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Abstract

A kind of nonlinear non-instantaneous impulsive equation with state-dependent delay is studied here. By ultilizing suitable

fixed point theorem and the theory of semigroup in Banach space, the uniqueness and existence results of S-asymptotically

w-periodic mild solutions are obtained, respectively. In the end, two examples are presented to demonstrate the validity of the

obtained results.
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1 INTRODUCTION

In nature and human social activities, impulse is a common phenomenon. According to the duration of the changing process,
the impulse can be divided into instantaneous impulse and non-instantaneous impulse. Just as the name implies, the instan-
taneous impulse means that the time of the sudden change process is very short relative to the whole development process
and can be ignored. A non-instantaneous impulse means that the process of change is dependent on the state and lasts for a
period of time that cannot be ignored. Over the past years, instantaneous impulsive equations have received great attention,
which are often used to describe abrupt change, for instance, harvesting, disasters and so on. Detailed information and applica-
tions, see e.g.1,2,3,4,5,6,7,8,9,10 and the cited references. However, some phenomena in real life can not be described by the action
of instantaneous impulses, for instance, earthquakes and tsunamis. Thus, more and more scholars began to pay attention to the
study of non-instantaneous impulse. In the context of a person injecting drugs, Hernández and O’Regan 11 firstly introduced
the non-instantaneous impulsive equations. In Banach space, by utilizing the theory of semigroup, they obtained the existence
and uniqueness results. Along this line, non-instantaneous impulse differential equations have received a significant amount of
attention, see for example11,12,13,14,15,16,17.
Since the speed limitation and connection between the system internal subsystem takes time, which leads to almost all of the

sports system delay is inevitable, so there has been extensive integro-differential equations with delay in the natural sciences
and engineering technology. This kind of problem in the theory study of mathematics and engineering technology has been paid
more attention. In the early 1960s, J.J. Levin and J. Nohel studied the integro-differential equations encountered in the theory
of the nuclear reactor fuel cycle,

z′(t) = −

t

∫
t−�

a(t − u)g(z(u))du,

where z(t) represents the number of neutrons at time t. Since then, this kind of problem also appeared in a large number of
biological engineering, electrical and electronic fields. Differential equations with state-dependent delay has gained more and
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more attention because of its wide applications and its qualitative theory is different from equations with discrete and time-
dependent delays. In recent years, the research on semilinear differential or integro-differential systems with delay are becoming
more and more active, see for instance18,19,20,21,22,23,24,25,26. In18, Suganya et.al took an impulsive fractional integro-differential
equation in neutral form with non-instantaneous impulses and state-dependent delay into consideration, they got the existence
results through the fixed piont theorem and the measure of non-compactness. Mesmouli et.al25 studied the existence of periodic
solutions of the nonlinear integro-differential equations with delay. They used the Krasnoselski’s and Banach’s fixed point
theorem to get the desired results.
Recently, the existence of -asymptotically w-periodic solutions of differential equations or inclusions were studied

in27,28,29,30,31,32. In27, Hernández et.al gave the concept of -asymptotically w-periodic functions and introduced the relations
between the -asymptotically w-periodic functions and asymptotically w-periodic functions. Besides, the existence of -
asymptotically w-periodic mild solutions for a class of abstract Cauchy problem was studied. Wang29 considered a kind of
differential equations with alomost sectorial operator in a complete normed vector space which is of infinite demensional. And
they presented the uniqueness and existence results under sufficeint conditions. The authors in30 studied the non-instantaneous
impulsive differential inclusion of order � ∈ (1, 2) and proved the existence of -asymptotically w-periodic mild solutions
via a fixed point theorem for contraction multivalues function and a compactness criterion in the space of bounded piecewise
continuous functions defined on the bounded interval. In31, Andrade et.al studied the systems determined by partial differen-
tial equations with infinite and state-dependent delay. The existence of -asymptotically periodic solutions and asymptotically
periodic solutions were presented via the local Lipschitz conditions of the function concerned. What’s more, Cueves et.al32
studied the abstract fractional equations with infinite delay in complete normed vector space and they got the existence results
of -asymptotically w-periodic mild solutions.
As far as we know, there has been limiting lierature concerning on the existence of -asymptotically w-periodic mild solu-

tions for non-instantaneous impulsive integro-differential equations with state-dependent delay. Therefore, inspired by the above
existing papers, we mainly consider

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

z′(t) = Az(t) + f
(

t, z�(t,zt),

w

∫
0

ℎ(t, s, z�(s,zs))ds
)

, t ∈
m
⋃

j=0
(sj , tj+1],

z(t) = gj(t, z�(t,zt)), t ∈
m
⋃

j=1
(tj , sj],

z(t) = �(t), t ∈ (−∞, 0],

(1)

in which A ∶ D(A) ⊂ G → G is a linear operator and is also closed, {U (t), t ≥ 0} denotes the C0-semigroup and the
infinitesimal generator is denoted by A on Banach space G with a norm ‖ ⋅ ‖. Let 0 = s0 ≤ t1 ≤ s1 ≤ t2 ≤ ⋯ ≤ tm ≤
sm = w ≤ tm+1 ≤ ⋯ and lim

j→∞
tj = ∞, tj+m = tj + w, sj+m = sj + w. f ∈ C([0, w] × G × , G), where  is a phase space

and gj ∈ C([tj , sj] ×G,G), j = 1, 2,⋯ , m. � ∶ [0, w] × → (−∞, w] is a suitable function. For any z defined on (−∞, w] and
for any t ≥ 0, we define zt(�) = z(t + �), � ∈ (−∞, 0], where zt(⋅) is the element of  and it denotes the history of the state
from each time � up to the present time t.
In the following, necessary notations and important Lemmas are provided in part 2. In part 3, the uniqueness and exis-

tence results of -asymptotically w-periodic solutions are given, respectively. In part 4, examples are presented to illustrate the
applications of the results obtained.

