On a nonlinear transmission eigenvalue problem with a Neumann-Robin boundary condition

Luminita Barbu¹, Andreea Burlacu¹, and Gheorghe Morosanu²

¹Ovidius University of Constanta ²Babes-Bolyai University

February 22, 2024

Abstract

Let Omega be a bounded domain in R^N , N\geq 2,\$ with smooth boundary Sigma and let Omega_1 be a subdomain of Omega with smooth boundary Sigma such that Omega_1 be a subdomain of Omega with smooth boundary Omega_1 . Consider the transmission eigenvalue problem \begin{equation} \\ \left_{\begin{array}{l} - Delta_p u_1 + gamma_1(x) mid u_1 mid $\{r-2\}u_1 = \operatorname{lambda} mid u_1 mid <math>\{p-2\}u_1 \setminus \operatorname{Imbox}_i \\ Omega_1, \in u_2 + gamma_2(x) mid u_2 mid <math>\{s-2}u_2 = \operatorname{lambda} mid u_2 mid <math>\{q-2}u_2 \setminus \operatorname{Imbox}_i \\ Omega_2, \in u_2 - \operatorname{Imm}_1 u_1 = u_2, \widetilde{frac} = u_1 + gamma_2(x) mid u_2 mid <math>\{s-2}u_2 = \operatorname{lambda} u_2 \\ \operatorname{Imm}_1 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) mid u_2 mid <math>\{s-2}u_2 = \operatorname{lambda} u_2 \\ \operatorname{Imm}_1 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_1 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_1 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_1 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2, \widetilde{frac} = u_2 + gamma_2(x) \\ \operatorname{Imm}_2 u_1 = u_2 + gamma_2(x) \\ \operatorname{$

DOI: xxx/xxxx

ARTICLE TYPE

On a nonlinear transmission eigenvalue problem with a Neumann-Robin boundary condition †

Luminița Barbu^{*1} | Andreea Burlacu¹ | Gheorghe Moroșanu^{2,3}

¹Faculty of Mathematics and Informatics, Ovidius University, Constanta, Romania

²Academy of Romanian Scientists,

Bucharest, Romania

³Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Correspondence

*Luminiţa Barbu, 124 Mamaia Blvd, 900527 Constanţa, Romania. Email: lbarbu@univ-ovidius.ro

Summary

Let Ω be a bounded domain in \mathbb{R}^N , $N \ge 2$, with smooth boundary Σ and let Ω_1 be a subdomain of Ω with smooth boundary Γ , such that $\overline{\Omega}_1 \subset \Omega$. Denote $\Omega_2 = \Omega \setminus \overline{\Omega}_1$. Consider the transmission eigenvalue problem

$$\begin{split} &-\Delta_p u_1 + \gamma_1(x) \mid u_1 \mid^{r-2} u_1 = \lambda \mid u_1 \mid^{p-2} u_1 \text{ in } \Omega_1, \\ &-\Delta_q u_2 + \gamma_2(x) \mid u_2 \mid^{s-2} u_2 = \lambda \mid u_2 \mid^{q-2} u_2 \text{ in } \Omega_2, \\ &u_1 = u_2, \ \frac{\partial u_1}{\partial v_p} = \frac{\partial u_2}{\partial v_q} \text{ on } \Gamma, \\ &\frac{\partial u_2}{\partial v_q} + \beta(x) \mid u_2 \mid^{\xi-2} u_2 = 0 \text{ on } \Sigma, \end{split}$$

where λ is a real parameter, $p, q, r, s, \zeta \in (1, \infty)$, and $\gamma_i \in L^{\infty}(\Omega_i)$, $i = 1, 2, \beta \in L^{\infty}(\Sigma)$, $\beta \ge 0$ a.e. on Σ . Under additional suitable assumptions on p, q, r, s, ζ we prove the existence of a sequence of eigenvalues $(\lambda_n)_n$, $\lambda_n \to \infty$. The proof is based on the Lusternik-Schnirelmann theory on C^1 – manifolds.

