On a nonlinear transmission eigenvalue problem with a Neumann-Robin boundary condition

Luminita Barbu ${ }^{1}$, Andreea Burlacu ${ }^{1}$, and Gheorghe Morosanu ${ }^{2}$
${ }^{1}$ Ovidius University of Constanta
${ }^{2}$ Babes-Bolyai University

February 22, 2024

Abstract

Let $\$ \backslash$ Omega $\$$ be a bounded domain in $\$ \backslash \operatorname{mathbb}\{R\}^{\wedge} N, N \backslash$ geq $2, \$$ with smooth boundary $\$ \backslash$ Sigma $\$$ and let $\$ \backslash$ Omega_1 $\$$ be a subdomain of $\$ \backslash$ Omega $\$$ with smooth boundary $\$ \backslash$ Gamma, $\$$ such that $\$ \backslash$ overline $\{\backslash$ Omega _ $1 \backslash$ subset \backslash Omega $\$$. Denote $\$ \backslash$ Omega_2 $=\backslash$ Omega \backslash setminus \backslash overline $\{\backslash$ Omega \}_1. $\$$ Consider the transmission eigenvalue problem \backslash begin $\{$ equation* $\}$ $L^{\wedge}\{\backslash$ infty $\}\left(\backslash\right.$ Omega_i), ~ $\mathrm{i}=1,2$, \beta \backslash in $L^{\wedge}\{\backslash$ infty $\}(\backslash$ Sigma),$\$ \$ \backslash$ beta \backslash geq $0 \$$ a.e. on $\$ \backslash$ Sigma. $\$$ Under additional suitable assumptions on $\$ \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$, \zeta $\$$ we prove the existence of a sequence of eigenvalues $\$ \backslash \operatorname{big}\left(\backslash \operatorname{lambda_ n} \backslash \mathrm{big}\right) _n, \backslash \operatorname{lambda}-$ $\mathrm{n} \backslash$ rightarrow \backslash infty. $\$$ The proof is based on the Lusternik-Schnirelmann theory on $\$ \mathrm{C}^{\wedge} 1-\$$ manifolds.

ARTICLE TYPE

On a nonlinear transmission eigenvalue problem with a Neumann-Robin boundary condition ${ }^{\dagger}$

Luminiţa Barbu*1 | Andreea Burlacu ${ }^{1}$ | Gheorghe Moroşanu ${ }^{2,3}$

${ }^{1}$ Faculty of Mathematics and Informatics, Ovidius University, Constanţa, Romania
${ }^{2}$ Academy of Romanian Scientists,, Bucharest, Romania
${ }^{3}$ Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Correspondence

*Luminiţa Barbu, 124 Mamaia Blvd, 900527
Constanţa, Romania. Email:
lbarbu@univ-ovidius.ro

Summary

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, with smooth boundary Σ and let Ω_{1} be a subdomain of Ω with smooth boundary Γ, such that $\bar{\Omega}_{1} \subset \Omega$. Denote $\Omega_{2}=\Omega \backslash \bar{\Omega}_{1}$. Consider the transmission eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{1}+\gamma_{1}(x)\left|u_{1}\right|^{r-2} u_{1}=\lambda\left|u_{1}\right|^{p-2} u_{1} \text { in } \Omega_{1} \\
-\Delta_{q} u_{2}+\gamma_{2}(x)\left|u_{2}\right|^{s-2} u_{2}=\lambda\left|u_{2}\right|^{q-2} u_{2} \text { in } \Omega_{2} \\
u_{1}=u_{2}, \quad \frac{\partial u_{1}}{\partial v_{p}}=\frac{\partial u_{2}}{\partial \nu_{q}} \text { on } \Gamma \\
\frac{\partial u_{2}}{\partial v_{q}}+\beta(x)\left|u_{2}\right|^{\zeta-2} u_{2}=0 \text { on } \Sigma
\end{array}\right.
$$

where λ is a real parameter, $p, q, r, s, \zeta \in(1, \infty)$, and $\gamma_{i} \in L^{\infty}\left(\Omega_{i}\right), i=1,2, \beta \in$ $L^{\infty}(\Sigma), \beta \geq 0$ a.e. on Σ. Under additional suitable assumptions on p, q, r, s, ζ we prove the existence of a sequence of eigenvalues $\left(\lambda_{n}\right)_{n}, \lambda_{n} \rightarrow \infty$. The proof is based on the Lusternik-Schnirelmann theory on C^{1} - manifolds.

KEYWORDS:

Nonlinear transmission problem, p-Laplacian, Sobolev spaces, Krasnosel'skiĭ genus, Lus-ternik-Schnirelmann theory, C^{1}-manifold

1 | INTRODUCTION

Consider a bounded domain $\Omega \subset \mathbb{R}^{N}, N \geq 2$, with smooth boundary Σ, and a subdomain Ω_{1} with smooth boundary Γ, such that $\bar{\Omega}_{1} \subset \Omega$, as in Fig. 1 below, where $\Omega_{2}=\Omega \backslash \bar{\Omega}_{1}$.

Consider the following transmission eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{1}+\gamma_{1}(x)\left|u_{1}\right|^{r-2} u_{1}=\lambda\left|u_{1}\right|^{p-2} u_{1} \text { in } \Omega_{1} \tag{1}\\
-\Delta_{q} u_{2}+\gamma_{2}(x)\left|u_{2}\right|^{s-2} u_{2}=\lambda\left|u_{2}\right|^{q-2} u_{2} \text { in } \Omega_{2} \\
u_{1}=u_{2}, \frac{\partial u_{1}}{\partial \nu_{p}}=\frac{\partial u_{2}}{\partial v_{q}} \text { on } \Gamma, \\
\frac{\partial u_{2}}{\partial v_{q}}+\beta(x)\left|u_{2}\right|^{\zeta-2} u_{2}=0 \text { on } \Sigma
\end{array}\right.
$$

where λ is a real parameter.

[^0]

FIGURE 1

As usual, for $\theta \in(1, \infty)$, we denote by Δ_{θ} the θ-Laplace operator, i.e., $\Delta_{\theta} u=\operatorname{div}\left(|\nabla u|^{\theta-2} \nabla u\right)$.
In the second transmission condition on $\Gamma, \partial / \partial v_{\theta}, \theta \in\{p, q\}$, denote the conormal derivatives corresponding to the differential operators of the problem, i.e.,

$$
\frac{\partial v}{\partial v_{\theta}}:=|\nabla v|^{\theta-2} \nabla v \cdot v_{\theta}
$$

with v_{p} being the outward unit normal on the boundary Γ of Ω_{1} pointing outward and $v_{q}=-v_{p}$.
Throughout the paper we will assume that the following conditions are satisfied
(h) ${ }_{1} p, q, r, s, \zeta \in(1, \infty), \zeta<q_{*}$,

$$
\begin{align*}
& r<p\left(1+\frac{p}{N}\right) \text { in case }(r>p \text { and } p<N) \\
& s<q\left(1+\frac{q}{N}\right) \text { in case }(s>q \text { and } q<N) \tag{2}
\end{align*}
$$

(here q_{*} denotes the critical Sobolev exponent for the boundary trace embedding defined in Remark 1 below);
$(h)_{2} \quad \gamma_{i} \in L^{\infty}\left(\Omega_{i}\right), i=1,2, \beta \in L^{\infty}(\Sigma), \beta \geq 0$ a.e. on Σ.

Since function β in $\left(h_{2}\right)$ is allowed to be the null function, we call the boundary condition $(1)_{4}$ a Neumann-Robin boundary condition.

Note that a similar transmission eigenvalue problem was considered in ${ }^{2}$, but here we have a different division of Ω into subdomains Ω_{1} and Ω_{2}, as well as different boundary conditions.