2 PRELIMINARIES

Set K ∶= [0, w]. C(K, G) is the set of mapping z ∶ K → G whose components are continuous functions. It forms a Banach
space and ‖z‖C denotes the norm.Cb(K, G) is the space of mapping z ∶ K → G whose components are continuous and bounded
functions, and ‖ ⋅ ‖∞ denotes the norm. C�(K, G), Cw(K, G) for w > 0 are the subspaces of Cb(K, G) defined as

C�(K, G) = {z ∈ Cb(K, G) ∶ z(0) = �(0)},

Cw(K, G) = {z ∈ Cb(K, G) ∶ z is w periodic}.
Let PC(K, G) = {z ∶ K → G ∶ z ∈ C((tj , tj+1], G) and there exist z(t−j ) and z(t

+
j ) with z(t

−
j ) = z(tj)}, its norm is denoted

by ‖z‖PC . And SAPwPC(K, G) ∶= {z ∶ K → G, z is bounded and z ∈ PC(K, G), lim
t→∞

‖z(t + w) − z(t)‖ = 0}, it is
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a complete normed vector space with the norm ‖z‖ ∶= max
t∈K

‖z(t)‖. The noncompact Kuratowski measure is represented
by �(⋅), �C (⋅), �PC (⋅) on the bounded set of G,C(K, G), PC(K, G), we refer readers to17,33 and the reference therein for more
details.

Lemma 2.1. (34). is a function mapping (−∞, 0] into G, which is seminormed linear endowed with the norm ‖ ⋅ ‖ and satisfies:

(i) If z ∶ (−∞, w]→ G, where w > 0, is continuous on K and z0 ∈ , then for every t ∈ K, there holds

(a) zt ∈ .

(b) There is C0 > 0 such that ‖z(t)‖ ≤ C0‖zt‖, where C0 is a constant.

(c) There exist C1, C2 ∶ ℝ+ → ℝ+ such that

‖zt‖ ≤ C1(t) sup
s∈[0,w]

‖z(s)‖ + C2(t)‖z0‖, (2)

where C1, C2 are both independent of z(⋅) with C1 continuous and C2 locally bounded.

(ii) For function z(⋅) defined in (i), zt is a -valued continuous function on K.

(iii)  is a complete space.

Definition 2.1. (35) The semigroup (U (t))t≥0 is strongly continuous bounded linear operator, if there exist constantsM ≥ 1 and 
 >
0 such that

‖U (t)‖ ≤Me−
t, t ≥ 0,

then, (U (t))t≥0 is called uniformly exponentially stable.

Lemma 2.2. (33). Suppose the semigroup {U (t), t ≥ 0} is uniformly exponentially stable. Set q ∈ C([0,∞), G) and vanishes at
infinity. Let

v(t) =

t

∫
0

U (t − s)q(s)ds, t ≥ 0, (3)

then, it also vanishes at infinity.

Lemma 2.3. (33). Assume v ∶ [0,∞) → G is defined by (3) and {U (t), t ≥ 0} is uniformly exponentially stable.
Let q ∈ SAPw(G), then the function v(⋅) ∈ SAPw(G).

Definition 2.2. If f ∈ Cb(K, G) and there is w > 0 such that f (t + w) − f (t) → 0 as t → ∞. Then, f is said to be S-
asymptotically w-periodic.

Definition 2.3. f ∈ C([0,∞) × G,G), if for every Ω ⊂ G (Ω is bounded), the set {f (t, z) ∶ t ≥ 0, z ∈ Ω} is bounded
and f (t, z) − f (t + w, z) → 0 as t → ∞ uniformly in z ∈ Ω. Then, f is called uniformly -asymptotically w-periodic on
bounded sets.

Lemma 2.4. (36). G is a complete normed vector space, Λ is a subset of G and it is bounded, then there is Λ0 ⊂ Λ which is
countable satisfying �(Λ) ≤ 2�(Λ0).

Lemma 2.5. (37). G is a complete normed vector space, Λ = {zn} is a subset of PC(K, G) and it is bounded and countable,
therefore �(Λ(t)) satisfies

�
({

∫
K

zn(t)ds|n ∈ ℕ
})

≤ 2∫
K

�(Λ(t))dt.

Besides, it is Lebesgue integral on K.
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Lemma 2.6. (38). G is a complete normed vector space and for each [tj , tj+1], j = 0, 1,⋯ , m, Λ ⊂ PC(K, G) is bounded and
equicontinuous, thus �(Λ(t)) ∈ PC(K,ℝ+) and �PC (Λ) = sup

t∈K
�(Λ(t)).

Lemma 2.7. (33). G is a complete normed vector space. S ⊂ G and S is nonempty. Q ∶ S → G is continuous, which called the
strict �-set-contraction operator if for every Γ ⊂ S (S is bounded), there is a constant 0 ≤ � < 1 such that �(Q(Γ)) ≤ ��(Γ).

Lemma 2.8. (33). G is a complete normed vector space. Suppose Γ is a bounded subset on G and is also closed and con-
vex, Φ ∶ Γ→ Γ is �-set-contraction operator, therefore, Φ has at least one fixed point in Γ.

Definition 2.4. If z ∈ SAPwPC(K, G) satisfies

z(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

U (t)�(0) +

t

∫
0

U (t − s)f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

ds, t ∈ [0, t1],

gj(t, z�(t,zt)), t ∈
m
⋃

j=1
(tj , sj],

gj(sj , z�(sj ,zsj )) +

t

∫
sj

U (t − s)f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

ds, t ∈
m
⋃

j=0
(sj , tj+1],

(4)

then it is called an S-asymptotically w-periodic mild solution of problem (1).

