdl| > fi k(, 7)[ul7dT,
we get estimates

m//’aT () =2us (7) [V ()25 = (7)1 () | Vet (7) 257 w(t) | <
/ /k x,T) |u1 )7 2uy (1) — |u2(7')|0_2u2(7)> ||Vu1||§q92u( t)dldr| +
v [ [ bton) (190 = 1903 ?) )20 )atoyra |
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t n
/ <HVU1 Iz 2/2 O; 65) de = Vua(r)lka 2/ ag?c x?)d:E) =
2q—2 )
/ [V ()12 / our) 2 o+

+/ (19 ()12 — [ Vua(r 2“/ - Quam) Oult) ;o
0 Qi 8962 81‘1

< VUl [ VU e + o VUl [ 1900
0

t
[ (190l - 19wl / g~ dualn) 0ult) )y o
0 8901 ox;

/ (19 (P25 + [ Fua(r) 12 / (1Y ()2 — [Vua(r)]2) da [ V(D)L [Vt . b <

< Oy | Vult ||m/|\w o V(1) + Fits(7) .0 dr < Co [ Vsl ||m/r|w Vo dr

Then (5.1) can be written as

Jo (u(z, ) > + x| Vu(z, t)]?) de + x [ k(z, t)|u(z, )|7dl <
t
< ag |[|[Vu(t HQQfo [Vu(r H29d7'+
+a,Cy ||Vu HQQfO [Vu(r ||29d7'—1—a102 [Vu(t) ||2Qf0 [Vu(r ||2Q T+

+o1(p = 1) fy Jo ( Iull” 2Jrle\” ?) u(r)u(t)dzdr+ (5.2)
+ag(oc — 1) fo fr 7) (Jug]™2 + |ua]®2) u(T)u(t)dldr+

tar | fy Ji k( |u1 )7 2un (7) = [us(7)|72us (7)) || Ve |37 u(t)dTdr | +

t+a |y Jo k@, 7) (IVu(I35" = 1Vua(r)3% ) lua(r)|72us(7)u(t)dldr]

We denote by y*(t) = [, (Ju(z,t)|* + x|Vu(z, t)]?) dz.

We estimate the right-hand side of inequality (5.2), using the Holder and Minkowski inequal-
ity

oy b, ) (e (P2 () = Jual(r) P 2us(r)) w(t)de| <
< bulp = 1) Jo (ua (PP~ + Jua (7)) ulr)u(t)da < ,
< bulp = 1) (o (P2 + Jusl=)? w2 (7)dn) * (fy w2 (2)de)” <
<= 1) (Jy (sl )72 ) 7 (Jurtaa)” () <
<bi(p—1) <(fQ |5 da:) ( |u2|”ﬁ”z”dx) g ) x
X (fQ UT(T)dJ,‘)% (fQ uz(t)dx)%
We put r = 2% p < 2+ 25 n > 3. Then by the Sobolev embedding theorem H'(Q) C

L.(92) and HI(Q) C Lgr(pfz)/(rfz)(Q).
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In this case, taking into account the smoothness class of the solutions wu;(z,t) and wus(z,t),
we obtain the estimate

‘fot Jo (@, 7) (Jur[P~?u — Jug|P~2uz) u dl‘dT’ < Gy l[u(®)llp Jo lulr)ll, 0 dr <
< Csy(t fo T)dr, C5 = Cs (517177 2], SUP¢e(0,1) fQ |V, (t)|? dx) =1,2.
Now we estimate [, k(x,7) (Ju1|"7% + |uz|” %) u(7)u(t)dl the term

Xao(o = 1) [pk(z, 7) (Jur|77% + Jua|”=?) u(r)u(t)dl’ <
<Xa0(0_1K1fr [ua (71772 + Jua(7)|772) u(T)u(t)de <
(7)

< Xaolo = D (fo (bl + ol =) w(r)de)* (fe2(0)de)” <
< xaolo ~ 1, (o2 ol ) ™ (o (1))

2 do
< xaolo — 1)K <<1;|uﬂzf”f)dx> < |uﬂ21pi’dx)7¢?> X
X (fr UT(T)dZE); (fr u2(t)0lzzc>E