Remark 1. Recall that, given a smooth domain $D \subset \mathbb{R}^{N}$ and $\theta>1$, the critical Sobolev exponent θ^{*} is defined by $\theta^{*}:=$ $\frac{\theta N}{N-\theta}$ if $1<\theta<N$ and $\theta^{*}:=\infty$ otherwise. If $\theta<N$, we have $W^{1, \theta}(\Omega) \hookrightarrow L^{\eta}(\Omega)$ continuously if $1 \leq \eta \leq \theta^{*}$ and compactly if $1 \leq \eta<\theta^{*}, W^{1, N}(\Omega) \hookrightarrow L^{\eta}(\Omega)$ compactly if $1 \leq \eta<\infty$ and $W^{1, \theta}(\Omega) \hookrightarrow C(\bar{\Omega})$ compactly if $\theta>N$ (see, for example, ${ }^{4}$ Section $9.3,[5]$ Theorem 3.9.52).

Recall also that there is a compact boundary trace embedding $W^{1, \theta}(\Omega) \hookrightarrow L^{\eta}(\partial D)$ for every $\eta \in\left[1, \theta_{*}\right)$ and similarly as before in the other ranges of η. Here we denote by $\theta_{*}:=\frac{\theta(N-1)}{N-\theta}$ if $\theta<N$ and $\theta_{*}:=\infty$ otherwise (see, for example, ${ }^{11}$).

We assume in what follows that $p \leq q$. This does not restrict the generality, as can be seen by checking the proofs of our main result below (Theorem 1).

Definition 1. A weak solution of problem (1) is a pair $u=\left(u_{1}, u_{2}\right) \in W^{1, p}\left(\Omega_{1}\right) \times W^{1, q}\left(\Omega_{2}\right)$, such that u_{i} satisfies the equation $\left(1_{i}\right.$ on Ω_{i} in the sense of distributions, $i=1,2$, and u_{1}, u_{2} satisfy the boundary and transmission conditions $(1)_{3,4}$ in the sense of traces.

Obviously, any solution $u=\left(u_{1}, u_{2}\right)$ of problem (1) can be identified with an element u of the space

$$
W:=\left\{u \in W^{1, p}(\Omega):\left.u\right|_{\Omega_{2}} \in W^{1, q}\left(\Omega_{2}\right)\right\}
$$

where $\left.u\right|_{\Omega_{i}}=u_{i}, i=1,2$.
For $1<\theta \leq \infty$, the Lebesgue norms of the spaces $L^{\theta}\left(\Omega_{i}\right)$ and $L^{\theta}(\Sigma)$ will be denoted by $\|\cdot\|_{i \theta}, i=1,2$, and $\|\cdot\|_{\partial \theta}$, respectively.

We endow W with the norm

$$
\begin{equation*}
\|u\|:=\left\|u_{1}\right\|_{1}+\left\|u_{2}\right\|_{2} \quad \forall u=\left(u_{1}, u_{2}\right) \in W \tag{3}
\end{equation*}
$$

where $\|\cdot\|_{i}, i=1,2$, are defined by

$$
\begin{equation*}
\left\|u_{1}\right\|_{1}:=\left\|\nabla u_{1}\right\|_{1 p}+\left\|u_{1}\right\|_{1 p},\left\|u_{2}\right\|_{2}:=\left\|\nabla u_{2}\right\|_{2 q}+\left\|u_{2}\right\|_{2 q} . \tag{4}
\end{equation*}
$$

Remark 2. The space W defined before can be identified with the space

$$
\begin{equation*}
\widetilde{W}:=\left\{\widetilde{u}=\left(u_{1}, u_{2}\right) \in W^{1, p}\left(\Omega_{1}\right) \times W^{1, q}\left(\Omega_{2}\right) ; u_{1}=u_{2} \text { on } \Gamma\right\}, \tag{5}
\end{equation*}
$$

which shows that W is a reflexive Banach space, as \widetilde{W} is a closed subspace of the reflexive product $W^{1, p}\left(\Omega_{1}\right) \times W^{1, q}\left(\Omega_{2}\right)$ with reflexive factors ($\mathrm{see}^{2]}$ Remark 1.1).

Definition 2. The real number λ is said to be an eigenvalue of the problem (1) if (1) has a weak solution $\widetilde{u}_{\lambda}=\left(u_{1 \lambda}, u_{2 \lambda}\right) \in$ $\widetilde{W} \backslash\{(0,0)\}$. In this case \widetilde{u}_{λ} is called an eigenfunction of the problem (1) corresponding to the eigenvalue λ, and the pair $\left(\lambda, \widetilde{u}_{\lambda}\right)$ is called an eigenpair of the problem (1).
The next result gives a characterization of the eigenvalues of problem (1).
Proposition 1. The real number λ is an eigenvalue of the problem (1) if and only if there exists $\widetilde{u}_{\lambda}=\left(u_{1 \lambda}, u_{2 \lambda}\right) \in \widetilde{W} \backslash\{(0,0)\}$, such that for all $\left(v_{1}, v_{2}\right) \in \widetilde{W}$

$$
\begin{align*}
& \int_{\Omega_{1}}\left|\nabla u_{1 \lambda}\right|^{p-2} \nabla u_{1 \lambda} \cdot \nabla v_{1} d x+\int_{\Omega_{2}}\left|\nabla u_{2 \lambda}\right|^{q-2} \nabla u_{2 \lambda} \cdot \nabla v_{2} d x \\
& \quad+\int_{\Omega_{1}} \gamma_{1}\left|u_{1 \lambda}\right|^{r-2} u_{1 \lambda} v_{1} d x+\int_{\Omega_{2}} \gamma_{2}\left|u_{2 \lambda}\right|^{s-2} u_{2 \lambda} v_{2} d x+\int_{\Sigma} \beta\left|u_{2 \lambda}\right|^{\xi-2} u_{2 \lambda} v_{2} d \sigma \tag{6}\\
& \quad=\lambda\left(\int_{\Omega_{1}}\left|u_{1 \lambda}\right|^{p-2} u_{1 \lambda} v_{1} d x+\int_{\Omega_{2}}\left|u_{2 \lambda}\right|^{q-2} u_{2 \lambda} v_{2} d x\right) .
\end{align*}
$$

The proof of this result is easy. It can be achieved by using arguments similar to those from the proof of Proposition 1.1 in Barbu-Moroşanu-Pintea ${ }^{[2]}$, so we omit it.

For $\rho>0$, consider the subset \mathcal{M}_{ρ} of \widetilde{W} defined by

$$
\begin{equation*}
\mathcal{M}_{\rho}:=\left\{\widetilde{u}=\left(u_{1}, u_{2}\right) \in \widetilde{W} ; \frac{1}{p} \int_{\Omega_{1}}\left|u_{1}\right|^{p} d x+\frac{1}{q} \int_{\Omega_{2}}\left|u_{2}\right|^{q} d x=\rho\right\} \tag{7}
\end{equation*}
$$

It is easy to verify that \mathcal{M}_{ρ} has an infinite number of nonzero elements.
Our goal is to use the Lusternik-Schnirelmann theory on C^{1}-manifolds to investigate the eigenvalues of problem (1). Specifically, we shall prove the following result.

Theorem 1. Assume that $\left(h_{1}\right)$ and $\left(h_{2}\right)$ are fulfilled. Then, for any $\rho>0$, there is a sequence of eigenpairs $\left(\lambda_{n}, \pm\left(u_{1 n}, u_{2 n}\right)\right)_{n}$ of problem (1], with $\left(\left(u_{1 n}, u_{2 n}\right)\right)_{n} \subset \mathcal{M}_{\rho}$ and $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Transmission problems arise in various applications in fluid mechanics, physics, chemistry, biology, etc. See, e.g., Fife ${ }^{6}$, Nicaise ${ }^{[14]}$, Pflüger ${ }^{[15]}$. So, it is important to investigate such kind of problems. Let us recall, for instance, that Figueiredo and Montenegro ${ }^{7}$ proved that the following elliptic transmission problem in \mathbb{R}^{2}

$$
\left\{\begin{array}{l}
-\Delta u_{1}=f\left(x, u_{1}\right) \text { in } \Omega_{1} \\
-\Delta u_{2}=g\left(x, u_{2}\right) \text { in } \Omega_{2}, \\
u_{1}=u_{2}, \quad \frac{\partial u_{1}}{\partial \nu_{1}}=\frac{\partial u_{2}}{\partial \nu_{2}} \text { on } \Gamma \\
u_{2}=0 \text { on } \Sigma
\end{array}\right.
$$

with exponential nonlinearities of critical type, has a nontrivial solution. Also, the transmission problem,

$$
\left\{\begin{array}{l}
-\Delta u_{1}=\lambda f\left(x, u_{1}\right) \text { in } \Omega_{1}, \\
-\Delta u_{2}=\left|u_{2}\right|^{2^{*}-2} u_{2} \text { in } \Omega_{2}, \\
u_{1}=u_{2}, \frac{\partial u_{1}}{\partial \nu_{1}}=\frac{\partial u_{2}}{\partial v_{2}} \text { on } \Gamma \\
u_{2}=0 \text { on } \Sigma
\end{array}\right.
$$

with critical growth, was studied by the same authors in ${ }^{8 /}$. Other existence results for nonlinear transmission problems, approached by variational arguments, are treated for instance in 9 [11]12|15, and the references therein.