We assume f, gj , ℎ and � satisfy the conditions:

(H1) f ∈ C(K × × G,G) and satisfies

(a) for every � > 0, there is Lf (⋅) > 0 satisfying

‖f (t, zt2 , u) − f (t, zt1 , u)‖ ≤ Lf (� )|t2 − t1|, t, t1, t2 ≥ 0,

for all z ∶ (−∞, w]→ G such that z0 = � ∈ , z ∶ [0, w]→ G is continuous and max
s∈[0,w]

‖z(s)‖ ≤ � ;

(b) for z1, z2 ∈ , u, v ∈ G and each t ∈
m
⋃

j=0
[sj , tj+1], there exists a constant L′f > 0 satisfying

‖f (t, z1, u) − f (t, z2, v)‖ ≤ L′f [‖z1 − z2‖ + ‖u − v‖];

(c) there exist constants L0, L1, L2 > 0 such that ‖f (t, z1, z2)‖ ≤ L0 + L1‖z1‖ + L2‖z2‖ for each t ∈ [sj , tj+1] and
all z1, z2 ∈ G, j = 0, 1, 2,⋯ , m;

(d) there is a positive function Lj(t) ∈ L1(K,ℝ+) such that for any bounded subset B1 ⊂ , B2 ⊂ G,

�(f (t, B1, B2)) ≤ Lj(t)
(

sup
�∈(−∞,0]

�(B1(�)) + �(B2)
)

, t ∈
m
⋃

j=0
(sj , tj+1].

(H2) The function � ∈ C(K ×,ℝ+) satisfies

(a) −∞ < �(t, z) ≤ t, for z ∈ . And

�(t +w,�) − �(t, �)→ 0, t→∞,

uniformly for � in bounded sets;

(b) there exists a constant L� > 0 such that

‖�(t,  2) − �(t,  1)‖ ≤ L�‖ 2 −  1‖,  1,  2 ∈ .

(H3) ℎ ∶ {(t, s) ∈ K × K ∶ s ≤ t} × → G is continuous and satisfies
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(a) there exists a constant Lℎ > 0 such that for z1, z2 ∈ ,

‖

‖

‖

w

∫
0

[ℎ(t, s, z1) − ℎ(t, s, z2)]ds
‖

‖

‖

≤ Lℎ‖z1 − z2‖;

(b) there exists a constant L3 > 0 such that ‖ℎ(t, s, z)‖ ≤ L3(1 + ‖z‖) for each t ∈ [sj , tj+1] and all z ∈ G, j =
0, 1, 2,⋯ , m.

(H4) There exists �j ∈ L1(K × K,ℝ+) such that for each bounded set  ∈ ,

�(ℎ(t, s,  )) ≤ �j(t, s)
(

sup
�∈(−∞,0]

�( (�))
)

.

(H5) For any j ∈ ℕ, gj ∶ [tj , sj] × → G such that for any z ∈ G, the function t→ gj(t, z) is differentiable at sj and

(a) for all z ∈ G, there is

lim
t→∞,j→∞

‖gj+m(t +w, z) − gj(t, z)‖ = 0; (5)

(b) there exists L′gj > 0 such that

‖gj(t, zt1) − gj(t, zt2)‖ ≤ L′gj (r)‖t1 − t2‖, j ∈ ℕ, (6)

for all z ∶ (−∞, w]→ G such that z0 = � ∈ , z ∶ [0, w]→ G is continuous and max
s∈[0,w]

‖z(s)‖ ≤ r;

(c) for z1, z2 ∈  and each t ∈ [tj , sj], there is ‖gj(t, z1)−gj(t, z2)‖ ≤ Lgj‖z1−z2‖, whereLgj > 0 is a constant, j =
1, 2,⋯ , m;

(d) there is a constant L4 > 0 such that ‖gj(t, z)‖ ≤ L4(1 + ‖z‖) for each t ∈ [tj , sj] and all z ∈ G, j = 1, 2,⋯ , m;

(e) there exist constants �j > 0 such that for each bounded set B ⊂ ,

�(gj(t, B)) ≤ �j
(

sup
�∈(∞,0]

�(B(�))
)

.

3 MAIN RESULTS

Theorem 3.1. Suppose (H1)(a)(b)(c), (H2)(a)(b), (H3)(a)(b) and (H5)(a)(b)(c)(d) hold, f, ℎ are uniformly
-asymptotically w-periodic on bounded sets, and {U (t), t ≥ 0} is uniformly exponentially stable. If

� ∶= max
{

�
[

M(1+Lℎ)(tj+1−sj )



⋅ L′f + Lgj
]}

< 1,

then a unique -asymptotically w-periodic mild solution of problem (1) can be obtained.

Proof.We define the operatorH on the space SAPwPC(K, G) by

(Hz)(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

U (t)�(0) +

t

∫
0

U (t − s)f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

ds, t ∈ [0, t1],

gj(t, z�(t,zt)), t ∈
m
⋃

j=1
(tj , sj],

gj(sj , z�(sj ,zsj )) +

t

∫
sj

U (t − s)f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

ds, t ∈
m
⋃

j=0
(sj , tj+1].

(7)

Obviously, H is well defined and the fixed points of H is actually the mild solutions of the problem (1). Firstly, we claim
for z ∈ SAPwPC(K, G), thenHz ∈ SAPwPC(K, G).
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For t ∈ (sj , tj+1], then t +w ∈ (sj +w, tj+1 +w] = (sj+m, tj+1+m]. Hence

‖

‖

‖

gj+m(sj+m, z�(sj+m,zsj+m )) +

t+w

∫
sj+m

U (t +w − s)f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

ds

− gj(sj , z�(sj ,zsj )) −

t

∫
sj

U (t − s)f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

ds‖‖
‖

(8)

≤ ‖

‖

‖

t

∫
sj

U (t +w − s)f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

ds

−

t

∫
sj

U (t − s)f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

ds‖‖
‖

+ ‖

‖

‖

gj+m(sj+m, z�(sj+m,zsj+m )) − gj(sj , z�(sj ,zsj ))
‖

‖

‖

≤ ‖

‖

‖

t

∫
sj

U (t − s)
[

f
(

s +w, z�(s+w,zs+w),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

− f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)]

ds‖‖
‖

+ ‖

‖

‖

gj+m(sj+m, z�(sj+m,zsj+m )) − gj(sj , z�(sj ,zsj ))
‖

‖

‖

.

