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Abstract

Membraneless organelles (MLOs) form via liquid-liquid phase separation (LLPS). The liquid-like MLOs afford multifold pe-

culiarities including high dynamics, reversibility and responsiveness. The MLOs are typically metastable with a tendency to

undergo fast, drastic and reversible formation and dissolution, as well as transition into more stable glassy or gel-like states.

Moreover, the alteration of metastability of LLPS is linked with cellular pathology. Here, we review the crucial and ubiquitous

‘metastability’ of MLOs driven by liquid phase separation, from multifaceted regards including energy state, molecular inter-

actions, molecular structure, materials state, as well as the associations with diseases. This review can help to advance the

insight into properties and pathogenesis associated with LLPS of biological matter.
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Abstract

Membraneless organelles (MLOs) form via liquid-liquid phase separation (LLPS). The liquid-like MLOs afford
multifold peculiarities including high dynamics, reversibility and responsiveness. The MLOs are typically
metastable with a tendency to undergo fast, drastic and reversible formation and dissolution, as well as
transition into more stable glassy or gel-like states. Moreover, the alteration of metastability of LLPS is
linked with cellular pathology. Here, we review the crucial and ubiquitous ‘metastability’ of MLOs driven by
liquid phase separation, from multifaceted regards including energy state, molecular interactions, molecular
structure, materials state, as well as the associations with diseases. This review can help to advance the
insight into properties and pathogenesis associated with LLPS of biological matter.

Key points

Liquid-liquid phase separation emerges as a universal tool for the intracellular biomolecule organization,
particularly via the formation of membraneless organelles.

The liquid-like membraneless organelles afford unique properties and have aroused wide interests among cell
biologists.

Metastability is a general feature of liquid-like membraneless organelles, which has manifested in multiple
aspects including energy state, molecular interactions, molecular structures, biological assemblages and its
association with diseases.

Understanding of metastability of biological liquid phase separation can not only help to elucidate the
formation and properties of membraneless organelles, but also pave the way to the insight into pathogenesis.

Metastable Biological Matter

Cells compartmentalize to organize a myriad of biomolecules and biochemistry hierarchically, conventionally
known to form lipid bilayer membrane-bound organelles 1. Nonetheless,liquid-liquid phase separation
(LLPS, see Glossary ) emerges recently as another universal phenomenon for intracellular organization,
particularly via the formation of membraneless organelles (MLOs) hosting intrinsically disordered
proteins(IDPs) as scaffolds, which have important roles in cellular physiology and disease 2–4. The liquid-
like MLOs are biological soft matter that afford multifold peculiarities, including high dynamics, reversibility
and environmental responsiveness5. Notably, there is growing evidence that ‘metastability ’ is a universal
and pivotal nature of liquid-like MLOs 6. For one thing, MLOs are capable of undergoing fast, drastic and
reversible formation and dissolution events commensurate with surrounding intracellular environment7. For
another, the liquid state has an inherent tendency to transit into more stable glassy or gel-like states8, simply
over time 9 or expedited by disease-associated mutations 10–13. Moreover, the alteration of metastable state
has been revealed to be closely tied with cellular physiology and pathology 14, whilst the manipulation of
LLPS can be promising route towards effective treatment of diseases 15.

In this review paper, we highlight the ubiquitous yet essential metastability of liquid phase separation of
biological soft matter. We first depict the free energy landscape of biological matter, and underscore
the metastable state of MLOs with liquidity. We next discuss about the distinctive metastable molecular
interactions and molecular structures implicated in liquid-like MLOs. Through examples, we then highlight
the metastable material state of biological assemblages formed through liquid phase separation. Lastly, we
describe how metastability provides a pivotal link between physiology and disease.

Metastability of energy state

2
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. The liquid condensate state of MLOs is energeticallymetastable , namely, resides in a local minimum of
Gibbs free energy (Figure 1A ). A thermodynamic system will spontaneously minimize the free energy
to attain states with higher stability. As such, liquid condensate state can spontaneously transit to more
energetically favorable states, namely, other local minima with lower free energy or the global minimum,
simply over longer time16–18 or expedited by disease-associated mutations10–13,19. For example, liquid con-
densates can evolve into reversible hydrogels or irreversible amyloid-like aggregates, which has lower free
energy and higher stability. Additionally, LLPS can be an intermediate process to facilitate nucleation and
lower the free energy of crystallization and aggregation18,20,29–32,21–28. To maintain the liquid condensate
state, specific quality control machineries 33 are required to stop them from spontaneous solidification34–37,
including post-translational modification (PTM) 38,39, RNA binding 40, chaperon 11,41–45, hydrotrope 46and
disaggregase 47.