The nonlinear transmission eigenvalue problem (1) we investigate here is closely related to the problems mentioned above.

2 | PRELIMINARIES

We start this section by recalling some basic notions on the Krasnosel'skiü's genus which will be used in the proof of our main result (Theorem 1).

Let X be a real Banach space. We denote by X^{*} the dual of X and by $\langle\cdot, \cdot\rangle$ the duality pairing between X^{*} and X. Consider $\mathcal{E} \subset X$ the set of all nonempty closed and symmetric subsets of $X \backslash\{0\}$. We say that the set $A \in \mathcal{E}$ has genus m and we denote $\gamma(A)=m$ if m is the smallest integer with the property that there exists an odd continuous map from A to $\mathbb{R}^{m} \backslash\{0\}$. If $A=\emptyset$ we have $\gamma(A)=0$ and if there is no such a finite m we set $\gamma(A)=\infty$.

In the following lemma we will recall only two properties of the genus that will be used in this paper. More information on this subject may be found in the references ${ }^{[10,}, 17,18,20$.

Lemma 1. 17 Lemma 1.1, Theorm 1.2
Let $A, B \in \mathcal{E}$.
(1) If $A \subset B$, then $\gamma(A) \leq \gamma(B)$;
(2) Let D be a symmetric and bounded neighbourhood of the origin in \mathbb{R}^{N} and let $A \in \mathcal{E}$ be homeomorphic to ∂D by an odd homeomorphism. Then $\gamma(A)=N$. In particular, the unit sphere $S \subset \mathbb{R}^{N}$ is a set of genus N.

In order to use variational methods, let us also recall some results related to the Palais-Smale compactness condition. First, we have the following definition (see, for example, [19] pg. 123, 22] Definition 44.13).

Definition 3. Let \mathbf{M} be a given subset of a real Banach space X and let $F: D(F) \subset X \rightarrow \mathbb{R}$ be a functional that has a tangential mapping $F_{\mathbf{M}}^{\prime}$ with respect to \mathbf{M} at each point $u \in \mathbf{M}$. Functional F satisfies the local Palais-Smale condition $(P S)_{c}$ with respect to \mathbf{M} if and only if the condition

$$
\left\{\begin{array}{l}
\text { each sequence }\left(u_{n}\right)_{n} \text { in } \mathbf{M} \text { such that } \\
\left\|F_{\mathbf{M}}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0 \text { and } F\left(u_{n}\right) \rightarrow c \text { as } n \rightarrow \infty \\
\text { has a convergent subsequence }
\end{array}\right.
$$

holds for a fixed $c \in \mathbb{R}$.
The above condition is a local version of the following Palais-Smale compactness condition:

$$
\left\{\begin{array}{l}
\text { each sequence }\left(u_{n}\right)_{n} \text { in } \mathbf{M} \text { such that } \tag{PS}\\
\left\|F_{\mathbf{M}}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0 \text { and }\left(F\left(u_{n}\right)\right)_{n} \text { is bounded } \\
\text { has a convergent subsequence. }
\end{array}\right.
$$

For the definition of the tangential mapping $F_{\mathbf{M}}^{\prime}$ (or the differential of F with respect to \mathbf{M}) see, for example, [22] Definition 43.18 .
In order to solve the eigenvalue problem (1), the constrained variational method can be applied. We will use the following Lusternik-Schnirelmann principle on C^{1}-manifolds (Szulkin ${ }^{19}$ Corollary 4.1).

Theorem 2. Suppose that \mathbf{M} is a closed symmetric C^{1}-submanifold of a real Banach space X and $0 \notin \mathbf{M}$. Suppose also that $F \in C^{1}(\mathbf{M}, \mathbb{R})$ is even and bounded below. Define

$$
c_{j}=\inf _{A \in \Gamma_{j}} \sup _{x \in A} F(x),
$$

where $\Gamma_{j}=\{A \subset \mathbf{M}: A \in \mathcal{E}, \gamma(A) \geq j$, and A is compact $\}$. If $\Gamma_{k} \neq \emptyset$ for some $k \geq 1$ and if f satisfies $(P S)_{c}$ for all $c=c_{j}, j=1, \cdots, k$, then F has at least k distinct pairs of critical points.

Next, we are going to exploit some properties of the set \mathcal{M}_{ρ} (defined by (7)), which is evidently symmetric with respect to the origin. Let us first introduce some notations.

$$
\begin{align*}
K_{p q}\left(u_{1}, u_{2}\right) & :=\frac{1}{p} \int_{\Omega_{1}}\left|\nabla u_{1}\right|^{p} d x+\frac{1}{q} \int_{\Omega_{2}}\left|\nabla u_{2}\right|^{q} d x \\
k_{r s \zeta}\left(u_{1}, u_{2}\right) & :=\frac{1}{r} \int_{\Omega_{1}} \gamma_{1}\left|u_{1}\right|^{r} d x+\frac{1}{s} \int_{\Omega_{2}} \gamma_{2}\left|u_{2}\right|^{s} d x+\frac{1}{\zeta} \int_{\Sigma}\left|u_{2}\right|^{\zeta} d \sigma \tag{8}\\
j_{p q}\left(u_{1}, u_{2}\right) & :=\frac{1}{p} \int_{\Omega_{1}}\left|u_{1}\right|^{p} d x+\frac{1}{q} \int_{\Omega_{2}}\left|u_{2}\right|^{q} d x \forall\left(u, u_{2}\right) \in \widetilde{W} .
\end{align*}
$$

Since for all $\widetilde{u}=\left(u_{1}, u_{2}\right) \in \mathcal{M}_{\rho}$ we have $\left\langle j_{p q}^{\prime}(\widetilde{u}), \widetilde{u}\right\rangle \neq 0, \rho$ is a regular value of the C^{1} functional $j_{p q}$. Therefore, $\mathcal{M}_{\rho}=j_{p q}^{-1}(\rho)$ is a C^{1}-manifold of codimension 1 in \widetilde{W} (see, for example, ${ }^{[13}$ Theorem 2.2.7) with tangent space, in a point $\widetilde{u}=\left(u_{1}, u_{2}\right) \in \mathcal{M}_{\rho}$, given by $T_{\widetilde{u}} \mathcal{M}_{\rho}=\operatorname{ker} j_{p q}^{\prime}(\widetilde{u})$.