For the first term in (8), we define

u(s) = f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� )
)

d�, v(s) =

t

∫
sj

U (t − s)
(

u(t +w) − u(t)
)

ds,

then,

‖u(s +w) − u(s)‖

= ‖

‖

‖

f
(

s +w, z�(s+w,zs+w),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

− f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

‖

‖

‖

≤ ‖

‖

‖

f
(

s +w, z�(s+w,zs+w),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

− f
(

s, z�(s+w,zs+w),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

‖

‖

‖

(9)

+ ‖

‖

‖

f
(

s, z�(s+w,zs+w),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

− f
(

s, z�(s,zs),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

‖

‖

‖

+ ‖

‖

‖

f
(

s, z�(s,zs),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

− f
(

s, z�(s,zs),

w

∫
0

ℎ(s, �, z�(�,z� ))d�
)

‖

‖

‖

, s ≥ 0.

Obviously, the first term in (9) tends to 0 as t→∞. For the second term in (9) , combining (H1)(a) and (H2)(b), we have

‖

‖

‖

f
(

s, z�(s+w,zs+w),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

− f
(

s, z�(s,zs),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

‖

‖

‖

≤ Lf (� )|�(s +w, zs+w) − �(s, zs)|
≤ Lf (� )|�(s +w, zs+w) − �(s, zs+w)| + Lf (� )|�(s, zs+w) − �(s, zs)|
≤ Lf (� )|�(s +w, zs+w) − �(s, zs+w)| + Lf (� )L�|zs+w − zs|
→ 0, s→∞.
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For the last term in (9), combining (H1)(b), one gets

‖

‖

‖

f
(

s, z�(s,zs),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

− f
(

s, z�(s,zs),

w

∫
0

ℎ(s +w, �, z�(�,z� ))d�
)

‖

‖

‖

≤ L′f

w

∫
0

‖

‖

‖

ℎ(s +w, �, z�(�,z� ))d� − ℎ(s, �, z�(�,z� ))
‖

‖

‖

d�

→ 0, s→∞.

Therefore, there holds ‖u(s + w) − u(s)‖ → 0, s → ∞, that is u ∈ SAPwPC(K, G). Combining {U (t)}t≥0 is uniformly
exponentially stable, then from Lemma 2.3, v(s) ∈ SAPwPC(K, G) as s→∞.
For the second term in (8), combining (6), we have

‖

‖

‖

gj+m(sj+m, z�(sj+m,zsj+m )) − gj(sj , z�(sj ,zsj ))
‖

‖

‖

≤ ‖

‖

‖

gj+m(sj +w, z�(sj+m,zsj+m )) − gj+m(sj +w, z�(sj ,zsj ))
‖

‖

‖

+ ‖

‖

‖

gj+m(sj +w, z�(sj ,zsj )) − gj(sj , z�(sj ,zsj ))
‖

‖

‖

≤ L′gj (r)
‖

‖

‖

�(sj+m, zsj+m) − �(sj , zsj )
‖

‖

‖

+ ‖

‖

‖

gj+m(sj +w, z�(sj ,zsj )) − gj(sj , z�(sj ,zsj ))
‖

‖

‖

From (5), one can get that ‖‖
‖

gj+m(sj +w, z�(sj ,zsj )) − gj(sj , z�(sj ,zsj ))
‖

‖

‖

→ 0 as sj →∞. From (H2)(a) and (H2)(b), there is

‖

‖

‖

�(sj+m, zsj+m) − �(sj , zsj )
‖

‖

‖

≤ ‖

‖

‖

�(sj+m, zsj+m) − �(sj , zsj+m)
‖

‖

‖

+ ‖

‖

‖

�(sj , zsj+m) − �(sj , zsj )
‖

‖

‖

≤ ‖

‖

‖

�(sj+m, zsj+m) − �(sj , zsj+m)
‖

‖

‖

+ L�‖zsj+w − zsj‖

→ 0, sj →∞.

Then ‖‖
‖

gj+m(sj+m, z�(sj+m,zsj+m )) − gj(sj , z�(sj ,zsj ))
‖

‖

‖

→ 0 as sj → ∞, which shows Hz ∈ SAPwPC(K, G) for t ∈ (sj , tj+1], j =
0, 1, 2,⋯ , m.
For t ∈ (tj , sj], then t +w ∈ (tj +w, sj +w] = (tj+m, sj+m], combining (H2)(a)(b) and (H5)(a)(b), one has

‖gj+m(t +w, z�(t+w,zt+w)) − gj(t, z�(t,zt))‖

≤ ‖gj+m(t +w, z�(t+w,zt+w)) − gj+m(t +w, z�(t,zt))‖ + ‖gj+m(t +w, z�(t,zt)) − gj(t, z�(t,zt))‖

≤ L′gj (r)
[

‖�(t +w, zt+w) − �(t, zt+w)‖ + L�‖zt+w − zt‖
]

+ ‖gj+m(t +w, z�(t+w,zt+w)) − gj+m(t, z�(t+w,zt+w))‖

→ 0, t→∞,

which implies thatHz ∈ SAPwPC(K, G) for t ∈ (tj , sj].
For t ∈ [0, t1], since U (t)�(0) → 0 as t → ∞, then U (⋅)� ∈ SAPwPC(K, G). Therefore the problem is reduced to verify

that ∫ t
0 U (t − s)f

(

s, z�(s,zs), ∫
w
0 ℎ(s, �, z�(�,z� ))d�

)

ds ∈ SAPwPC(K, G), which can be viewed as the special case when t ∈
(sj , tj+1]. Thus,Hz ∈ SAPwPC(K, G) for t ∈ [0, t1] is obtained.
Secondly, setB� = {z ∈ SAPwPC(K, G) ∶ ‖z‖ ≤ �}, it is obvious thatB� is a closed and convex subset of SAPwPC(K, G),

then we show that for any � > 0, there is a constant b > 0 such that for each z ∈ B� , there holds ‖Hz‖ ≤ b. Define  ,which
can be regarded as the extension of � ∈ , as

 (t) =

⎧

⎪

⎨

⎪

⎩

�(t), t ∈ (−∞, 0],
U (t)�(0), t ∈ [0, t1],
0, t ∈ (t1,∞).
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Therefore, z0 = �. Let z(t) = y(t)+ (t), t ∈ (−∞, w], if z(⋅) satisfies (4), then y0 = 0 and zt = yt+ t, where y(t) is defined by

y(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

t

∫
0

U (t − s)f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

ds, t ∈ [0, t1],

gj(t, y�(s,ys+ s) +  �(s,ys+ s)), t ∈
m
⋃

j=1
(tj , sj],

t

∫
sj

U (t − s)f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

ds

+gj(sj , y�(sj ,ysj+ sj ) +  �(sj ,ysj+ sj )), t ∈
m
⋃

j=0
(sj , tj+1].