KEYWORDS:

Nonlinear transmission problem, p-Laplacian, Sobolev spaces, Krasnosel'skiĭ genus, Lusternik-Schnirelmann theory, C^1 -manifold

MSC CLASSIFICATION 35J50; 35J55; 35P30

1 | INTRODUCTION

Consider a bounded domain $\Omega \subset \mathbb{R}^N$, $N \ge 2$, with smooth boundary Σ , and a subdomain Ω_1 with smooth boundary Γ , such that $\overline{\Omega}_1 \subset \Omega$, as in Fig. 1 below, where $\Omega_2 = \Omega \setminus \overline{\Omega}_1$.

Consider the following transmission eigenvalue problem

$$\begin{cases} -\Delta_{p}u_{1} + \gamma_{1}(x) \mid u_{1} \mid^{r-2} u_{1} = \lambda \mid u_{1} \mid^{p-2} u_{1} \text{ in } \Omega_{1}, \\ -\Delta_{q}u_{2} + \gamma_{2}(x) \mid u_{2} \mid^{s-2} u_{2} = \lambda \mid u_{2} \mid^{q-2} u_{2} \text{ in } \Omega_{2}, \\ u_{1} = u_{2}, \quad \frac{\partial u_{1}}{\partial v_{p}} = \frac{\partial u_{2}}{\partial v_{q}} \text{ on } \Gamma, \\ \frac{\partial u_{2}}{\partial v_{q}} + \beta(x) \mid u_{2} \mid^{\zeta-2} u_{2} = 0 \text{ on } \Sigma, \end{cases}$$
(1)

where λ is a real parameter.

[†]On a nonlinear transmission eigenvalue problem.

As usual, for $\theta \in (1, \infty)$, we denote by Δ_{θ} the θ -Laplace operator, i.e., $\Delta_{\theta} u = \operatorname{div}(|\nabla u|^{\theta-2} \nabla u)$.

In the second transmission condition on Γ , $\partial/\partial v_{\theta}$, $\theta \in \{p,q\}$, denote the conormal derivatives corresponding to the differential operators of the problem, i.e.,

$$\frac{\partial v}{\partial v_{\theta}} := |\nabla v|^{\theta-2} \nabla v \cdot v_{\theta},$$

with v_p being the outward unit normal on the boundary Γ of Ω_1 pointing outward and $v_q = -v_p$.

Throughout the paper we will assume that the following conditions are satisfied

 $(h)_1 \ p,q,r,s,\zeta \in (1,\infty), \zeta < q_*,$

$$r < p\left(1 + \frac{p}{N}\right) \text{ in case } (r > p \text{ and } p < N),$$

$$s < q\left(1 + \frac{q}{N}\right) \text{ in case } (s > q \text{ and } q < N)$$
(2)

(here q_* denotes the critical Sobolev exponent for the boundary trace embedding defined in Remark 1 below);

$$(h)_2$$
 $\gamma_i \in L^{\infty}(\Omega_i), i = 1, 2, \beta \in L^{\infty}(\Sigma), \beta \ge 0$ a.e. on Σ .

Since function β in (h_2) is allowed to be the null function, we call the boundary condition $(1)_4$ a *Neumann-Robin boundary condition*.

Note that a similar transmission eigenvalue problem was considered in², but here we have a different division of Ω into subdomains Ω_1 and Ω_2 , as well as different boundary conditions.

Remark 1. Recall that, given a smooth domain $D \subset \mathbb{R}^N$ and $\theta > 1$, the critical Sobolev exponent θ^* is defined by $\theta^* := \frac{\theta N}{N-\theta}$ if $1 < \theta < N$ and $\theta^* := \infty$ otherwise. If $\theta < N$, we have $W^{1,\theta}(\Omega) \hookrightarrow L^{\eta}(\Omega)$ continuously if $1 \le \eta \le \theta^*$ and compactly if $1 \le \eta < \theta^*$, $W^{1,N}(\Omega) \hookrightarrow L^{\eta}(\Omega)$ compactly if $1 \le \eta < \infty$ and $W^{1,\theta}(\Omega) \hookrightarrow C(\overline{\Omega})$ compactly if $\theta > N$ (see, for example, ⁴, Section 9.3, ⁵, Theorem 3.9.52</sup>).