Define the C^{1} functional,

$$
\begin{equation*}
\mathcal{J}: \widetilde{W} \rightarrow \mathbb{R}, \mathcal{J}(\widetilde{u})=K_{p q}\left(u_{1}, u_{2}\right)+k_{r s \zeta}\left(u_{1}, u_{2}\right) \forall \widetilde{u}=\left(u_{1}, u_{2}\right) \in \widetilde{W} \tag{9}
\end{equation*}
$$

Obviously, $\mathcal{J} \in C^{1}\left(\mathcal{M}_{\rho}, \mathbb{R}\right)$. We denote by $\mathcal{J}_{\mathcal{M}_{\rho}}$ the restriction of the functional \mathcal{J} on \mathcal{M}_{ρ} and by $\mathcal{J}_{\mathcal{M}_{\rho}}^{\prime}(\widetilde{u})$ the differential of \mathcal{J} at $\widetilde{u} \in \mathcal{M}_{\rho}$ with respect to \mathcal{M}_{ρ}, i.e. the restriction of $\mathcal{J}^{\prime}(\widetilde{u})$ on $T_{\widetilde{u}} \mathcal{M}_{\rho}$.
Remark 3. We are going to compute $\mathcal{J}_{\mathcal{M}_{\rho}}^{\prime}(\widetilde{u}), \widetilde{u} \in \mathcal{M}_{\rho}$. Obviously, $\widetilde{u} \notin T_{\widetilde{u}} \mathcal{M}_{\rho}$, thus $W=T_{\widetilde{u}} \mathcal{M}_{\rho} \oplus\{\alpha \widetilde{u} ; \alpha \in \mathbb{R}\}$. Let P : $\widetilde{W} \rightarrow T_{\widetilde{u}} \mathcal{M}_{\rho}$ be the projection operator. Then, for every $\widetilde{v} \in \widetilde{W}$, there exists a unique $\alpha \in \mathbb{R}$ (which depends on \widetilde{v}) such that $\widetilde{v}=P \widetilde{v}+\alpha \widetilde{u}$. In particular, as $\left\langle j_{p q}^{\prime}(\widetilde{u}), P \widetilde{v}\right\rangle=0$, we obtain that $\alpha=\left\langle j_{p q}^{\prime}(\widetilde{u}), \widetilde{v}\right\rangle /\left\langle j_{p q}^{\prime}(\widetilde{u}), \widetilde{u}\right\rangle$. Therefore, if $\widetilde{v} \in T_{\widetilde{u}} \mathcal{M}$

$$
\begin{aligned}
\left\langle\mathcal{J}_{\mathcal{M}_{\rho}}^{\prime}(\widetilde{u}), \widetilde{v}\right\rangle= & \left\langle\mathcal{J}^{\prime}(\widetilde{u}), P \widetilde{v}\right\rangle=\left\langle\mathcal{J}^{\prime}(\widetilde{u}), \widetilde{v}\right\rangle-\frac{\left\langle j_{p q}^{\prime}(\widetilde{u}), \widetilde{v}\right\rangle}{\left\langle j_{p q}^{\prime}(\widetilde{u}), \widetilde{u}\right\rangle}\left\langle\mathcal{J}^{\prime}(\widetilde{u}), \widetilde{u}\right\rangle \\
& =\left\langle\mathcal{J}^{\prime}(\widetilde{u})-\frac{\left\langle\mathcal{J}^{\prime}(\widetilde{u}), \widetilde{u}\right\rangle}{\left\langle j_{p q}^{\prime}(\widetilde{u}), \widetilde{u}\right\rangle} j_{p q}^{\prime}(\widetilde{u}), \widetilde{v}\right\rangle
\end{aligned}
$$

which implies that

$$
\mathcal{J}_{\mathcal{M}_{\rho}}^{\prime}(\widetilde{u})=\mathcal{J}^{\prime}(\widetilde{u})-\lambda(\widetilde{u}) j_{p q}^{\prime}(\widetilde{u}), \lambda(\widetilde{u})=\frac{\left\langle\mathcal{J}^{\prime}(\widetilde{u}), \widetilde{u}\right\rangle}{\left\langle j_{p q}^{\prime}(\widetilde{u}), \widetilde{u}\right\rangle}
$$

Moreover, $\widetilde{u} \in \mathcal{M}_{\rho}$ is a critical point of $\mathcal{J}_{\mathcal{M}_{\rho}}$ if and only if $\mathcal{J}^{\prime}(\widetilde{u})=\lambda j_{p q}^{\prime}(\widetilde{u})$ for some $\lambda \in \mathbb{R}$. Thus, there is a one-to-one correspondence between critical points of $\mathcal{J}_{\mathcal{M}_{\rho}}$ and the weak solutions of problem (1) (see, for example ${ }^{[22]}$ Proposition 43.21).

The following lemma shows, essentially, that $\gamma\left(\mathcal{M}_{\rho}\right)=\infty$.
Lemma 2. For any positive integer k there exists a compact symmetric subset $K \subset \mathcal{M}_{\rho}$ such that $\gamma(K)=k$.
Proof. Let $\phi_{1}, \phi_{2}, \cdots, \phi_{k} \in C_{0}^{\infty}(\Omega)$ be nonnegative functions with disjoint compact supports, supp $\phi_{j} \subset \Omega_{1}, \forall j=1,2, \cdots, k$, such that $p^{-1} \int_{\Omega 1} \phi_{j}^{p} d x=\rho \forall j=1,2, \cdots, k$. Obviously, $\left\{\phi_{1}, \phi_{2}, \cdots, \phi_{k}\right\} \subset \mathcal{M}_{\rho}$ is a linearly independent set, thus $V_{k}:=$ Span $\left\{\phi_{1}, \phi_{2}, \cdots, \phi_{k}\right\}$ is a k dimensional space. It is clear that $\mathcal{M}_{\rho} \cap V_{k}$ is the sphere of radius $(p \rho)^{1 / p}$ in V_{k} with respect to the L^{p}-norm. In particular, $\gamma\left(\mathcal{M}_{\rho} \cap V_{k}\right)=k$ and the proof is complete (see Lemma 1 (2)).

Remark 4. From Lemma 2 we see that the manifold \mathcal{M}_{ρ} contains compact subsets of arbitrarily large genus, i. e., $\Gamma_{k} \neq \emptyset$ for any $k \geq 1$ (the set Γ_{k} was defined in Theorem 2).

For the proof of the main result (Theorem 11, the following lemma will play an important role in computations (see ${ }^{16}$ Lemma 3.1).
Lemma 3. Let $D \subset \mathbb{R}^{N}$ be a smooth bounded domain. Assume that

$$
\begin{equation*}
\theta \in(1, N), \eta \in\left(\theta, \theta^{*}\right), \xi \in\left(0, N\left(1-\frac{\eta}{\theta^{*}}\right)\right) \tag{10}
\end{equation*}
$$

Then there exists a positive constant C such that, for every $u \in W^{1, \theta}(D)$

$$
\begin{equation*}
\|u\|_{L^{\eta}(D)}^{\eta} \leq C\left(\|\nabla u\|_{L^{\theta}(D)}^{\theta}+\|u\|_{L^{\theta}(D)}^{\theta}\right)^{(\eta-\xi) / \theta}\|u\|_{L^{\theta}(D)}^{\xi} \tag{11}
\end{equation*}
$$

Remark 5. From $\xi<N\left(1-\frac{\eta}{\theta^{*}}\right)$ we have $\xi<\eta$.
Inequality in is still valid in the case $\theta \geq N, \eta>\theta$, with $1<\xi<\eta$.

3 | PROOF OF THEOREM 1

Throughout this section we assume that $\left(h_{1}\right)$ and $\left(h_{2}\right)$ are fulfilled and will be used without mentioning them in the statements below.

The proof of Theorem 1 will follow as a consequence of several intermediate results.
Lemma 4. The functional $\mathcal{J}_{\mathcal{M}_{\rho}}$ is coercive, i.e.,

$$
\lim _{\left\|\left(u_{1}, u_{2}\right)\right\| \rightarrow \infty,\left(u_{1}, u_{2}\right) \in \mathcal{M}_{\rho}} \mathcal{J}\left(u_{1}, u_{2}\right)=\infty
$$

Proof. Arguing by contradiction, we assume that there exist a positive constant C and a sequence $\left(\widetilde{u}_{n}\right)_{n}=\left(u_{1 n}, u_{2 n}\right)_{n} \subset \mathcal{M}_{\rho}$ such that $\left\|\widetilde{u}_{n}\right\| \rightarrow \infty$ in \widetilde{W} as $n \rightarrow \infty$ and

$$
\begin{equation*}
\mathcal{J}_{\lambda}\left(\widetilde{u}_{n}\right) \leq C \forall n \geq 1 \tag{12}
\end{equation*}
$$

It is obvious that

$$
\begin{align*}
\mathcal{J}\left(u_{1 n}, u_{2 n}\right) & \geq \frac{1}{p}\left\|\nabla u_{1 n}\right\|_{1 p}^{p}+\frac{1}{q}\left\|\nabla u_{2 n}\right\|_{2 q}^{q} \tag{13}\\
& -\frac{1}{r}\left\|\gamma_{1}\right\|_{1 \infty}\left\|u_{1 n}\right\|_{1 r}^{r}-\frac{1}{s}\left\|\gamma_{2}\right\|_{2 \infty}\left\|u_{2 n}\right\|_{2 s}^{s} \quad \forall n \geq 1
\end{align*}
$$