Set SAPw,0PC(K, G) = {y ∈ SAPwPC(K, G) ∶ y0 = 0}. For simplicity, define ̄w = SAPw,0PC(K, G). Then for any y ∈
̄w, one has

‖y‖̄w
= sup

t∈[0,∞)
‖y‖.

The space (̄w, ‖ ⋅ ‖̄w
) is a Banach space. DefineN ∶ ̄w → ̄w by

(Ny)(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

t

∫
0

U (t − s)f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

ds, t ∈ [0, t1],

gj(t, y�(s,ys+ s) +  �(s,ys+ s)), t ∈
m
⋃

j=1
(tj , sj],

t

∫
sj

U (t − s)f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

ds

+gj(sj , y�(sj ,ysj+ sj ) +  �(sj ,ysj+ sj )), t ∈
m
⋃

j=0
(sj , tj+1].

(10)

Since {U (t), t ≥ 0} is uniformly exponentially stable, then from Definition 2.1, there yields ‖U (t)‖ ≤ Me−
t < M ,
thus, U (t)�(0) is bounded. The problem is reduced to prove thatN maps any closed ball B of ̄w into bounded sets in ̄w. We
only need to show that for any y ∈ B = {y ∈ ̄w ∶ ‖y‖̄w

≤ }, one gets ‖Ny‖ is also bounded.
For any y ∈ B and for t ∈ [0, t1], we have

‖(Ny)(t)‖̄w
≤M

t

∫
0

e−
(t−s)‖‖
‖

f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

‖

‖

‖
ds

≤M

t

∫
0

[

L0 + L1‖y�(s,ys+ s) +  �(s,ys+ s)‖ + L2

w

∫
0

‖ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � )‖d�
]

ds

≤ML0t1 +ML1t1‖y�(s,ys+ s) +  �(s,ys+ s)‖ +ML2

t

∫
0

w

∫
0

‖ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))‖d�ds

≤ML0t1 +ML1t1‖y�(s,ys+ s) +  �(s,ys+ s)‖ +ML2L3

t

∫
0

w

∫
0

(1 + ‖y�(�,y�+ � ) +  �(�,y�+ � )‖)d�ds

≤ML0t1 +ML1t1‖y�(s,ys+ s) +  �(s,ys+ s)‖ +wMt1L2L3 +ML2L3

t

∫
0

w

∫
0

‖y�(�,y�+ � ) +  �(�,y�+ � )‖d�ds.
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From (2) and the properties of the norm, one has

‖y�(s,ys+ s) +  �(s,ys+ s)‖ ≤ ‖y�(s,ys+ s)‖ + ‖ �(s,ys+ s)‖
≤ C1(t) sup

s∈[0,w]
‖y(s)‖ + C2(t)‖y0‖ + C1(t) sup

t∈[0,t]
‖ (s)‖ + C2(t)‖�‖ (11)

≤ C1(t) sup
s∈[0,w]

‖y(s)‖ + [MC1(t)C0 + C2(t)]‖�‖

≤ � sup
s∈[0,w]

‖y(s)‖ + C ′,

where � = sup
t∈[0,w]

C1(t) and C ′ = [MC0 + C2(t)]‖�‖. Therefore, combining (11), we can obtain that

‖(Ny)(t)‖̄w
≤ t1ML0 + t1ML1(�� + C ′) +wMt1L2L3 +ML2L3(�� + C ′)wt1
=Mt1[L0 + (L1 +wL2L3)(�� + C ′) +wL2L3].

For t ∈ (tj , sj], we have

‖(Ny)(t)‖̄w
= ‖gj(t, y�(t,yt+ t) +  �(t,yt+ t))‖ ≤ L4(1 + ‖y�(t,yt+ t) +  �(t,yt+ t)‖) ≤ L4(1 + �� + C ′).

For t ∈ (sj , tj+1], one gets

‖(Ny)(t)‖̄w
≤M

t

∫
sj

‖

‖

‖

f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

‖ds

+ ‖gj(sj , y�(sj ,ysj+ sj ) +  �(sj ,ysj+ sj ))
‖

‖

‖

≤M(tj+1 − sj)
[

L0 + (L1 +wL2L3)(�� + C ′) +wL2L3
]

+ L4(1 + �� + C ′),

then, one can get that ‖Ny‖̄w
≤ q, where q = M(tj+1 − sj)

[

L0 + (L1 + wL2L3)(�� + C ′) + wL2L3
]

+ L4(1 + �� + C ′).
Set b =M‖�(0)‖ + q, then for any z ∈ B� , there holds ‖Hz‖ ≤ b.
Finally, for u, v ∈ ̄w and for t ∈ [0, t1], there holds

‖Hu(t) −Hv(t)‖

≤ ‖

‖

‖

t

∫
0

U (t − s)f
(

s, u�(s,us),

w

∫
0

ℎ(s, �, u�(�,u� ))d�
)

ds −

t

∫
0

U (t − s)f
(

s, v�(s,vs),

w

∫
0

ℎ(s, �, v�(�,v� ))d�
)

ds‖‖
‖

≤M

t

∫
0

e−
(t−s)L′f
[

‖u�(s,us) − v�(s,vs)‖ + Lℎ‖u�(�,u� ) − v�(�,v� )‖
]

ds

≤M(1 + Lℎ)‖L′f

t

∫
0

e−
(t−s)‖u�(s,us) − v�(s,vs)‖ds.

From (2), we have

‖u�(s,us) − v�(s,vs)‖ ≤ C1(t) sup
t∈[0,w]

‖u(t) − v(t)‖ ≤ �‖u − v‖. (12)

Therefore,

‖(Hu)(t) − (Hv)(t)‖ ≤
�Mt1(1 + Lℎ)



L′f‖u − v‖.