Recall also that there is a compact boundary trace embedding $W^{1,\theta}(\Omega) \hookrightarrow L^{\eta}(\partial D)$ for every $\eta \in [1, \theta_*)$ and similarly as before in the other ranges of η . Here we denote by $\theta_* := \frac{\theta(N-1)}{N-\theta}$ if $\theta < N$ and $\theta_* := \infty$ otherwise (see, for example, ¹).

We assume in what follows that $p \le q$. This does not restrict the generality, as can be seen by checking the proofs of our main result below (Theorem 1).

Definition 1. A *weak solution* of problem (1) is a pair $u = (u_1, u_2) \in W^{1,p}(\Omega_1) \times W^{1,q}(\Omega_2)$, such that u_i satisfies the equation (1)_i on Ω_i in the sense of distributions, i = 1, 2, and u_1, u_2 satisfy the boundary and transmission conditions (1)_{3,4} in the sense of traces.

Obviously, any solution $u = (u_1, u_2)$ of problem (1) can be identified with an element u of the space

$$W := \{ u \in W^{1,p}(\Omega) : u|_{\Omega_2} \in W^{1,q}(\Omega_2) \},\$$

where $u|_{\Omega_i} = u_i, i = 1, 2.$

For $1 < \theta \le \infty$, the Lebesgue norms of the spaces $L^{\theta}(\Omega_i)$ and $L^{\theta}(\Sigma)$ will be denoted by $\|\cdot\|_{i\theta}$, $i = 1, 2, \text{ and } \|\cdot\|_{\partial\theta}$, respectively.

2

We endow W with the norm

$$|| u || := || u_1 ||_1 + || u_2 ||_2 \quad \forall u = (u_1, u_2) \in W,$$
(3)

where $\|\cdot\|_i$, i = 1, 2, are defined by

$$\|u_1\|_1 := \|\nabla u_1\|_{1p} + \|u_1\|_{1p}, \ \|u_2\|_2 := \|\nabla u_2\|_{2q} + \|u_2\|_{2q}.$$
(4)

Remark 2. The space W defined before can be identified with the space

$$\widetilde{W} := \{ \widetilde{u} = (u_1, u_2) \in W^{1, p}(\Omega_1) \times W^{1, q}(\Omega_2); u_1 = u_2 \text{ on } \Gamma \},$$
(5)

which shows that W is a reflexive Banach space, as \widetilde{W} is a closed subspace of the reflexive product $W^{1,p}(\Omega_1) \times W^{1,q}(\Omega_2)$ with reflexive factors (see^{2, Remark 1.1}).

Definition 2. The real number λ is said to be an eigenvalue of the problem (1) if (1) has a weak solution $\widetilde{u}_{\lambda} = (u_{1\lambda}, u_{2\lambda}) \in \widetilde{W} \setminus \{(0, 0)\}$. In this case \widetilde{u}_{λ} is called an eigenfunction of the problem (1) corresponding to the eigenvalue λ , and the pair $(\lambda, \widetilde{u}_{\lambda})$ is called an eigenpair of the problem (1).

The next result gives a characterization of the eigenvalues of problem (1).

Proposition 1. The real number λ is an eigenvalue of the problem (1) if and only if there exists $\widetilde{u}_{\lambda} = (u_{1\lambda}, u_{2\lambda}) \in \widetilde{W} \setminus \{(0, 0)\}$, such that for all $(v_1, v_2) \in \widetilde{W}$