For $n \geq 1$, denote

$$
\begin{align*}
& T_{1 n}=\frac{1}{p}\left\|\nabla u_{1 n}\right\|_{1 p}^{p}-\frac{1}{r}\left\|\gamma_{1}\right\|_{1 \infty}\left\|u_{1 n}\right\|_{1 r}^{r} \\
& T_{2 n}=\frac{1}{q}\left\|\nabla u_{2 n}\right\|_{2 q}^{q}-\frac{1}{s}\left\|\gamma_{2}\right\|_{2 \infty}\left\|u_{2 n}\right\|_{2 s}^{s} \tag{14}
\end{align*}
$$

As $\left\|\widetilde{u}_{n}\right\| \rightarrow \infty$, taking into account the fact that $\widetilde{u}_{n} \in \mathcal{M}_{\rho}$, we derive that $\left\|\nabla u_{1 n}\right\|_{1 p}+\left\|\nabla u_{2 n}\right\|_{2 q} \rightarrow \infty$. Therefore, without loss of generality, we can assume that, up to a subsequence, $\left\|\nabla u_{1 n}\right\|_{1 p} \rightarrow \infty$.

Now, if $r \leq p$ we have that $L^{r}\left(\Omega_{1}\right)$ is continuously embedded into $L^{p}\left(\Omega_{1}\right)$. Thus, there exists a positive constant C independent of n such that

$$
\begin{equation*}
T_{1 n} \geq \frac{1}{p}\left\|\nabla u_{1 n}\right\|_{1 p}^{p}-C\left\|\gamma_{1}\right\|_{1 \infty} \forall n \geq 1 \tag{15}
\end{equation*}
$$

On the other hand, if $r>p$ and $p<N$, we make use of an argument in Figueiredo-Siciliano ${ }^{99}$ lemma 2.2. Thus, from the inequality $r<p\left(1+\frac{p}{N}\right)$ (see assumptions $\left(h_{2}\right)$) we obtain that $r<p_{*}$ and $0<r-p<N\left(1-r / p_{*}\right)$, therefore there exists ξ_{1} such that

$$
\begin{equation*}
r-p<\xi_{1}<N\left(1-\frac{r}{p_{*}}\right) \tag{16}
\end{equation*}
$$

Now, for such a ξ_{1}, using Lemma 3 with $D=\Omega_{1}, \theta=p, \eta=r$ and $u=u_{1 n}$, we obtain that there exists a positive constant C_{1} (independent of n) such that

$$
\begin{align*}
\left\|u_{1 n}\right\|_{1 r}^{r} \leq C_{1}\left(\left\|\nabla u_{1 n}\right\|_{1 p}^{p}\right. & \left.+\left\|u_{1 n}\right\|_{1 p}^{p}\right)^{\left(r-\xi_{1}\right) / p}\left\|u_{1 n}\right\|_{1 p}^{\xi_{1}} \\
& \leq C_{1}\left(\left\|\nabla u_{1 n}\right\|_{1 p}^{p}+p \rho\right)^{\left(r-\xi_{1}\right) / p}(p \rho)^{\xi_{1} / p} \tag{17}
\end{align*}
$$

Taking into account $(14)_{1}$ and (17) we have, for all $n \geq 1$,

$$
\begin{equation*}
T_{1 n} \geq \frac{1}{p}\left\|\nabla u_{1 n}\right\|_{1 p}^{p}-\frac{C_{1}}{r}\left\|\gamma_{1}\right\|_{1 \infty}\left(\left\|\nabla u_{1 n}\right\|_{1 p}^{p}+p \rho\right)^{\left(r-\xi_{1}\right) / p}(p \rho)^{\xi_{1} / p} \tag{18}
\end{equation*}
$$

Finally, if $r>p$ and $p \geq N$, making use of Remark 5we can choose ξ_{1} such that $r-p<\xi_{1}<r$. A similar argument to the one in the former case implies that (18) is still satisfied. Summing up, as $\left\|\nabla u_{1 n}\right\|_{1 p} \rightarrow \infty$ and $p>r-\xi_{1}$ if $r \geq p$, we obtain that $T_{1 n} \rightarrow \infty$ (see (15) and (18)).

Obviously, if $q<N$, then $T_{2 n}$ satisfies an inequality similar to 15 ; in the contrary case, $T_{2 n}$ will satisfy an inequality similar to (18). It follows that $T_{1 n}+T_{2 n} \rightarrow \infty$.

Summing up, (13) implies that $\mathcal{J}\left(u_{1 n}, u_{2 n}\right) \rightarrow \infty$ which contradicts 12 . This contradiction shows that \mathcal{J} is coercive on \mathcal{M}_{ρ} and the proof is complete.

Obviously, the functional \mathcal{J} is even and since it is coercive on \mathcal{M}_{ρ}, it is also bounded below on \mathcal{M}_{ρ}. Thus, we can exploit the symmetry property in order to get multiplicity results for the critical points of $\mathcal{J}_{\mathcal{M}_{\rho}}$.
Remark 6. From Lemma 4 and Remark 1 . it is easy to see that for every sequence $\left(\widetilde{u}_{n}\right)_{n} \subset \mathcal{M}_{\rho}, \widetilde{u}_{n}=\left(u_{1 n}, u_{2 n}\right)$ such that $\left(\mathcal{J}\left(\widetilde{u}_{n}\right)\right)_{n}$ is bounded (thus, from Lemma $4 .\left(\widetilde{u}_{n}\right)_{n}$ is bounded) the sequences

$$
\begin{align*}
& \left(\int_{\Omega_{1}}\left|\nabla u_{1 n}\right|^{p} d x\right)_{n},\left(\int_{\Omega_{2}}\left|\nabla u_{2 n}\right|^{q} d x\right)_{n} \\
& \left(\int_{\Omega_{1}} \gamma_{1}\left|u_{1 n}\right|^{r} d x\right)_{n},\left(\int_{\Omega_{2}} \gamma_{2}\left|u_{2 n}\right|^{s} d x\right)_{n},\left(\int_{\Sigma} \beta\left|u_{2 n}\right|^{\zeta} d \sigma\right)_{n} \tag{19}
\end{align*}
$$

are bounded.
For the proof of the main result, the following lemma will play an important role in computations.
Lemma 5. Let $\mathcal{K}:=K_{p q}^{\prime}: \widetilde{W}^{*} \rightarrow \mathbb{R}$ be the derivative of $K_{p q}$ defined in $(8)_{1}$. Then, for any $\widetilde{u}=\left(u_{1}, u_{2}\right), \widetilde{v}=\left(v_{1}, v_{2}\right) \in \widetilde{W}$ one has

$$
\begin{align*}
\langle\mathcal{K}(\widetilde{u}) & -\mathcal{K}(\widetilde{v}), u-v\rangle \\
& \geq\left(\left\|\nabla u_{1}\right\|_{1 p}^{p-1}-\left\|\nabla v_{1}\right\|_{1 p}^{p-1}\right)\left(\left\|\nabla u_{1}\right\|_{1 p}-\left\|\nabla v_{1}\right\|_{1 p}\right) \tag{20}\\
& +\left(\left\|\nabla u_{2}\right\|_{2 q}^{q-1}-\left\|\nabla v_{2}\right\|_{2 q}^{q-1}\right)\left(\left\|\nabla u_{2}\right\|_{2 q}-\left\|\nabla v_{2}\right\|_{2 q}\right) \geq 0
\end{align*}
$$