In cell biology, proteins are commonly hydrophilic biomacromolecules dispersed in the state of dilute solution.
How can the metastable liquid condensates form from the dispersed solution thermodynamically? Basically,
there are two types of interactions in a dispersed protein solution, namely, the homotypic interactions
between two biomolecules (e.g., protein or nucleic acid) and two water molecules, as well as the heterotypic
interactions between a biomolecule and a water molecule48. The phase transition from dispersed state to
phase-separated state can occur if the homotypic interactions are favored over heterotypic interactions. The
enthalpy and entropy change of this phase transition can be categorized into four quadrants (Figure 1B
). The formation of liquid condensates is thermodynamically favored within two quadrants (Figure 1B
, highlighted with green color), namely, when∆H • ∆S > 0. When ∆H > 0 and∆S > 0, ∆G is only
negative at high temperature. This means the LLPS is spontaneous when temperature is higher than a
threshold value, thus exhibiting a lower critical solution temperature (LCST) phase behavior, which has
been found in extracellular IDPs including elastin, elastin-like polypeptide 49 and histidine-rich squid beak
proteins 50–52. When∆H < 0 and ∆S < 0, ∆G is only negative at low temperature. This means the
LLPS is spontaneous when temperature is lower than a threshold value, thus exhibiting an upper critical
solution temperature (UCST) phase behavior, which has been found in intracellular IDPs including Ddx4
53, LAF-1 54, FUS 55, TDP-43 56 and hnRNP17 protein. By contrast, the formation of liquid condensates
is thermodynamically disfavored within two quadrants (Figure 1B , highlighted with red color), namely,
when∆H •∆S < 0. When ∆H > 0 and∆S < 0, phase separation is always thermodynamically unfavorable,
and solution remains in the dispersed state because∆G is always positive. When ∆H < 0 and∆S > 0, phase
separation is always thermodynamically favorable. Dispersed solution will form irreversible phase separation
spontaneously, either liquid-solid phase separation or LLPS, as∆G is always negative.

Molecular interaction and molecular structure for metastability

In accordance with the metastable free energy state, IDPs, as the scaffold protein of MLOs, often harbor
transient and weak molecular interactions 34. The low complexity domains(LCDs), as the domains
that mediate the LLPS of IDPs, are largely enriched with charged, polar and aromatic residues whilst
commonly devoid of hydrophobic residues 22. Weak, multivalent and non-specific interactions, including
electrostatic, pi–pi, cation–pi and dipole–dipole interactions (between polar amino acids), are prevalent
among residues in LCDs (Figure 2A )36. The long-range electrostatic interactions among charged blocks
may facilitate the initiation of LLPS, while short range interactions, including pi–pi, cation–pi and dipole–
dipole interactions, may mediate the multivalent contacts among weakly interacting motifs 34. Among these
molecular interactions, cation–pi interactions are considered as the strongest, with the free energy of binding
(∆Gbind) around –3.6 kcal/mol 57. This magnitude is lower than the average ∆Gbind per residue implicated in
the formation of Aβ17–42 amyloids-β protofibrils (–19.3 kcal/mol) 58, thus suggesting molecular interactions
driving the formation of MLOs are much weaker than amyloid plaques. Compared with static amyloids
34, LCDs harbor transient interactions among residues with higher dynamics. This can be quantified by
fluorescence recovery after photobleaching (FRAP), commonly showing a half time of recovery (t 1