For u, v ∈ ̄w and for t ∈ (tj , sj], combining (12), we have

‖(Hu)(t) − (Hv)(t)‖ ≤ Lgj‖u�(t,ut) − v�(t,ut)‖ ≤ �Lgj‖u − v‖.
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For u, v ∈ ̄w and t ∈ (sj , tj+1], one can obtain

‖(Hu)(t) − (Hv)(t)‖

≤MLf

t

∫
sj

e−
(t−s)
[

‖u�(s,us) − v�(s,vs)‖ + Lℎ‖u�(�,u� ) − v�(�,v� )‖
]

ds + Lgj‖u�(sj ,usj ) − v�(sj ,vsj )‖

≤ �
[M(1 + Lℎ)(tj+1 − sj)



⋅ L′f + Lgj

]

‖u − v‖.

Thus, we get that ‖(Hu)(t) − (Hv)(t)‖ ≤ �‖u − v‖, from which one can get that H is contractive. From the Banach’s fixed
point theorem, H has a unique solution which is the mild solution of problem (1). Since for any z ∈ SAPwPC(K, G), there
isHz ∈ SAPwPC(K, G), then, the uniqueness of -asymptotically w-periodic mild solution for problem (1) is obtained. □

Theorem 3.2. Suppose (H1)(c)(d), (H3)(b), (H4) and (H5)(a)(d)(e) hold, {U (t)}t≥0 is uniformly exponentially stable and
equicontinuous, therefore, at least one -asymptotically w-periodic mild solution of problem (1) can be obtained provided

� ∶= max
{

4M(tj+1 − sj)(1 + 2�̃)

t

∫
0

Lj(s)ds + 2�j
}

< 1.

Proof. Consider the operator defined by (10). It is obvious that the fixed pionts of (10) are actually the mild solutions
of (1). Therefore, we mainly prove the operatorN has at least one fixed piont.
(a) First, we are going to proveN is continuous.
Let yn → y as n→∞ in . Then for t ∈ [0, t1], there is

‖(Nyn)(t) − (Ny)(t)‖G

= ‖

‖

‖

t

∫
0

U (t − s)f
(

s, yn�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, yn�(�,y�+ � ) +  �(�,y�+ � ))d�
)

−

t

∫
0

U (t − s)f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

ds‖‖
‖

≤M

t

∫
0

e−
(t−s)‖‖
‖

f
(

s, yn�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, yn�(�,y�+ � ) +  �(�,y�+ � ))d�
)

− f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

‖

‖

‖

ds.

Since f ∈ C(K××G,G), and ℎ ∶ {(t, s) ∈ K×K ∶ s ≤ t}× → G is continuous, then, ‖(Nyn)(t)−(Ny)(t)‖ → 0 as n→∞.
For t ∈ (tj , sj],

‖(Nyn)(t) − (Ny)(t)‖G = ‖gj(t, yn�(t,yt+ t) +  �(t,yt+ t)) − gj(t, y�(t,yt+ t) +  �(t,yt+ t))‖,

from the continuity of gj , one can easily obtain that ‖(Nyn)(t) − (Ny)(t)‖G → 0 as n→∞.
For t ∈ (sj , tj+1], we get

‖(Nyn)(t) − (Ny)(t)‖G ≤M

t

∫
sj

e−
(t−sj )‖‖
‖

f
(

s, yn�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, yn�(�,y�+ � ) +  �(�,y�+ � ))d�
)

− f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

‖

‖

‖

ds

+ ‖

‖

‖

gj(sj , yn�(sj ,ysj+ sj )
+  �(sj ,ynsj+ sj )) − gj(sj , y�(sj ,ysj+ sj ) +  �(sj ,ysj+ sj ))

‖

‖

‖

.
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Therefore, ‖(Nyn)(t) − (Ny)(t)‖G → 0 as n→∞, since f, ℎ and gj is continuous.
(b) We will prove that N maps bounded sets into bounded sets in ̄w, which can be directly obtained from the proof of

Theorem 3.1, we omit it here.
(c) We will prove thatN maps bounded sets B� into equicontinuous sets of ̄w.
For each t ∈ [0, t1], 0 ≤ �2 < �1 ≤ t1, z ∈ B� , we have

‖(Nz)(�1) − (Nz)(�2)‖

≤

�2

∫
0

‖

‖

‖

[U (�1 − s) − U (�2 − s)]f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

‖

‖

‖

ds

+

�1

∫
�2

‖

‖

‖

U (�1 − s)f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

‖

‖

‖

ds

≤

�2

∫
0

‖

‖

‖

[U (�1 − s) − U (�2 − s)]f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

‖

‖

‖

ds

+M

�1

∫
�2

‖

‖

‖

f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

‖

‖

‖

ds.

Since f is continuous function, thus it is integral. Combining {U (t), t ≥ 0} is equicontinuous, we can conclude that ‖(Nz)(�1)−
(Nz)(�2)‖ → 0 as �1 → �2.
For each t ∈ [tj , sj], tj ≤ �2 < �1 ≤ sj , z ∈ B� , one gets

‖(Nz)(�1) − (Nz)(�2)‖ ≤ ‖gj(�1, y�(�1,y�1+ �1 ) +  �(�1,y�1+ �1 )) − gj(�2, y�(�2,y�2+ �2 ) +  �(�2,y�2+ �2 ))‖.

From the fact that gj(t, z) is continuous, thus ‖(Nz)(�1) − (Nz)(�2)‖ → 0 as �1 → �2.
For each t ∈ [sj , tj+1], sj ≤ �2 < �1 ≤ tj+1, z ∈ B� , one has

‖(Nz)(�1) − (Nz)(�2)‖

≤ ‖

‖

‖

�1

∫
sj

U (�1 − s)f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

ds

−

�2

∫
sj

U (�2 − s)f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

ds‖‖
‖

+ ‖

‖

‖

gj(sj , y�(sj ,ysj+ sj ) +  �(sj ,ysj+ sj ))ds − gj(sj , y�(sj ,ysj+ sj ) +  �(sj ,ysj+ sj ))
‖

‖

‖

≤

�2

∫
sj

‖

‖

‖

[U (�1 − s) − U (�2 − s)]f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
‖

‖

‖

ds

+M

�1

∫
�2

‖

‖

‖

f
(

s, y�(s,ys+ s) +  �(s,ys+ s),

w

∫
0

ℎ(s, �, y�(�,y�+ � ) +  �(�,y�+ � ))d�
)

‖

‖

‖

ds

+ ‖

‖

‖

gj(sj , y�(sj ,ysj+ sj ) +  �(sj ,ysj+ sj )) − gj(sj , y�(sj ,ysj+ sj ) +  �(sj ,ysj+ sj ))
‖

‖

‖

.