We put r = 2(::21), <2+ ﬁ, n > 3. Using the theorem on traces of functions from the
Sobolev class, we obtain

g— g— t
Xao(o fo fp ) (Jua|772 + uz]72) w(r)u(t)dldr < Cy [[u(t)llyq fo (7], qdr <
S C4y fo
Similarly, the following terms are evaluated

ar | [ (, 7) (ua ()72 (7) = Jua(7)|7 2ua(7)) | Vua 3%, u(t)dI| <
< ai(o = DECs [r (Jua|"™% + |uo|”?) w(T)u(t)dl <

2r(oc— 5 7‘2 2r(p—2) E TQ
S CLl(U - ].)KlCé ((fr |U1’ r—2 dl‘) (fF |u2| r—2 dx) > X
X (fr u" (T d:t); (fr u2(t)dx) ,

ar|fy i k(@ 7) (Jua(7)72ua(7) = [ua(7)]7 (7)) |V 3%, * w(t)dTdr | <
< G5 [u®) a0 fy [14(r) |0 dr < Csy(t) [y y(r)dr
ar|fy Ji k(@) (IVu (7 15% 2—||w2< 3% 7) lua(7)]°~2ua(r)u(t)dldr| <
§a1K1f0 | Vs ( )||2q 2 || V(T 2q 2 o Tug ()7 tu(t)dTdr <
<Ky [y (Ve (r)]3% 3+Hw2< 20°) Jo (Vur (1) = [Vua(r) ) da ua (1), (@), dr <
< ar K0 Jut) |, g fy Mzl ||Vu1< )+ Vua(7) [l dr < Co [u®) ], p fy lua(7)]], 0 dr <
< Cey(t) Jy y(r)dr
Whereag2+£, n > 3.

(5.3)

T—

r 2

N|=

By virtue of (5.3), we obtain

y2( +Xfp x,t)|u(x, t)|7dl <

< ag [|[Vu(t ”29f0 Vu(r Hzﬂ T+

+a,C1 || Vu(t ||29f0 ||Vu ||2§2d7— +a1C [|[Vu(t) ||29f0 [Vu(r) ||2Q T+
+(C3+Cy+ Cs5+ Co)y k
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or
y2(t) + x Jp Rz, t)|u(z, t)]7dl <
(a0+a101 +CL102 +Cg +C4+C5 +C§ fO

From (5.4) follows the inequality

y@salymm

which, by the Gronwall lemma, implies [, (x|Vu|* + |u]?) dz = 0 almost everywhere on the
time interval (0,7").This means the uniqueness of the weak generalized solutions.

6. BLOW UP OF THE SOLUTION IN A FINITE TIME

We obtain conditions, under which the solution w of the problem (1.1)-(1.3) blows up in a
finite moment of time.We say that the solution u(z,t) blows up at moment time 7} if some
norm ||u(-,t)|lq of the solution tends to infinity when ¢t — 77. We introduce the notation

1 X -
a(t) = 5 lull3o + 3 IVullg K, t)|uldr,

J(t) = lluell g + X IVuellzg + x(o = 1) / k(. #)[ul”*|Opul*dL.

T

Theorem 4. Let the conditions (1.4) is fulfilled , 2 <p < "5, n>3,¢>1,2<0 < 2(:__21),
and also

Jo 0(x, 0)[uelPda — ag [, |Vuo|*dz — ay (fQ ]Vuo\zdx)q —
(%+mW%WﬂL‘$MwWF X Ji Ke(, 0)fuo|dl > 0,

5(1)2() 16p pt2 2Cp
@’ b2
| (>’ —1+4a—p—2 (0)+2a—1

m%@@:émmﬂ $IVuoll2q + X5 i k(. 0) uoldT

¢(O)7

= [ b(x,0)|up|Pdz — ag [, |Vuo|*dz — ay (fQ |Vu0|2dx)q -
@ﬁwwwmwﬂﬁwxowwa* X [ (e, 0) ol

Then the solution to the initial-boundary value problem (1.1) - (1.3) blows up in some finite
time Ty, where

o0
T1 = A( ) > O,
16p(a — 1)?  a—p-2 2Cp(a —1)?
2 = ! 2 — — 2 e A 2(a—1) a—l
A = WO - fla— D) - P gt ) - 200 =y

Proof. We multiply equation (1.1) sequentially by the functions u(z,t), u;(z,t) and integrate
over the domain 2. Then we obtain the following relations
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2ar Jollul? + X|VulPldr + x o2 g [ k(e t)]ul7dl+