2
) on the

order of seconds (normalizing the diameter of bleaching spot to 1 μm)34. Efforts have been made to shed
light on the possible reason of liquid phase formation from the molecular level, including theory of amyloids-β
fibril formation 59, multivalent domain interaction network model 60 and theory of polymer physics 22.
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. IDPs lack a stable and well-defined 3D molecular structure61–63. IDPs are always devoid of stable tertiary
structures under physiological conditions, albeit collapsed IDPs could harbor some stable secondary structure
elements 64. The lack of stable structure can be possibly considered as one common and crucial feature
for IDPs to form metastable MLOs65. The unstable conformation allows the flexibility of IDPs as major
scaffold constituents, which may contribute to the physical fluidity of MLOs 65. The unstable conformation
allows formation of the weak and multivalent interactions, which is a common hallmark for the interactions
that contribute to LLPS3. The IDPs harbor ‘stickers-and-spacers’ structural features, wherein modules
provide attractive interactions are considered as ‘stickers’, and flexible linkers provide no significant attractive
interactions are considered as ‘spacers’. The unstable structure with ‘stickers-and-spacers’ features allows
the multivalent presence of PTM sites 66, whilst PTMs can efficiently alter the stability of MLOs 53.

Modular interaction domains connected by disordered linkers can mediate multivalent interactions that drive
LLPS. Rosen et al. reported the LLPS of multivalent signaling proteins. Neural Wiskott–Aldrich syndrome
protein (N-WASP), the actin-regulatory protein, interact with its established biological partners NCK and
phosphorylated nephrin1 to form LLPS, wherein NCK contain three SH3 domains that can bind to the
six proline-rich motif (PRM) ligands of N-WASP 67. Similar multivalent system were also reported in T
cell receptor signaling pathway 68, nucleophosmin (NPM1) interacting with proteins comprising arginine-rich
linear motifs and ribosomal RNA69 and pair of polySUMO–polySIM interacting multivalent scaffold proteins
70.

Weakly interacting motifs are prevalent in LCDs to mediate LLPS. It has been widely known that tightly
self-complementing ‘steric zipper ’ structure forms solid-like amyloid-β plaques with hydrophobic interfaces
and high stability 71–73. By contrast, IDPs largely host motifs that can form thermodynamically metastable
‘κινκεδ β σηεετς ’ 74–77 molecular structure,i.e. , the archetypical [G/S]Y[G/S] motifs of FUS protein.
These motifs can form close interactions as quantified by the structural complementarity (Sc) (Table 1
). However, side chains cannot interdigitate across the β-sheet interface owing to the prevention of kinks.
They thus harbor smaller buried solvent-accessible surface area (Ab) and more hydrophilic interfaces, thus
exhibiting much lower stability 74 (Figure 2Band Table 1 ). This is exemplified by metastable interaction
motifs in LCDs of FUS 55,78–82, Tau83, TDP-43 84 and hnRNP17,76,85 proteins. Specifically, short associative
peptide motifs within LCDs can form metastable fibrils in vitro , whilst exhibiting melting behavior in
response to mild heating, which is distinctive from stable amyloid fibrils (Table 2 ).Besides kinked β sheets,
other interaction motifs that can mediate multivalent interactions were also reported, including repeated
[F/R]G and G[F/R] pair motifs of Ddx4 proteins 53, α-helix-forming 321AMMAAAQAAL330motif of TDP-
43 proteins 86, VPGXG (X is a guest residue except proline that can modulate phase behaviour) motifs of
elastin-like proteins 87 and GHGLY motif of histidine-rich squid beak proteins 52. In addition, specific motifs
may hinder LLPS, i.e. , FGDF can bind to G3BPs to block the formation of stress granules 88.

The metastable molecular structures and phase behavior of IDPs can be drastically altered simply by
mutations17,55,76,80,84,85,89,90 or PTMs55,82,84 on one single residue. For example, The phosphorylation of
FUS protein by kinase at the Ser42 site drastically altered the molecular interactions of LCDs, haltering the
formation of metastable fibrils and LLPS formation 55. This prominent alteration of phase behavior can be
attributed to disruption of metastable kinked structure. The Ser42 site is the primary phosphorylation site
by DNA-dependent protein kinase (DNA-PK)91. The phosphorylation at Ser42 can significantly disrupt the
hydrogen bonds between Ser42 and Tyr38, interfere with the interaction of mating sheet and destabilize the
RAC1 interacting motif, thereby modulating the ability of FUS to undergo LLPS. Additionally, the mutation
of Ser42 to Asp (S42D) can also remarkably depress the LLPS of LCD of FUS protein, decreasing the critical
temperature of LLPS by 5 °C, as the mutation S42D is a change that mimics serine phosphorylation55.