Proof. It is obvious that

$$
\begin{align*}
\langle\mathcal{K}(\widetilde{u}) & -\mathcal{K}(\widetilde{v}), u-v\rangle \\
& =\left\|\nabla u_{1}\right\|_{1 p}^{p}+\left\|\nabla v_{1}\right\|_{1 p}^{p}+\left\|\nabla u_{2}\right\|_{2 q}^{q}+\left\|\nabla v_{2}\right\|_{2 q}^{q} \tag{21}\\
& -\left(T_{1}+T_{2}\right)-\left(T_{3}+T_{4}\right),
\end{align*}
$$

where we have denoted

$$
T_{1}:=\int_{\Omega_{1}}\left|\nabla u_{1}\right|^{p-2} \nabla u_{1} \cdot \nabla v_{1} d x, T_{2}:=\int_{\Omega_{1}}\left|\nabla v_{1}\right|^{p-2} \nabla v_{1} \cdot \nabla u_{1} d x
$$

T_{3}, T_{4} are similarly defined, by replacing p, Ω_{1} with q, Ω_{2}, and u_{1}, v_{1} with u_{2}, v_{2}.
We have, by the Hölder inequality

$$
\begin{equation*}
T_{1} \leq\left(\int_{\Omega_{1}}\left|\nabla u_{1}\right|^{p} d x\right)^{\frac{p-1}{p}}\left(\int_{\Omega_{1}}\left|\nabla v_{1}\right|^{p} d x\right)^{\frac{1}{p}} \tag{22}
\end{equation*}
$$

Similar inequalities can be obtained for the other terms, T_{2}, T_{3}, T_{4} and using (21) we derive 20.
Lemma 6. The functional \mathcal{J} satisfies the Palais-Smale condition with respect to \mathcal{M}_{ρ}.
Proof. We already know that \mathcal{M}_{ρ} is a C^{1} - manifold and $\mathcal{J}_{\mathcal{M}_{\rho}} \in C^{1}\left(\mathcal{M}_{\rho}, \mathbb{R}\right)$. Thus, the proof amounts to showing that the functional \mathcal{J} satisfies condition (PS).

Let $\left(\widetilde{u}_{n}\right)_{n} \subset \mathcal{M}_{\rho}, \widetilde{u}_{n}=\left(u_{1 n}, u_{2 n}\right)$, and $\left(\lambda_{n}\right)_{n} \subset \mathbb{R}$ be such that $\left(\mathcal{J}\left(\tilde{u}_{n}\right)\right)_{n}$ is bounded and $\mathcal{J}_{\mathcal{M}_{\rho}}^{\prime}\left(\widetilde{u}_{n}\right) \rightarrow 0$, i.e.,

$$
\begin{equation*}
\mathcal{J}^{\prime}\left(\widetilde{u}_{n}\right)-\lambda_{n} j_{p q}^{\prime}\left(\widetilde{u}_{n}\right)=K_{p q}^{\prime}\left(\widetilde{u}_{n}\right)+k_{r s \zeta}^{\prime}\left(\widetilde{u}_{n}\right)-\lambda_{n} j_{p q}^{\prime}\left(\widetilde{u}_{n}\right) \rightarrow 0 \tag{23}
\end{equation*}
$$

in \widetilde{W}^{*} (see Remark 3).

We have already observed that \mathcal{J} is coercive on \mathcal{M}_{ρ} (see Lemma 4 ; this implies that the sequence $\left(\widetilde{u}_{n}\right)_{n}$ is bounded in \widetilde{W}. Therefore, we can assume that there is a subsequence, still denoted $\left(\widetilde{u}_{n}\right)_{n}$, such that

$$
\begin{align*}
\widetilde{u} & \rightharpoonup u_{*}=\left(u_{1 *}, u_{2 *}\right) \text { in } \widetilde{W}, u_{1 n} \rightarrow u_{1 *} \text { in } L^{\theta_{1}}\left(\Omega_{1}\right), \\
u_{2 n} & \rightarrow u_{2 *} \text { in } L^{\theta_{2}}\left(\Omega_{2}\right), u_{2 n} \rightarrow u_{2 *} \text { in } L^{\theta_{3}}(\Sigma), \tag{24}
\end{align*}
$$

for some $\widetilde{u}_{*} \in \widetilde{W}$, with $\theta_{1}<p^{*}, \theta_{2}<q^{*}, \theta_{3}<q_{*}$ (see Remark 1 .
In particular, for $\theta_{1}=p, \theta_{2}=q$ and $\theta_{1}=r, \theta_{2}=s, \theta_{3}=\zeta$, respectively, we obtain

$$
\begin{align*}
& \frac{1}{p} \int_{\Omega_{1}}\left|u_{1 *}\right|^{p} d x+\frac{1}{q} \int_{\Omega_{2}}\left|u_{2 *}\right|^{q} d x=\rho \Rightarrow u_{*} \in \mathcal{M}_{\rho}, \\
& \int_{\Omega_{1}} \gamma_{1}\left|u_{1 n}\right|^{r} d x \rightarrow \int_{\Omega_{1}} \gamma_{1}\left|u_{1 *}\right|^{r} d x, \tag{25}\\
& \int_{\Omega_{2}} \gamma_{2}\left|u_{2 n}\right|^{s} d x \rightarrow \int_{\Omega_{2}} \gamma_{2}\left|u_{2 *}\right|^{s} d x, \\
& \int_{\Sigma} \beta\left|u_{2 n}\right|^{\xi} d \sigma \rightarrow \int_{\Sigma} \beta\left|u_{2 *}\right|^{s} d \sigma .
\end{align*}
$$

We also have

$$
\begin{equation*}
\left\|u_{1 n}\right\|_{1 p}+\left\|u_{2 n}\right\|_{2 q} \rightarrow\left\|u_{1 *}\right\|_{1 p}+\left\|u_{2 *}\right\|_{2 q} \tag{26}
\end{equation*}
$$

We claim that the sequence $\left(\lambda_{n}\right)_{n}$ is bounded. Indeed, multiplying (23) by $\tilde{u}_{n} \in \mathcal{M}_{\rho}$ and taking into account that the sequence $\left(\widetilde{u}_{n}\right)_{n}$ is bounded, we have

$$
\begin{aligned}
\int_{\Omega_{1}}\left|\nabla u_{1 n}\right|^{p} d x & +\int_{\Omega_{2}}\left|\nabla u_{2 n}\right|^{q} d x+\int_{\Sigma} \beta\left|u_{2 n}\right|^{\zeta} d \sigma \\
& +\int_{\Omega_{1}} \gamma_{1}\left|u_{1 n}\right|^{p} d x+\int_{\Omega_{2}} \gamma_{2}\left|u_{2 n}\right|^{q} d x-\lambda_{n}\left\langle j_{p q}^{\prime}\left(\widetilde{u}_{n}\right), \widetilde{u}_{n}\right\rangle \rightarrow 0 .
\end{aligned}
$$

Now, since $\left\langle j_{p q}^{\prime}\left(\widetilde{u}_{n}\right), \tilde{u}_{n}\right\rangle \in(\rho,(p+q) \rho)$, making use of Remark 6 we derive that $\left(\lambda_{n}\right)_{n}$ is bounden. Thus, up to a subsequence, we can assume $\lambda_{n} \rightarrow \lambda$ for some $\lambda \in \mathbb{R}$.

Next, we are going to prove that $\widetilde{u}_{n} \rightarrow u_{*}$ in \widetilde{W}. Since \widetilde{W} is a reflexive Banach space and $\widetilde{u}_{n} \rightharpoonup u_{*}$, using the Lindenstrauss-Asplund-Troyanski theorem (see ${ }^{[21}$), it is enough to prove that $\left\|\widetilde{u}_{n}\right\| \rightarrow\left\|\widetilde{u}_{*}\right\|$ in order to obtain the strong convergence $\widetilde{u}_{n} \rightarrow \widetilde{u}$. Moreover, using (26) we only need to show that

$$
\begin{equation*}
\left\|\nabla u_{1 n}\right\|_{1 p}+\left\|\nabla u_{2 n}\right\|_{2 q} \rightarrow\left\|\nabla u_{1 *}\right\|_{1 p}+\left\|\nabla u_{2 *}\right\|_{2 q} . \tag{27}
\end{equation*}
$$