+ag [, [Vuldz +ay ([, |Vu|2d:v) +

+ (ao—l—al ||Vu||2q 2) Jok(z, t)|u|7dl + X [k, t)|ul7dl =
= [, b(x, t)|ulPdz,

Jor (180l + x!équ) de + 5 (% | Vullso + 5 1Vul3h)
+X o —1) [y k(z,t)|u|"?|0u|*dl’ =
=4 [ b(z,t) |u|pd$ — fo bi(z, t)|ulPdor—
;;t - (a0 + ax HVu||2q ?) k(a, t)|ul7dl+
g, ||Vu||§qQ4 o VuVoudz [ k(z,t)|u|7dl+
+1 §a0+a1 ||vu||2q ?) Ji o, t)|ul7dr—
ok, t)|ul7dl 4+ X [k (@, t)|uldl.

O'dt

By virtue of this notation we have

% = —ap [, |[Vul*dz — a; (fQ |Vu\2dx)q —
~ (o4 VU)o MO = o O (8
Jo bz, t)|ulPdz,

J(t) = =% (2 IVull3q + 2 [Vul3y) +
i Jo b, t)|ufrde — = fo bi(,t)|ufdr—
if (o0 + a1 Va2, ) Ko t>|u|ﬂdr+

L, |\VuH§qQ4 o VuNVoudz [ k(x,t)|ul”dl+
+1 §a0+a1 Hqu?q ?) Jy Kol ) ulodl—

— X [ ki(x,t)u|]7dD + X [k (2, t)|u|7dT.

Using the notation for ® we derive

(6.2)

[P < Nlulloo llutllag + X NV ullyg [[Villog +

l
+x(o —1) (fr x,t) |u\"dF) (fr x, t)|u|7 2 uy IQdF)Q (6.3)
X [z, t)|ul7dr.

Further, note that

(1)) = (4 Jullg + 3 ||Vu||§Q 2L fi k(o 1)]uldr) %

(!\ut|!29+X|!Vut|!m+X 1) [ k(1) ulo 2| 0uf?dT") > 6.4
> L (Jlull3q + x I Vulls g + x(0 = 1) f k(z, )|ul7dT) x
x (|luel3 0 + X [Vuel3 0 + X(o = 1) fr k(. ) ul7=?yul2dT) .

From (6.3), (6.4) and the inequality
(ab+cd +ef)? < (a* + & + ) (V> + & + [?),
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follows next inequality
' ()2 < (|lully0+ X [Vullsg + x(0 = 1) [ k(2. £)]ul7dI') x
X (luell3 o+ x 1Vuell3 0 + x(o = 1) fi K, ) |ul 72| 2dT)

That is
|®' ()] < o®(t)J(t) < od(t)J(t)

ki(z,t)|u|”dl.
r

After elementary transformations (6.2) can be written in the following form

J(t) = li (fﬂ z,t)|uPde — ag [, [Vul*de — ay (fﬂ |Vu|2dx>q —
(a0+a1 IVull3%6?) i ko, t)uldl = X [k (2, )]ulodl') -
— 0D d [ Vuf2dy — 2204 ([ |Vu|2dx>
+22 (ao + a HVuHZq 2) k(z, t)]u\" 2uudl+
p xp=1) Jo k(2 ) |u| " 2uw,dl —
fQ bi(x, t)|ulPdz+
—l—gal \|Vu\|§qg4 o VuNVowudz [ k(x,t)|ul”dl+
+1 (ao—l—a1 IVull3%67) [ ke, ) ul7dl -
+o‘p fF k'tt 33' t)\u|”dF

We estimate the right side of (6.6) by the following way
dt fQ |Vu|2dx‘ = ao(p_Q) HquzQ ”VUtH2,Q <
2 2
2 |Vl < (0 + S22 0(0),

4dp“eq

‘_ 2p
< e || Vurlyg +

4p £1

a1(p=29) d (fﬂ |Vu|2dx) ’ < M (fQ |VU’2d$) ||VU||2Q ||Vut||2,9 <

2pq

a 2q) 49—2 a 9
< s [Vl + BB 52 < (1) + BB g1 ) <
p
< eaJ(t) + ©2(t) + Caen),
4q9—2
where 02(52) — (%)p iaT2 (p— 4q+2)(4q 2)P— 4q+2'

pP— 4q+2

‘%f (ag—l—al ||Vu||2q 2) k(x,t)|u|” 2uutdF’

< 22 (ag + ay | Vul3%5?) (i ke, t)|ul"2|u, |2dr) (fF x,t) \u!“dF)