Combining the fact that f, gj are continuous functions and {U (t), t ≥ 0} is equicontinuous, there holds ‖(Nz)(�1) −
(Nz)(�2)‖ → 0 as �1 → �2. So the operatorN is equicontinuous.
For any B ⊂ B� , by Lemma 2.4, there is B0 = {y′} which is a subset of B and countable such that

�(N(B))PC ≤ 2�(N(B0))PC . (13)
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From the boundedness and equicontinuity ofN(B0) ⊂ N(B�), by Lemma 2.6, one gets

�PC (N(B0)) = max
t∈[tj ,tj+1]

�(N(B0)(t)). (14)

For t ∈ [0, t1], from Lemma 2.5 (H1)(d), (H4) and the fact that −∞ < �(s, ys +  s) ≤ s, we have

�(N(B0)(t)) = �
(

t

∫
0

U (t − s)f
(

s, y′�(s,y′s+ s) +  �(s,y′s+ s),

w

∫
0

ℎ(s, �, y′�(�,y′�+ � ) +  �(�,y′�+ � ))d�
)

ds
)

≤M�
(

t

∫
0

f
(

s, y′�(s,y′s+ s) +  �(s,y′s+ s),

w

∫
0

ℎ(s, �, y′�(�,y′�+ � ) +  �(�,y′�+ � ))d�
)

ds
)

≤ 2M

t

∫
0

�
(

f
(

s, y′�(s,y′s+ s) +  �(s,y′s+ s),

w

∫
0

ℎ(s, �, y′�(�,y′�+ � ) +  �(�,y′�+ � ))d�
))

ds

≤ 2M

t

∫
0

Lj(s)
[

sup
�∈(−∞,0]

�((y′�(s,y′s+ s) +  �(s,y′s+ s)) + sup
�∈(−∞,0]

�
(

w

∫
0

ℎ(s, �, y′�(�,y′�+ � ) +  �(�,y′�+ � ))d�
)]

ds

≤ 2M

t

∫
0

Lj(s)
[

sup
�∈(−∞,0]

�((y′(s + �) +  (s + �))ds + 2

w

∫
0

�j(s, �) sup
�∈(−∞,0]

(y′(s + �) +  (s + �))d�
]

ds

≤ 2M

t

∫
0

Lj(s)
[

sup
�∈[0,s]

�(y′(�)) + 2�̃ sup
�∈[0,s]

�(y′(�))
]

ds

≤ 2Mt1(1 + 2�̃)

t

∫
0

Lj(s) sup
s∈[0,w]

�(y′(s))ds

≤ 2Mt1(1 + 2�̃)�PC (B) ⋅

t

∫
0

Lj(s)ds,

where �̃ = ∫ w
0 �j(s, �)d� <∞. Therefore,

�(N(B))PC ≤ 4Mt1(1 + 2�̃)�PC (B) ⋅

t

∫
0

Lj(s)ds. (15)

For t ∈ (tj , sj], combining (H5)(e), one has

�(N(B0)(t)) = �
(

gj(t, y′�(t,y′t+ t) +  �(t,y′t+ t))
)

≤ �j sup
�∈(−∞,0]

�(y′(t + �) +  (t + �))

≤ �j sup
�∈[0,t]

�(y′(�))

≤ �j sup
t∈[0,w]

�(y′(�))

≤ �j�PC (B).

Thus,

�(N(B))PC ≤ 2�j�PC (B). (16)

In a similar way, for t ∈ (sj , tj+1], from (13), (H1)(d), (H4), (H5)(e) and Lemma 2.5, there is

�(N(B))PC ≤ 2�(N(B0))PC ≤
[

4M(tj+1 − sj)(1 + 2�̃)

t

∫
0

Lj(s)ds + 2�j
]

�PC (B).
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Then, N is a �-set-contraction. We can conclude from Lemma 2.8 that N has at least one fixed point y∗ ∈ B0 ⊂ ̄w.
Let z(t) = y∗(t)+ (t), t ∈ (−∞, w], therefore, one can easily obtain that z is a fixed point of the operatorH , which implies z is
a mild solution of (1). From the proof of Theorem 3.1, for any z ∈ SAPwPC(K, G), there is Hz ∈ SAPwPC(K, G), from
which one can conclude that the problem (1) has at least one -asymptotically w-periodic mild solution. □

4 EXAMPLES

Set G = L2([0, �],ℝ) be a complete normed vector space equipped with the L2 norm ‖ ⋅ ‖2. Set K = [0, �], 0 = s0 < t1 =
�
4
<

s1 =
�
2
< t2 =

3�
4
= s2 < t3 = �, m = 2. Define Az = −

)2

)x2
z for z ∈ (A) with (A) = {z ∈ G ∶ )z

)x
, )

2z
)x2

∈ G, z(0) = z(�) =
0}. From 39, A generates an analytic C0-semigroup of bounded operators (U (t))t≥0 on G, which is uniformly exponentially
stable with ‖U (t)‖ ≤ 1.