Note first that, since $\left(\widetilde{u}_{n}\right)_{n}$ is bounden in \widetilde{W}, 23) implies

$$
\begin{equation*}
\left|\left\langle\mathcal{J}_{\mathcal{M}_{\rho}}^{\prime}\left(\widetilde{u}_{n}\right), \widetilde{u}_{n}-\widetilde{u}_{*}\right\rangle\right| \leq\left\|\mathcal{J}_{\mathcal{M}_{\rho}}^{\prime}\left(\widetilde{u}_{n}\right)\right\|_{{\widetilde{u_{u}^{n}}} \mathcal{M}_{\rho}^{*}}\left(\left\|\widetilde{u}_{n}\right\|+\left\|\widetilde{u}_{*}\right\|\right) \rightarrow 0 \tag{28}
\end{equation*}
$$

Next, we claim that

$$
\begin{equation*}
\left\langle k_{r s \zeta}^{\prime}\left(\widetilde{u}_{n}\right), \tilde{u}_{n}-\tilde{u}_{*}\right\rangle \rightarrow 0 \tag{29}
\end{equation*}
$$

Indeed, applying the Hölder inequality we have

$$
\begin{align*}
\left|\left\langle k_{r s \zeta}^{\prime}\left(\widetilde{u}_{n}\right), \tilde{u}_{n}-\tilde{u}_{*}\right\rangle\right| & \leq \int_{\Omega_{1}}\left|\gamma_{1}\left(u_{1 n}-u_{1 *}\right)\right| \cdot\left|u_{1 n}\right|^{r-1} d x \\
& +\int_{\Omega_{2}}\left|\gamma_{2}\left(u_{2 n}-u_{2 *}\right)\right| \cdot\left|u_{2 n}\right|^{s-1} d x \\
& +\int_{\Sigma}\left|\beta\left(u_{1 n}-u_{1 *}\right)\right| \cdot\left|u_{1 n}\right|^{\zeta-1} d \sigma \tag{30}\\
& \leq\left\|\gamma_{1}\right\|_{1 \infty}\left\|u_{1 n}\right\|_{1 r}^{r-1}\left\|u_{1 n}-u_{1 *}\right\|_{1 r} \\
& +\left\|\gamma_{2}\right\|_{2 \infty}\left\|u_{2 n}\right\|_{2 s}^{s-1}\left\|u_{2 n}-u_{2 *}\right\|_{2 s} \\
& +\|\beta\|_{\partial \infty}\left\|u_{2 n}\right\|_{\partial \zeta}^{\zeta-1}\left\|u_{2 n}-u_{2 *}\right\|_{\partial \zeta} .
\end{align*}
$$

Since $\left(\left\|u_{1 n}\right\|_{1 r}^{r-1}\right)_{n},\left(\left\|u_{2 n}\right\|_{2 s}^{s-1}\right)_{n}$ and $\left(\left\|u_{2 n}\right\|_{\partial \zeta}^{\zeta-1}\right)_{n}$ are bounded (see Remark 6), using (24) we derive (29).
In a similar way, as $\left(\lambda_{n}\right)_{n}$ is bounded, we obtain

$$
\begin{equation*}
\left\langle\lambda_{n} j_{p q}^{\prime}\left(\widetilde{u}_{n}\right), \widetilde{u}_{n}-\widetilde{u}_{*}\right\rangle \rightarrow 0 \tag{31}
\end{equation*}
$$

Now, (29) and (31) along with (28) and (23), imply

$$
\begin{equation*}
\left\langle K_{p q}^{\prime}\left(\widetilde{u}_{n}\right), \tilde{u}_{n}-\widetilde{u}_{*}\right\rangle \rightarrow 0 \tag{32}
\end{equation*}
$$

Then, using (32) and the convergence $\tilde{u}_{n} \rightharpoonup \widetilde{u}_{*}$, we first notice that

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \left\langle K_{p q}^{\prime}\left(\widetilde{u}_{n}\right)-K_{p q}^{\prime}\left(\widetilde{u}_{*}\right), \tilde{u}_{n}-\widetilde{u}_{*}\right\rangle \tag{33}\\
& =\lim _{n \rightarrow \infty}\left(\left\langle K_{p q}^{\prime}\left(\widetilde{u}_{n}\right), \widetilde{u}_{n}-\widetilde{u}_{*}\right\rangle-\left\langle K_{p q}^{\prime}\left(\widetilde{u}_{*}\right), \widetilde{u}_{n}-\widetilde{u}_{*}\right\rangle\right)=0 .
\end{align*}
$$

Using inequality (20) with $\tilde{u}=\widetilde{u}_{n}=\left(u_{1 n}, u_{2 n}\right), \widetilde{v}=\tilde{u}_{*}=\left(u_{1 *}, u_{2 *}\right)$ and 33) we obtain

$$
\begin{align*}
0 & \leq\left(\left\|\nabla u_{1 n}\right\|_{1 p}^{p-1}-\left\|\nabla u_{1 *}\right\|_{1 p}^{p-1}\right)\left(\left\|\nabla u_{1 n}\right\|_{1 p}-\left\|\nabla u_{1 *}\right\|_{1 p}\right) \\
& +\left(\left\|\nabla u_{2 n}\right\|_{2 q}^{q-1}-\left\|\nabla u_{2 *}\right\|_{2 q}^{q-1}\right)\left(\left\|\nabla u_{2 n}\right\|_{2 q}-\left\|\nabla u_{2 *}\right\|_{2 q}\right) \tag{34}\\
& \leq\left\langle K_{p q}^{\prime}\left(\widetilde{u}_{n}\right)-K_{p q}^{\prime}\left(\widetilde{u}_{*}\right), \widetilde{u}_{n}-\widetilde{u}_{*}\right\rangle \rightarrow 0
\end{align*}
$$

and we conclude that

$$
\begin{equation*}
\left\|\nabla u_{1 n}\right\|_{1 p}+\left\|\nabla u_{2 n}\right\|_{2 q} \rightarrow\left\|\nabla u_{1 *}\right\|_{1 p}+\left\|\nabla u_{2 *}\right\|_{2 q} . \tag{35}
\end{equation*}
$$

According to 26 and (35) we finally obtain the strong convergence of $\left(\widetilde{u}_{n}\right)_{n}$.
Since the functional \mathcal{J} satisfies the Palais-Smale condition with respect to \mathcal{M}_{ρ} and is bounded from below, it has sublevels with finite genus.

Lemma 7. For any $c \in \mathbb{R}$, the set $\mathcal{J}_{c}=\left\{u \in \mathcal{M}_{\rho} ; \mathcal{J}(u) \leq c\right\}$ has finite genus.
For the proof of this result we refer the reader to Benci-Frotunato ${ }^{3}$ Lemma 9 .
The existence of infinitely many critical points $\pm \widetilde{u}_{n}, n \geq 1$, for \mathcal{J} on \mathcal{M}_{ρ} is a consequence of Lemma 2 Lemma 4. Lemma 6 and Theorem 2 These critical points $\pm \tilde{u}_{n}, n \geq 1$, give rise to Lagrange multipliers $\lambda_{n}, n \geq 1$, and then to infinitely many solutions ($\lambda_{n}, \pm \widetilde{u}_{n}$), $n \geq 1$, of problem (1).

In order to complete the proof of Theorem 1 we only need to prove that $\lambda_{n} \rightarrow \infty$. For this purpose, let $k \geq 1$ be an arbitrary but fixed integer. By Lemma 7 we deduce that $\gamma\left(\mathcal{J}_{k}\right)=n_{k}$ for some integer n_{k}. Now, from Lemma 2 there exists a compact $K_{k} \in \mathcal{M}_{\rho} \cap \mathcal{E}$ such that $\gamma\left(K_{k}\right)=n_{k}+1$. In particular, this implies that $\Gamma_{n_{k}+1}$ is nonempty (for the definition of this set see Theorem 2]. Using property (1) from Lemma 11, we obtain that for any $A \in \Gamma_{n_{k}+1}$, we have $\sup _{A} \mathcal{J}>k$, and consequently $c_{k} \geq k$ (c_{k} was defined in Theorem 22). In addition, since \mathcal{J} is bounded below we have that $c_{1}>-\infty$, therefore $-\infty<c_{1} \leq \cdots \leq c_{k}<\infty$. Since, from Lemma 6, \mathcal{J} satisfies the Palais-Smale condition with respect to \mathcal{M}_{ρ} it is known that c_{k} is a critical value of $\mathcal{J}_{\mathcal{M}_{\rho}}$ (see, for example, ${ }^{17}$ and ${ }^{20}$).