3fkuwmwﬂumﬁ+4w>@mwmwmﬁz)ﬁ (. 1) ul7dl" <
3T (8) + TERD(1) + B (1) + Cyley),

2p2es

<
<e€

p 4q—=2
)p 1072 (p—4q+2)(4g—2) P10+
D .
pPr—4q+2

where C3(e3) = (

2p 83

j WU [ k(2,8 u] 2uu dr\ < X R (s, 1) ul 7 ug T <
§€4J()—I—X(p 1)? KQ(ID()

4dp2ey

(6.5)

(6.6)
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< b fJullh g <0Gy (X [Vull3 o+ Ilul30)* < biC1®5(2).

/ be(x, t)|ulPdz
Q

Sl Vul3h” Jo VuVouds fi k(e t)l7dr| <
< a5 (1) + S 2201 (1) < g5 (1) + 5 (1) + Cs(e5),

4p2es
Where 05(55) — <(Zp_215)52 a%) p74q+2 (p—4q+;%p 4q+2 '
% (ao +ap HVu”2q 2) UF kt z, t |U’0dr‘ <
< L (ag+ ay | Vull2?) fi el (g, t)fuldr <
< Kag(r) + B4 (1) + .
where Cg = (K;}al)l’ 2072 (p— 2q+2)(2% 2)p22;-2+2.

pP— p—2q+2

‘X/ktt(x,t)|u|"dl“
op Jr

< XKg/kr(x,t)|u|"dF < X K,0(1).
op op

Substituting the obtained estimates in (6.6)

(1_51 —52—83—84—65)J( ) %q),/(t)—i—
aj(p=2) | (o=p)ef | x*(p—1)° Kia
+ ( gr 2l i xR g2y Ky ULPKQ) D(t)+ (6.7)

+(4 + blcl)q)2< ) + CQ(&Q) + 03(83) + 05(55) + 06-

We multiply inequality (6.7) by ®(¢) and, taking into account (6.5) reduces to the ordinary
differential inequality

D" (£)D () — | @' (£)]2 + BOA(E) + 4pd”T (t) + Cpd(t) > 0, (6.8)
where a = p(1751752;€37€4785), ei="Hg,1=1,2,...5;
az(p — 2)2 —»)%a 2(p — 1)2 K a -1
5= o =2  (0=pfa X )K12+ 10+XK2+K1X .
4p?eq 2pes 4prey D

We require that the coefficients satisfy the condition p > ¢. In this case € can be chosen, so
that a > 1.

We introduce a new function
U(t) = d2(t), a > 1. (6.9)
Dividing both sides of inequality (6.8) by ®*(¢) > 0, we obtain the inequality
() )P
-«
(I)a(t) Plta (t)

+ BPI(t) 4+ dpDE () + Cpd~(t) > 0,
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which for the function W(¢) takes the form
\Il//( )
1-—

Now we make another assumptlon about the initial data:

- BU(E) + ApUTa (1) + CpUa=i(t) > 0. (6.10)

'(0) = —ag [ |Vuo|*dz — ay (fQ |Vu0|2d3:)q -
§a0 + a1 [Vul252) fi ke, 0)]ug|7dE — X f1 ky(a, 0) ol dT+ (6.11)
+ Jo b(x, 0)|up|Pdx > 0.
Hence, there exists a time instant ¢; > 0, such that

P'(t) > 0 for all t € [0,4]. (6.12)

From relation (6.9) we have the expression
U(t) = (1 — ) *(t)P'(t), (6.13)

from which, by virtue of (6.12) taking into account a > 1 we obtain

U'(t) <0 for all ¢ € [0,4]. (6.14)
Then, multiplying (6.10) by ¥'(¢), we obtain the following inequality
VIOV 4 B (4) W (1) + 4pW o) ST ()W (1) + CpUaST () W(H) < 0 for all £ € [0, 1],

from which we get

()W (1) > Bla—1)U ()W () +4p(a—1) W20 ()T (1) +Cpla—1)Ta2T ())W(1) for all ¢ € [0, t].