$$\int_{\Omega_{1}} |\nabla u_{1\lambda}|^{p-2} \nabla u_{1\lambda} \cdot \nabla v_{1} dx + \int_{\Omega_{2}} |\nabla u_{2\lambda}|^{q-2} \nabla u_{2\lambda} \cdot \nabla v_{2} dx + \int_{\Omega_{1}} \gamma_{1} |u_{1\lambda}|^{r-2} u_{1\lambda} v_{1} dx + \int_{\Omega_{2}} \gamma_{2} |u_{2\lambda}|^{s-2} u_{2\lambda} v_{2} dx + \int_{\Sigma} \beta |u_{2\lambda}|^{\zeta-2} u_{2\lambda} v_{2} d\sigma = \lambda \Big(\int_{\Omega_{1}} |u_{1\lambda}|^{p-2} u_{1\lambda} v_{1} dx + \int_{\Omega_{2}} |u_{2\lambda}|^{q-2} u_{2\lambda} v_{2} dx \Big).$$
(6)

The proof of this result is easy. It can be achieved by using arguments similar to those from the proof of Proposition 1.1 in Barbu-Moroşanu-Pintea², so we omit it.

For $\rho > 0$, consider the subset \mathcal{M}_{ρ} of \widetilde{W} defined by

$$\mathcal{M}_{\rho} := \left\{ \widetilde{u} = (u_1, u_2) \in \widetilde{W}; \frac{1}{p} \int_{\Omega_1} |u_1|^p dx + \frac{1}{q} \int_{\Omega_2} |u_2|^q dx = \rho \right\}.$$
(7)

It is easy to verify that \mathcal{M}_{ρ} has an infinite number of nonzero elements.

Our goal is to use the Lusternik-Schnirelmann theory on C^1 -manifolds to investigate the eigenvalues of problem (1). Specifically, we shall prove the following result.

Theorem 1. Assume that (h_1) and (h_2) are fulfilled. Then, for any $\rho > 0$, there is a sequence of eigenpairs $(\lambda_n, \pm(u_{1n}, u_{2n}))_n$ of problem (1), with $((u_{1n}, u_{2n}))_n \subset \mathcal{M}_\rho$ and $\lambda_n \to \infty$ as $n \to \infty$.

Transmission problems arise in various applications in fluid mechanics, physics, chemistry, biology, etc. See, e.g., Fife⁶, Nicaise¹⁴, Pflüger¹⁵. So, it is important to investigate such kind of problems. Let us recall, for instance, that Figueiredo and Montenegro⁷ proved that the following elliptic transmission problem in \mathbb{R}^2

$$\begin{vmatrix} -\Delta u_1 = f(x, u_1) \text{ in } \Omega_1, \\ -\Delta u_2 = g(x, u_2) \text{ in } \Omega_2, \\ u_1 = u_2, \quad \frac{\partial u_1}{\partial v_1} = \frac{\partial u_2}{\partial v_2} \text{ on } \Gamma, \\ u_2 = 0 \text{ on } \Sigma, \end{vmatrix}$$

3

with exponential nonlinearities of critical type, has a nontrivial solution. Also, the transmission problem,

$$\begin{cases} -\Delta u_1 = \lambda f(x, u_1) \text{ in } \Omega_1, \\ -\Delta u_2 = \mid u_2 \mid^{2^* - 2} u_2 \text{ in } \Omega_2, \\ u_1 = u_2, \quad \frac{\partial u_1}{\partial v_1} = \frac{\partial u_2}{\partial v_2} \text{ on } \Gamma, \\ u_2 = 0 \text{ on } \Sigma, \end{cases}$$

with critical growth, was studied by the same authors in⁸. Other existence results for nonlinear transmission problems, approached by variational arguments, are treated for instance in 9,11,12,15 , and the references therein.

The nonlinear transmission eigenvalue problem (1) we investigate here is closely related to the problems mentioned above.

2 | PRELIMINARIES

We start this section by recalling some basic notions on the Krasnosel'skii's genus which will be used in the proof of our main result (Theorem 1).