There are two major types of phase behavior for a biological LLPS system of interest, namely, the entropy-
driven LCST phase behavior and enthalpy-driven UCST phase behavior 24. How is the type of phase behavior
encoded in motifs of protein sequences? Chilkotiet al. synthesized artificial IDP-like polymers harboring se-
veral tens of repeats of short peptide motifs 87. They found that motifs with low-charge content and high
hydrophobicity feature tend to engender IDP-like polymer with LCST behaviour, which is reminiscent of
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. tropoelastins. By comparison, motifs with high-charge content and low hydrophobicity feature tend to en-
gender IDP-like polymer with UCST behaviour, which is reminiscent of the dual UCST and LCST behaviour
at extremes of temperature of resilin. Furthermore, Chilkoti et al.found that hysteresis behavior can also be
encoded and tuned at the motif level by the precise position of an amino acid within a motif, as well as at
the macromolecule level by chain length 92.

The unique molecular interaction and molecular structure allow metastable MLOs with unique properties,
including liquidity, high dynamics and environmental responsiveness. Learning from nature, the responsible
domains and motifs of IDPs have also been exploited as building blocks to design bio-inspired materials93–95,
which have been reviewed elsewhere96.

Environment-responsive biological matter exhibiting metastability

The MLOs, as biological assemblages, reside in a metastable material state. They can readily form un-
der stress conditions as induced by heat12,97,98, pH change 98,99, starving98 or chemicals (e.g. sodium
arsenate12,40) in living cells. For example, the exposure of HeLa cells to heat stress by heating from 37
°C to 42 °C, or to chemical stress of 1 mM sodium arsenate, can significantly induce liquid-like stress granu-
les in both the nucleus and cytoplasm 12. Also, the starvation of yeast by glucose depletion or simply drop
of cytosolic pH (to 5.7) can trigger the LLPS of polyU-binding protein (Pub1) into stress granules 98.

Liquid-like MLOs can readily reverse to dispersed state in response to a wide range of environmental stimuli
including heating53,100, pH 98, ionic strength11,53, light 101,102 and enzymatic reaction, including phospho-
rylation 80 and proteolytic cleavage 54, which may indicate the liquid state of assembly is a metastable state.
For example, heating from 10 °C to 20 °C dissolved the liquid droplets formed from N-terminal Argonaute
binding domain (ABD) of TNRC6B protein in vitro 100. The phase separation of Pub1 in vitro can be
dissolved with the increase of ionic strength from 187 mM to 1 mM, as well as the change of pH from 5.7 to
7.5 98. The liquid-like droplets formed from the LCD of FUS protein gradually dissolved within two hoursin
vitro , via the phosphorylation at serine and threonine sites by kinase 80. Hammer et al.54 demonstrated the
controllable dissolution and formation of LLPS induced by proteolytic cleavage. They reconstituted proteins
from the fusion of two RGG domains of LAF-1 protein, linked by Glu-Asn-Leu-Tyr-Phe-Gln-Gly recognition
sequence by tobacco etch virus (TEV) protease. This RGG-x-RGG (x=TEV cleavage site) protein forms
LLPS, whilst the dissolution of liquid droplets can be triggered by TEV proteolytic cleavage of linkage of
RGG domains, as was demonstratedin vitro and in living HEK293 cells. Additionally, they fused RGG-RGG
with maltose-binding protein (MBP) domain via linkage of TEV cleavage site, which has been widely used as
a solubility-enhancing tag to prevent phase separation of IDPs 79. This MBP-x-RGG-RGG protein remains
dispersed, while the formation of liquid droplets can be triggered by proteolytic cleavage of MBP domain
with the treatment of TEV protease, as was demonstrated in water-in-oil protocells in vitro .