Hence it follows that
fla—1)d ,  8p(a—1)*d _ta—p-2 Cpla—1)?d _ 21
PO @ gy 4 ST Qs () 4 DT Qg gy,
th R A Pe—T O+ a1 ¥ W

Integrating the last inequality, we have

W(0) > A+ Bla— DU + O UEET (1)

L) =

201 do—p-2 6.15
HIGEEEE (1) 2 A% o
where
16p(a — 1)?  da—p-2 20p(a—1)? 201
A% = |V (0)]? — D)2 — R gt () - AT g (),
WO = Bla = DWO) - P T (0) - TP (0)
We require the fulfillment of one more condition on the initial data
A? = (a = 1)%@'(0)]P@~2%(0)—
—Bla — 1)®22(0) — LRAE G5 () — 29l gi-2a(0) > ),
B®*(0) 16p pt2 2Cp
'(0) 7z (0 ®(0). 6.16
@O > 2 0 (0)+ 52500 (6.16)
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Then from inequality (6.15), we obtain
|W'(t)] > A> 0 for all t € [0,t]. (6.17)
Hence it follows that
V() >A>0 = V()< —-A<O0foralltel0t].
From expression (6.13)
V'(t)=(1-a)@ *(t)d'(t) < —-A = P'(t) > a’iléa(t) > 0,

whence it follows that, under the initial condition (6.11) the value ®’(¢) remains greater than
zero for the entire interval of existence of a solution to the original problem. Thus, from
(6.17) it follows that

U'(t) < —A <0 forallte|0,t].

Integrating the last inequality, we obtain
w(t) < W(0) - At,
1
[B1-(0) — Af]a T

PI(t) < d1(0) — At = B(t) >

Hence, in a finite time Ty € (0, T3], where

(I)lfa(o)
T = 1

The function ¥(t) becomes zero. Which means

> 0,

lim ®(t) = +o0.
t—T)H

O
7. EXPONENTIAL DECAY OF THE SOLUTION IN TIME
In this section we consider the quasilinear equation
0 _ o
gp (1= xAw) = (a0 + an [Vul35°) Au+u+ [ul*u = f(z,1), (7.1)
in the cylinder Qr = {(z,t): z € Q, Q C R", 0 <t < T} with nonlinear boundary
0
L b ufot =0, T =0Qx(0,7), (7.2)
on r
and with the initial condition
u(z,0) = up(x). (7.3)

Here 2 C R™, n > 3 a bounded domain, with a sufficiently smooth boundary 02, ag, a;
and o are positive constants. We are interested in the asymptotic behavior of the solution
when time tends to infinity.
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We multiply equation (7.1) by the function u(x,t) and integrate over the domain Q, we
obtain .
p'(t) + ao o |Vul*dz + ay (fQ ]Vu|2dx) +

, (7.4)
+ (ao +ay [ Vull35?) [ lulodl + [y [ulPde + [, |ulde = [, fudaz.
where
1 2 2 o o
p(t) = 5 [lu]” + x|Vul*|dx 4 2 ar | .
Q
We estimate the right-hand side (7.4)
o fuda| < Slull3q + 3 Jo f12de.
Substituting the estimates obtained in (7.4), we obtain
1
P+ Q< [ IfPds (7.5)
Q

where

q
Q:a0/|Vu|2dx—l—a1 (/ |Vu|2dx> ap + ay ||Vu||2q 2 /| |7dT+ = /|u|2d:13—|—/|u7’d1’.
0 Q

It easy verify that

; Qo ago
ap < Q, a=min(ayg, —, ————). 7.6
(a0, 2,2 (76)
Relation (7.5) and (7.6) lead us to the Cauchy problem for ordinary differential inequality
d
& o(t) + aplt) < L7 B 0(0) = po (1.7
Let us assume that
1
LIFOl0 < Creap(-pt). p> 0, Oy = const. (73)

An analysis of solutions to problem (7.7) allows us to make the following assertion.

Theorem 5. Let conditions (7.8) hold and u € W3 (2) N L,(T'). Then the solution to problem
(7.1)-(7.3) satisfies estimates

p(t) < exp (—at) <p(0) + Mc_fo) ;>

p(t) <exp(—at) (p(0) +tCy), p=c.
8. CONCLUSION

In conclusion, we note the following. In equation (1.1), the Laplace operator can be replaced
by a more general second-order elliptic operator A = div(a(z,t)Vu)+b(x, t)u. The boundary
condition (1.2) can be replaced by a non-local condition of the form

ou

t
. +/ k(x,7)|ul"?udr| =0, T =092x (0,T).
on Jo

r
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The technique used in this paper can be applied to many other equations of hyperbolic and
pseudohyperbolic types.
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