Let X be a real Banach space. We denote by X^* the dual of X and by $\langle \cdot, \cdot \rangle$ the duality pairing between X^* and X. Consider $\mathcal{E} \subset X$ the set of all nonempty closed and symmetric subsets of $X \setminus \{0\}$. We say that the set $A \in \mathcal{E}$ has genus *m* and we denote $\gamma(A) = m$ if *m* is the smallest integer with the property that there exists an odd continuous map from A to $\mathbb{R}^m \setminus \{0\}$. If $A = \emptyset$ we have $\gamma(A) = 0$ and if there is no such a finite *m* we set $\gamma(A) = \infty$.

In the following lemma we will recall only two properties of the genus that will be used in this paper. More information on this subject may be found in the references ¹⁰, ¹⁷, ¹⁸, ²⁰.

Lemma 1. ^{17, Lemma 1.1, Theorm 1.2}

Let $A, B \in \mathcal{E}$.

(1) If $A \subset B$, then $\gamma(A) \leq \gamma(B)$;

(2) Let *D* be a symmetric and bounded neighbourhood of the origin in \mathbb{R}^N and let $A \in \mathcal{E}$ be homeomorphic to ∂D by an odd homeomorphism. Then $\gamma(A) = N$. In particular, the unit sphere $S \subset \mathbb{R}^N$ is a set of genus *N*.

In order to use variational methods, let us also recall some results related to the Palais-Smale compactness condition. First, we have the following definition (see, for example, ^{19, pg. 123}, ^{22, Definition 44.13}).

Definition 3. Let **M** be a given subset of a real Banach space *X* and let $F : D(F) \subset X \to \mathbb{R}$ be a functional that has a tangential mapping $F'_{\mathbf{M}}$ with respect to **M** at each point $u \in \mathbf{M}$. Functional *F* satisfies the *local Palais-Smale condition* $(PS)_c$ with respect to **M** if and only if the condition

each sequence
$$(u_n)_n$$
 in **M** such that
 $|| F'_{\mathbf{M}}(u_n) || \to 0 \text{ and } F(u_n) \to c \text{ as } n \to \infty$
has a convergent subsequence

holds for a fixed $c \in \mathbb{R}$.

The above condition is a local version of the following Palais-Smale compactness condition:

each sequence
$$(u_n)_n$$
 in **M** such that
 $\|F'_{\mathbf{M}}(u_n)\| \to 0$ and $(F(u_n))_n$ is bounded, (PS)
has a convergent subsequence.

For the definition of the tangential mapping $F'_{\mathbf{M}}$ (or the differential of F with respect to \mathbf{M}) see, for example,^{22, Definition 43.18}. In order to solve the eigenvalue problem (1), the constrained variational method can be applied. We will use the following Lusternik–Schnirelmann principle on C^1 –manifolds (Szulkin^{19, Corollary 4.1}).

Theorem 2. Suppose that **M** is a closed symmetric C^1 -submanifold of a real Banach space X and $0 \notin \mathbf{M}$. Suppose also that $F \in C^1(\mathbf{M}, \mathbb{R})$ is even and bounded below. Define

$$c_j = \inf_{A \in \Gamma_j} \sup_{x \in A} F(x),$$

where $\Gamma_j = \{A \subset \mathbf{M} : A \in \mathcal{E}, \gamma(A) \ge j, \text{ and } A \text{ is compact } \}$. If $\Gamma_k \ne \emptyset$ for some $k \ge 1$ and if f satisfies $(PS)_c$ for all $c = c_j, j = 1, \dots, k$, then F has at least k distinct pairs of critical points.

Next, we are going to exploit some properties of the set \mathcal{M}_{ρ} (defined by (7)), which is evidently symmetric with respect to the origin. Let us first introduce some notations.

$$\begin{split} K_{pq}(u_{1}, u_{2}) &:= \frac{1}{p} \int_{\Omega_{1}} |\nabla u_{1}|^{p} dx + \frac{1}{q} \int_{\Omega_{2}} |\nabla u_{2}|^{q} dx, \\ k_{rs\zeta}(u_{1}, u_{2}) &:= \frac{1}{r} \int_{\Omega_{1}} \gamma_{1} |u_{1}|^{r} dx + \frac{1}{s} \int_{\Omega_{2}} \gamma_{2} |u_{2}|^{s} dx + \frac{1}{\zeta} \int_{\Sigma} |u_{2}|^{\zeta} d\sigma, \\ j_{pq}(u_{1}, u_{2}) &:= \frac{1}{p} \int_{\Omega_{1}} |u_{1}|^{p} dx + \frac{1}{q} \int_{\Omega_{2}} |u_{2}|^{q} dx \,\forall \, (u, u_{2}) \in \widetilde{W}. \end{split}$$
(8)