MLOs can spontaneously transit into more stable material state over time (known as ‘maturation ’
16,103–106), including viscous liquids 28, gels28 and amyloid-like fibrils12,42,107 (Figure 3A ). For exam-
ple, the liquid droplets from 8 μM FUS protein transit into amyloid-like fibrillar structure after 6-hour
incubation in vitro12. Likewise, the liquid droplets from the LLPS of p-tau protein evolve into viscoelastic
liquids, gels and finally amyloid-like aggregates after 1-day incubation in vitro , and liquid droplets almost
completely converted to amyloid-like aggregates after 10-day incubation 28. Parker et al. fused polypyrim-
idine tract-binding protein (PTB, an RNA-binding domain) with LCDs of IDPs including PUB1, LSM4,
EIF4GII, TIA1 and FUS. These reconstituted proteins form LLPS in complexation with RNAs in vitro .
Notably, all of these complexed droplets mature into much more stable and solid-like assemblies within 48
hours 9. This natural and spontaneous liquid-to-solid transition of materials state can be accelerated under
disease-associated conditions11,12, which will be discussed in the next section.

Metastability is associated with diseases

It costs to form metastable LLPS in cells. The LLPS of IDPs derives from a state of supersaturated
compositional proteins wherein their cellular concentrations are high relative to their solubilities67,83,108,
a phenomenon that can drive the aberrant protein aggregation in neurodegenerative diseases108,109.
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. The liquid condensed phase is intrinsically metastable and vulnerable to uncontrolled aggregation leading
to pathological consequences 9,10,14,37,110. The metastable liquid MLOs is susceptible to alteration simply
over time9,12, which is commonly expedited under pathological conditions 12,19,111. The transition from
metastable MLOs to stable aggregates can further lead to the gain of biological changes, including cancer,
neurodegenerative diseases and aging4,11,118,119,35,75,112–117. A wide array of factors can engender the alter-
ation of metastability, such as PTMs, mutations and overexpression of proteins (Figure 3B ), which are
reviewed below.

Loss of metastability can be triggered by aberrant PTMs120. George-Hyslop et al. 11showed hypomethy-
lation of arginine can drive the formation of hydrogel structure from FUS protein, which can disrupt ri-
bonucleoprotein (RNP) granule function and damage protein synthesis in neuron terminals, thus suggesting
a plausible mechanism for frontotemporal lobar degeneration (FTLD), as well as other neurodegenerative
diseases. Conversely, metastability can be preserved by specific PTMs. Fawzi et al.85 revealed that arginine
methylation can help to maintain the metastability of hnRNPA2 protein by disrupting interactions between
arginine guanidyl group and aromatic residues, thereby pointing out a possible method for the regulation
of solid-like assemblies and modify the toxicity. Fawzi et al. 39investigated the impact of phosphorylation
using phosphomimetic mutations. All the twelve serine/threonine–glutamine (S/TQ) sites of FUS protein
were mutated to glutamate–glutamine (EQ) sites. The disordered nature of LCDs was preserved, whilst al-
lowing the ability to form LLPS in vitro . Distinctively, the aggregation-prone characteristics were reduced.
With one-day orbital agitation to induce maturation of IDPs, most of the droplets formed from wild-type
FUS protein evolved into irregular assemblies, while the droplets formed from phosphomimetic variant 12E
remained spherical in vitro . They further demonstrated both the aggregation propensity and cytotoxicity in
yeast Saccharomyces cerevisiae were reduced, suggesting that maintaining metastability of liquid-like MLOs
can be an effective way to tackle neurodegeneration caused by aberrant protein aggregation. Ferreonet al.
121 found PTM can counteract LLPS-initiated protein aggregation. Tau protein underwent LLPS under
physiology-relevant conditions in vitro , whilst the liquid-to-solid transition can be induced in the presence
of heparin. The 24-hour maturation process was visualized by morphological change into solid-like irregu-
lar aggregates and quantified by prominent fluorescence increase of Thioflavin T (ThT) fluorescence assay.
Tau protein was also hyperacetylated with p300 histone acetyltransferase. Distinctively, hyperacetylated
Tau protein forms much less irregular solid after 24-hour maturation. The aggregation propensity of Tau is
largely decreased by acetylation, suggesting a way to ameliorate neurodegenerative diseases associated with
toxic Tau aggregation, including Alzheimer’s disease.