Summing up, for any positive integer k there are $\lambda_{k} \in \mathbb{R}$ and $\widetilde{u}_{k}=\left(u_{1 k}, u_{2 k}\right) \in \mathcal{M}_{\rho}$ such that

$$
\begin{equation*}
\mathcal{J}^{\prime}\left(\widetilde{u}_{k}\right)=\lambda_{k} j_{p q}^{\prime}\left(\widetilde{u}_{k}\right), \mathcal{J}\left(\widetilde{u}_{k}\right)=c_{k} \geq k \tag{36}
\end{equation*}
$$

In particular, (36) implies that

$$
\begin{gather*}
\lambda_{k} \geq \frac{\left\langle\mathcal{J}^{\prime}\left(\tilde{u}_{k}\right), \widetilde{u}_{k}\right\rangle}{\rho(p+q)} \forall k \geq 1 \\
\mathcal{J}\left(\widetilde{u}_{k}\right) \rightarrow \infty \text { as } k \rightarrow \infty \tag{37}
\end{gather*}
$$

Thus, in order to complete the proof it remains to show that (37) implies

$$
\begin{align*}
\left\langle\mathcal{J}^{\prime}\left(\widetilde{u}_{k}\right), \widetilde{u}_{k}\right\rangle & =\left\|\nabla u_{1 k}\right\|_{1 p}^{p}+\left\|\nabla u_{2 k}\right\|_{2 q}^{q}+\int_{\Sigma} \beta\left|u_{2 k}\right|^{\zeta} d \sigma \\
& +\int_{\Omega_{1}} \gamma_{1}\left|u_{1 k}\right|^{r} d x+\int_{\Omega_{2}} \gamma_{2}\left|u_{2 k}\right|^{s} d x \rightarrow \infty \text { as } k \rightarrow \infty \tag{38}
\end{align*}
$$

On the one hand, we have

$$
\begin{align*}
\mathcal{J}\left(\widetilde{u}_{k}\right) & \leq\left\|\nabla u_{1 k}\right\|_{1 p}^{p}+\left\|\nabla u_{2 k}\right\|_{2 q}^{q}+\int_{\Sigma} \beta\left|u_{2 k}\right|^{\zeta} d \sigma \tag{39}\\
& +\left\|\gamma_{1}\right\|_{1 \infty}\left\|u_{1 k}\right\|_{1 r}^{r}+\left\|\gamma_{2}\right\|_{2 \infty}\left\|u_{2 k}\right\|_{2 s}^{s} \rightarrow \infty
\end{align*}
$$

On the other hand, using Lemma 3, there exist $\xi_{1}<r, \xi_{2}<s$ with $r-\xi_{1}<p, s-\xi_{2}<q$ such that for all $k \geq 1$ we have the following inequalities (see also the proof of Lemma 4)

$$
\begin{align*}
& \left\|u_{1 k}\right\|_{1 r}^{r} \leq C_{1}\left(\left\|\nabla u_{1 k}\right\|_{1 p}^{p}+p \rho\right)^{\frac{r-\xi_{1}}{p}} \text { if } p \geq N \\
& \left\|u_{2 k}\right\|_{2 s}^{s} \leq C_{2}\left(\left\|\nabla u_{2 k}\right\|_{2 q}^{q}+q \rho\right)^{\frac{s-\xi_{2}}{q}} \text { if } q \geq N \tag{40}\\
& \left\|u_{1 k}\right\|_{1 r}^{r} \leq C_{3} \text { if } p<N, \quad\left\|u_{2 k}\right\|_{2 s}^{r} \leq C_{4} \text { if } q<N \forall k \geq 1,
\end{align*}
$$

where C_{1}, \cdots, C_{4} are positive constants independent of k. Thus 39) and 40) imply

$$
\begin{equation*}
\left\|\nabla u_{1 k}\right\|_{1 p}+\left\|\nabla u_{2 k}\right\|_{2 q}+\int_{\Sigma} \beta\left|u_{2 k}\right|^{\zeta} d \sigma \rightarrow \infty \text { as } k \rightarrow \infty \tag{41}
\end{equation*}
$$

Finally, since

$$
\begin{align*}
\left\langle\mathcal{J}^{\prime}\left(\widetilde{u}_{k}\right), \widetilde{u}_{k}\right\rangle & \geq\left\|\nabla u_{1 k}\right\|_{1 p}^{p}+\left\|\nabla u_{2 k}\right\|_{2 q}^{q}+\int_{\Sigma} \beta\left|u_{2 k}\right|^{\zeta} d \sigma \tag{42}\\
& -\left\|\gamma_{1}\right\|_{1 \infty}\left\|u_{1 k}\right\|_{1 r}^{r}-\left\|\gamma_{2}\right\|_{2 \infty}\left\|u_{2 k}\right\|_{2 s}^{s} \quad \forall k \geq 1
\end{align*}
$$

using (40) and (41) we obtain (38) which completes the proof.

References

1. Adams R, Fournier J. Sobolev Spaces, 2nd ed, Pure and Applied Mathematics, Vol. 140. New York-London: Academic Press; 2003.
2. Barbu L, Moroşanu G, Pintea C. A nonlinear elliptic eigenvalue-transmission problem with Neumann boundary condition. Ann Mat Pura Appl. 2019;198:821-836.
3. Benci V, Fortunato D. An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods Nonlinear Anal. 1998;11:283-293.
4. Brézis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer; 2011.
5. Denkowski Z, Migórski S, Papageorgiou NS. An Introduction to Nonlinear Analysis: Theory. New York: Springer; 2003.
6. Fife PC. Dynamics of internal layers and diffusive interfaces. Society for industrial and applied mathematics; 1988.
7. Figueiredo GM, Montenegro M. A transmission problem on \mathbb{R}^{2} with critical exponential growth. Arch Math. 2012;99(3):271-279.
8. Figueiredo GM, Montenegro M. On a nonlinear elliptic transmission problem with critical growth. J Convex Anal. 2013;20:947-954. 2013;
9. Figueiredo GM, Siciliano G. Normalized solutions for an horizontal transmission problem. Appl Anal. 2021;100(15):31743181.
10. Krasnosel'skiĭ MA. Topological methods in the theory of nonlinear integral equations. New York: MacMillan; 1964.
11. Li FY, Zhang Y, Zhu XL, Liang ZP. Ground-state solutions to Kirchhoff-type transmission problems with critical perturbation. J Math Anal Appl. 2020;482(2):123568.
12. Ma TF, Muñoz Rivera JE. Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl Math Lett. 2003;16:243-248.
13. Papageorgiou NS, Kyritsi ST. Handbook of Applied Analysis, Advances in Mechanics and Mathematics. New York: Springer; 2009.
14. Nicaise S. Polygonal interface problems. Lang; 1993.
15. Pflüger K. Nonlinear transmission problem in bounded domains of \mathbb{R}^{n}. Appl Anal. 1996;62:391-403.
16. Pisani L, Siciliano G. Neumann condition in the Schrödinger-Maxwell system. Topol Methods Nonlinear Anal. 2007;29:251-264.
17. Rabinowitz PH, Variational methods for nonlinear eigenvalue problems. Rome: Edizioni Cremonese; 139-195; 1974. (1974), 139-195.
18. Rabinowitz PH, et al. (ed.). Minimax methods in critical point theory with applications to differential equations. American Mathematical Society; 1986.
19. Szulkin A. Ljusternik-Schnirelmann theory on C^{1}-manifolds. Ann Inst H. Poincaré Anal Non Linéaire. 1998;5(2):119-139.
20. Struwe M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Berlin: Springer; 2000.
21. Troyanski SL. On locally uniformly convex and differentiable norms in certain non-separable Banach spaces. Studia Math. 1970/71;37:173-180.
22. Zeidler E. Nonlinear functional analysis and its applications: III: variational methods and optimization. New York: Springer; 2013.
23. Zeidler E. Ljusternik-Schnirelman theory on general level sets. Math Nachr. 1986;129:235-259.

[^0]: ${ }^{\dagger}$ On a nonlinear transmission eigenvalue problem.