Example 1. Consider
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

)
)t
z(t, x) = )2

)x2
z(t, x) +

t

∫
−∞

es−t
z(s − �1(s)�2(‖z(s)‖, x))

7
ds

+ ∫ �
0 | sin(t − s)| ∫ s

−∞ e
2(�−s) z(�−�1(�)�2(‖z(�)‖,x))

7
d�ds, (t, x) ∈ (sj , tj+1] × [0, �], j = 0, 1, 2,⋯ , m,

z(t, x) =
�z(t − �1(t)�2(‖z(s)‖, x)) ⋅ sin(tj)

j
, � > 0, (t, x) ∈ (tj , sj] × [0, �], j = 1, 2,⋯ , m,

z(t, 0) = z(t, �) = 0, t ∈ (0, w),
z(t, x) = �(t, x), t ∈ (−∞, 0], x ∈ [0, �].

(17)

For (t, �) ∈ [0, w] ×, where �(�)(x) = �(�, x), (�, x) ∈ (−∞, 0] × [0, �]. Let z(t)(x) = z(t, x), �(t, �) = �1(t)�2(‖�(0)‖), then
one gets

f (t, �, p�)(x) =

0

∫
−∞

es ⋅
�
7
ds + p�(x),

gj(t, �)(x) =
�� sin(tj)

j
,

where p�(x) =
�

∫
0

| sin(t − s)|

0

∫
−∞

e2� ⋅
�
7
d�ds.

Therefore, the problem (17) is transformed into the form of (1). And it is obvious that f is an -asymptotically w-periodic
function on the bounded set [0, �]. In the following, we assume that �j ∶ [0,∞)→ [0,∞), j = 1, 2 are continuous all the time.
Then, for t ∈ [0, �], we have

‖f (t, �, p�)‖2 ≤
(

�

∫
0

(

0

∫
−∞

es ⋅ ‖‖
‖

�
7
‖

‖

‖

ds +

�

∫
0

| sin(t − s)|

0

∫
−∞

e2� ⋅ ‖‖
‖

�
7
‖

‖

‖

d�ds
)2
dx

)
1
2

≤
(

�

∫
0

(1
7

0

∫
−∞

es ⋅ sup ‖�‖ds + 1
7

0

∫
−∞

e2s ⋅ sup ‖�‖ds
)2
dx

)
1
2 ≤ 2�

1
2

7
‖�‖,
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and

‖f (t, �1, p�1) − f (t, �2, p�2)‖2 ≤
(

�

∫
0

(

0

∫
−∞

es ⋅ ‖‖
‖

�1
7
−
�2
7
‖

‖

‖

ds +

�

∫
0

| sin(t − s)|

0

∫
−∞

e2� ⋅ ‖‖
‖

�1
7
−
�2
7
‖

‖

‖

d�ds
)2
dx

)
1
2

≤
(

�

∫
0

(1
7

0

∫
−∞

es ⋅ sup ‖�1 − �2‖ds +
1
7

0

∫
−∞

e2s ⋅ sup ‖�1 − �2‖ds
)2
dx

)
1
2

≤ 2�
1
2

7
‖�1 − �2‖.

In addition, gj ∶ [tj , sj] × G → G is continuous and for any z ∈ G, there is

lim
t→∞,j→∞

‖gj+m(t + �, z) − gj(t, z)‖2 = lim
t→∞,j→∞

(

�

∫
0

‖

‖

‖

�z(s) sin(t +w)(j + m)
j + m

−
�z(s) sin(tj)

j
‖

‖

‖

2
ds
)

1
2

≤ lim
j→∞

2��
1
2

j
‖z‖

= 0,

and for any z1, z2 ∈ G, we have

‖gj(t, z1) − gj(t, z2)‖2 =
�
j
‖

‖

‖

�

∫
0

|z1(s) sin(tj) − z2(s) sin(tj)|2ds
‖

‖

‖

1
2 ≤ ��

1
2
‖z1 − z2‖.

Furthermore,

‖gj(t, z)‖ =
(

�

∫
0

|

|

|

�z(s) sin(tj)
j

|

|

|

2
ds
)

1
2 ≤ ��

1
2

j
‖z‖ ≤ ��

1
2 (1 + ‖z‖).

Then, the conditions in Theorem 3.1 are satisfied. From Theorem 3.1, we get the following result:

Proposition 1. If � ∶= max 2��
3
2

28

+��

1
2 < 1, then under the above conditions, the problem (17) has a unique -asymptotically �-

periodic mild solution.

Example 2.We discuss briefly the existence of -saymptotically w-periodic mild soltuions for problem (17).
For each bounded set B1 ⊂  and B2 ∈ G, there holds

�(f (t, B1, B2)) ≤
2�

1
2

7

(

sup
�∈(−∞,0]

�(B1(�)) + �(B2)
)

,

and for any t ∈ (tj , sj], j = 1, 2,⋯ , m, we can directly derive from the proof of Example 1 that

‖gj(t, z)‖ =
(

�

∫
0

|

|

|

�z(s) sin(tj)
j

|

|

|

2
ds
)

1
2 �

1
2 ≤ ��

1
2

j
‖z‖ ≤ ��

1
2 (1 + ‖z‖).

Besides, for each bounded set B ⊂ , one has

�(gj(t, B)) ≤ ��
1
2 sup
�∈(−∞,0]

�(B(�)), j = 1, 2,⋯ , m.

Therefore, the conditions in Theorem 3.2 are satisfied, then, the following proposition holds:

Proposition 2. Under the above assumptions, if (1+2�̃)�
5
2

7
+ 2��

1
2 < 1, then the problem (17) has at least

one -asymptotically w-periodic mild solution in [0, �].
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5 CONCLUSIONS

We have mainly considered the nonlinear non-instantaneous impulsive integro-differential equations with state-dependent
delay. First, by utilizing Banach’s fixed point theory, the uniqueness of -asymptotically w-periodic mild solution has been
obtained. And then we have considered the existence of at least one -asymptotically w-periodic mild solution via the non-
compactness operator semigroup theorem. However, compared with the classical instantaneous impulse differential system, the
theoretical development of the existing non-instantaneous impulse differential system with delay is still lagging behind and the
research results on the properties of the solutions are not perfect. What’s more, during this process, we find it is difficult to prove
the existence of periodic solutions for non-instantaneous impulsive differential equations with state-dependent delay. There-
fore, in the future work, we can consider suitable conditions to ensure the existence of periodic solutions for non-instantaneous
impulsive differential equations with state-dependent delay.
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