Disease-associated mutations often strengthen homotypic interactions of IDPs, thereby impairing the liquid-
ity of MLOs, decreasing dynamics and promoting protein aggregation 112. Neurodegenerative diseases have
been widely reported to link with aberrant transition of MLOs. Alberti et al. 12 showed the maturation of
FUS protein liquid droplets can be drastically accelerated by mutations associated with amyotrophic lateral
sclerosis (ALS). After 8-hour maturation in vitro , droplets formed by the LLPS of FUS protein was mostly
preserved, only demonstrating minute solidification. By contrast, droplets from the G156E mutant of FUS
protein maturated into stable fibrous aggregates (a state without metastability) almost completely. How is
the loss of metastability linked with disease? Da Cruz et al. 122 further clarified that ALS/frontotemporal
dementia (FTD)-linked mutant of FUS protein drives disease by a gain of toxicity, rather than a loss of
function. Tayloret al. 19 investigated the hnRNPA1 mutant, D262V, which is associated with multisystem
proteinopathy and ALS123. At the initial state, D262V mutant formed LLPS comparable with wild-type hn-
RNPA1, demonstrating similar propensity of droplet formation and critical melting temperature. Repeated
heating-cooling cycling was applied to both D262V mutant and wild-type hnRNPA1. Notably, within min-
utes of maturation, the reversible droplet formation of D262V mutant was concomitant with the fibrilization
and formation of irregular solid-like assemblies, which is stable, amyloid-like and ThT-positive. By contrast,
no such liquid-to-solid conversion was observed for wild-type hnRNPA1, thus suggesting the metastabil-
ity of MLOs was impaired by the D262V mutation, which is associated with neurodegeneration. Fawzi et
al.85 studied the P298L and D290V mutants of hnRNPA2 protein with connections to Paget’s disease and
multisystem proteinopathy (MSP), respectively. Freshly prepared wild-type hnRNPA2, P298L and D290V
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. mutants all formed similar spherical droplets with liquidity and comparable dynamics, as was quantified by
FRAP. Nonetheless, P298L and D290V mutants prominently transited into stable solid-like assemblies after
30-min maturation in vitro , in stark contrast to the preservation of liquid droplets of wild-type hnRNPA2 for
at least 120 mins, thereby indicating disease-associated mutations impaired metastability of MLOs. Fawzi
et al. 86reported A321V, an ALS variant of C-terminal domain (CTD) of TDP-43, formed liquid droplets
similar to wild-type TDP-43, as was confirmed by turbidity, spherical shape and FRAP. After one hour
incubation in vitro , A321V variant changed into irregular assemblies which is distinct from the spherical
shape of wild type TDP-43. Similar phenomena have also been found for P362L mutants in the LCD of T
cell-restricted intracellular antigen-1 (TIA1) 124, and A4V mutants in superoxide dismutase 1 (SOD1) 45,
which are associated with ALS. Taylor et al. 118 studied the expansion of a hexanucleotide repeat GGGGCC
in C9ORF72, which is the most common cause of ALS and FTD, presumably through the expression of
toxic dipeptide repeat proteins. They identified that arginine-containing dipeptide repeat proteins, namely,
polyGly-Arg and polyPro-Arg, can interact with LCDs of IDPs to alter the biophysical properties of MLOs.
Both polyGly-Arg and polyPro-Arg can impair the liquidity, dynamics and metastability of MLOs in vitro
and in living HeLa cells, as was substantiated by FRAP and change of spherical shape. Moreover, the
polyGly-Arg and polyPro-Arg can promote the assembly of stress granules lacking metastability in HeLa
cells, which can inhibit cellular translation and increase the risk of cell death events. Vale et al. 125 further
showed RNAs harboring CAG and CUG repeats (length 31, 47 and 66 repeats) underwent LLPS event into
droplets in vitro , albeit rapidly evolving into solid-like RNA hydrogels maintaining sphere-like shape. RNAs
harboring 47 CAG repeats can form liquid-like nuclear foci in living U-2OS cells. By contrast, RNAs with 10
or 23 GGGGCC repeats forms irregular solid-like gels in vitro , and RNAs with 29 GGGGCC repeats forms
irregular solid-like gels in living U-2OS cells. This report demonstrated that expansion of the GGGGCC in
the C9ORF72 gene can trigger formation of solid-like RNA gels with impaired dynamics and metastability.
As the accumulation of the repeat-containing transcripts into aberrant RNA foci in the nucleus is a common
feature in neurodegeneration, this research suggests sequence-specific gelation of RNAs can be one cause of
neurodegenerative diseases. Hsp27 is molecular chaperone that is vital in maintaining the metastability and
dynamics of liquid droplets of stress granules from FUS protein, whilst mutations of chaperons can directly
engender hereditary motor neuron diseases42. Liu et al. 42 mutated residues (I120, H124, 126–131, I134,
F136, R140 and T143) of Hsp27 to alanine to synthesize Hsp27-A, which can largely change the binding sur-
face between Hsp27 and FUS protein. Hsp27 bound to FUS LCD to preserve the liquid phase against amyloid
fibril formation, whilst the mutant Hsp27-A had little inhibitory effect on the amyloid-like aggregation of
FUS LCD, as has been quantified by the ThT fluorescence assay. This study suggests loss of metastability
can lead to diseases through the mutations of chaperone. Besides neurodegenerative diseases, Mittag et
al. 126 investigated the impact of cancer mutations on LLPS and functioning of MLOs. Tumor suppressor
speckle-type POZ protein (SPOP) formed liquid-like MLOs with death-domain-associated protein (DAXX)
in living HeLa cells, and CUL3 ubiquitin ligase activity is found in the MLOs formed. By contrast, cancer
mutants (W131G and F133V) of SPOP failed to co-localize and form liquid-like MLOs with DAXX in living
HeLa cells, resulting into reduced protein ubiquitination, thus suggesting cancer mutations are associated
with loss of function of MLOs.

The overexpression of IDPs can also trigger the alteration of metastable MLOs. Carra et al. 127 revealed
overexpression of small heat shock proteins (HSPBs) engendered aberrant MLOs in nucleus, which can mis-
localize nuclear intermediate filament protein lamin-A/C (LMNA) and chromatin, resulting in the abnormal
distribution of LMNA and chromatin and thereby damaging the integrity and function of nucleus.

Concluding remarks

Membraneless organelles are peculiar liquid-like compartments in cells. Membraneless organelles are unique
because of their multifold metastability, including free energy, molecular interaction, molecular structure,
and materials state. What’s more, the alteration of metastability has been tightly linked to diseases. We
envision that further elucidation of metastability in liquid phase separation, especially in the formation,
maintenance and modulation of liquid-like MLOs, can contribute to the insight into cell physiology and
mechanisms of pathogenesis (see Outstanding Questions ).
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Glossary

Free energy: In a thermodynamic system, the portion of energy available to perform work at constant
temperature. Specifically, the Gibbs free energy is used for constant temperature and pressure, which is
true for solution-phase chemistry including biochemistry. Systems tend to transit into a state where the free
energy is lower, which is more thermodynamically stable.

Intrinsically disordered proteins (IDPs) : The most common scaffold proteins of MLOs with a strong
tendency to form LLPS, which is often concomitant with nucleic acids.

Κινκεδ β σηεετς: The β-sheet with kinks that prevent side chains from tight interdigitating across the
interface. Compared with the steric zipper structure in amyloid plaques, they interact weakly through polar
atoms and aromatic side chains, bury smaller surface areas, and have lower binding energy.

Liquid-liquid phase separation (LLPS): A homogenous liquid phase demixes into two distinct liquid
phases, namely, one light phase and one concentrated phase. This term is also widely referred as ‘coacerva-
tion’ when comprising macromolecular components.

Low complexity domains (LCDs) : Domains of IDPs with low sequence complexity and biased composi-
tion of amino acids, namely, typically enriched in specific polar and charged amino acids, whilst interspersed
with aromatic residues (especially tyrosine and phenylalanine). They are also referred as ‘prion-like domains
(PLDs)’, which is often considered as necessary and sufficient for driving LLPS of IDPs intracellularly.

Maturation: A transition process of MLOs from liquid-like droplets to solid-like aggregates, together with
the loss of metastability. This process is thermodynamically spontaneous, which can take place simply over
time or be accelerated by pathological changes. This term has also been referred to as ‘hardening’, ‘aging’
or ‘solidification’.

Membraneless organelles (MLOs) : Non-membrane-bound organelles that usually form via liquid-liquid
phase separation in cells. They have also been referred to as many other names including biomolecular
condensates, cellular bodies, speckles, puncta and granules.

Metastability /Metastable: A system is thermodynamically metastable when staying at a local minimum
of free energy, with a tendency to spontaneously transit into more stable state, namely, a global minimum
of free energy. The metastable nature of a thermodynamic system is metastability.

Neurodegenerative diseases : A group of diseases engendered by the progressive loss of structure and func-
tion of neurons, which is also known as degenerative nerve diseases. Common examples include Alzheimer’s
disease, amyotrophic lateral sclerosis, Parkinson’s disease, Huntington’s disease, multiple system atrophy
and frontotemporal dementia.
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. Steric zipper: The dry and tightly self-complementing structure formed within double β-sheets of amyloid-
like fibrils. This name was coined by David Eisenberg’s group in 2005 because the interdigitating side chains
of β-sheets resemble the teeth of a zipper.

Supersaturated: A protein is supersaturated when its concentration is higher than the solubility under
normal conditions.

Outstanding Questions

How can membraneless organelles attain both supersaturation and high selectivity of a plethora of
biomolecules?

Is it possible to predict phase behavior of IDPs in different environment simply from the information of
sequence?

Why do ‘upper critical solution temperature’ and ‘lower critical solution temperature’ phase behaviors often
exist with intracellular and extracellular intrinsically disordered proteins, respectively? Is there any biological
significance or reason?

How and to what extent can cells prevent the pathological aggregation from metastable membraneless or-
ganelles?

Is the maturation process in cells inevitable?

How to rescue the stable amyloid-like assemblies by therapeutic intervention? Will this be an effective
pathway for the treatment of neurodegenerative diseases and cancer?

Figure 1. Energy depiction. (A) Schematic illustration of landscape of Gibbs free energy and stability
associated with different possible materials states. (B) Enthalpy and entropy change of phase transition
from dispersed state to phase-separated state. Four possible scenarios are shown as four quadrants of an
enthalpy–entropy coordinate.
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.

Figure 2. Metastable molecular interactions and molecular structures in LLPS. (A) Typical molecular
interactions in MLOs. (B) Schematic of steric zippers in amyloids and kinked β sheets in IDPs. Side chains
in and out of interfaces are colored in red and green, respectively. Peptide backbones are in grey. Water
molecules (in blue circles) are drawn for illustrating dry (hydrophobic) and hydrous (hydrophilic) interfaces
of steric zippers and kinked β sheets, respectively.

Figure 3. MLOs are metastable biological assemblages associated with disease. (A) Metastable liquid droplets
can be changeable/interchangeable to other phase states. (B) The maturation process can be accelerated by
disease-associated changes.

Table 1. Structural parameters of kinked β sheets compared with a steric zipper.
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. Proteins Peptide motifs Sc Ab Structure formed Ref

FUS 37SYSGYS42 0.91 81 Kinked β sheets 74

54SYSSYGQS61 0.81 120
77STGGYG82 0.82 111

hnRNPA1 243GYNGFG248 0.86 120
nup98 116GFGNFGTS123 0.86 114
Amyloid-β 27NKGAII32 0.86 178 Steric zipper

Table 2. Metastability of fibrillogenic peptides of LCDs and amyloids.

Proteins Proteins Peptide motifs Metastability Melting temperature of fibrils Refs

hnRNP hnRNPA1 209GFGGNDNFG217 (hnRAC1) Yes 4–25 °C 17

246GFGNDGSNF254 (hnRAC2) 4–37 °C
260YNDFGNY266 (hnRAC3) 4–25 °C

hnRNPA2 227GFGDGYNGYG236 4–37 °C
270GYGGGYDNYGG280 4–37 °C

hnRNPDL 365YGGDQNY371 4–50 °C
hnRNPH 442SDFQSN447 Above 50 °C
hnRNPK 367SGYDYS372 Above 50 °C
hnRNPR 615GYNNDN620 Above 50 °C

FUS FUS 37SYSGYS42 (RAC1) 4–50 °C 55

54SYSSYG59 (RAC2) 4–20 °C
Amyloid-β Amyloid-β 16KLVFFA21 No No melting (up to 50 °C) 55
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