Since for all $\widetilde{u} = (u_1, u_2) \in \mathcal{M}_{\rho}$ we have $\langle j'_{pq}(\widetilde{u}), \widetilde{u} \rangle \neq 0$, ρ is a regular value of the C^1 functional j_{pq} . Therefore, $\mathcal{M}_{\rho} = j^{-1}_{pq}(\rho)$ is a C^1 -manifold of codimension 1 in \widetilde{W} (see, for example, ^{13, Theorem 2.2.7}) with tangent space, in a point $\widetilde{u} = (u_1, u_2) \in \mathcal{M}_{\rho}$, given by $T_{\widetilde{u}}\mathcal{M}_{\rho} = \ker j'_{pq}(\widetilde{u})$.

Define the C^1 functional,

$$\mathcal{J}: \widetilde{W} \to \mathbb{R}, \ \mathcal{J}(\widetilde{u}) = K_{pq}(u_1, u_2) + k_{rs\zeta}(u_1, u_2) \ \forall \ \widetilde{u} = (u_1, u_2) \in \widetilde{W}.$$
(9)

Obviously, $\mathcal{J} \in C^1(\mathcal{M}_{\rho}, \mathbb{R})$. We denote by $\mathcal{J}_{\mathcal{M}_{\rho}}$ the restriction of the functional \mathcal{J} on \mathcal{M}_{ρ} and by $\mathcal{J}'_{\mathcal{M}_{\rho}}(\widetilde{u})$ the differential of \mathcal{J} at $\widetilde{u} \in \mathcal{M}_{\rho}$ with respect to \mathcal{M}_{ρ} , i.e. the restriction of $\mathcal{J}'(\widetilde{u})$ on $T_{\widetilde{u}}\mathcal{M}_{\rho}$.

Remark 3. We are going to compute $\mathcal{J}'_{\mathcal{M}_{\rho}}(\widetilde{u}), \ \widetilde{u} \in \mathcal{M}_{\rho}$. Obviously, $\widetilde{u} \notin T_{\widetilde{u}}\mathcal{M}_{\rho}$, thus $W = T_{\widetilde{u}}\mathcal{M}_{\rho} \oplus \{\alpha \widetilde{u}; \alpha \in \mathbb{R}\}$. Let $P : \widetilde{W} \to T_{\widetilde{u}}\mathcal{M}_{\rho}$ be the projection operator. Then, for every $\widetilde{v} \in \widetilde{W}$, there exists a unique $\alpha \in \mathbb{R}$ (which depends on \widetilde{v}) such that $\widetilde{v} = P\widetilde{v} + \alpha \widetilde{u}$. In particular, as $\langle j'_{pq}(\widetilde{u}), P\widetilde{v} \rangle = 0$, we obtain that $\alpha = \langle j'_{pq}(\widetilde{u}), \widetilde{v} \rangle / \langle j'_{pq}(\widetilde{u}), \widetilde{u} \rangle$. Therefore, if $\widetilde{v} \in T_{\widetilde{u}}\mathcal{M}$

$$\begin{split} \langle \mathcal{J}'_{\mathcal{M}_{p}}(\widetilde{u}), \widetilde{v} \rangle &= \langle \mathcal{J}'(\widetilde{u}), P\widetilde{v} \rangle = \langle \mathcal{J}'(\widetilde{u}), \widetilde{v} \rangle - \frac{\langle j'_{pq}(\widetilde{u}), \widetilde{v} \rangle}{\langle j'_{pq}(\widetilde{u}), \widetilde{u} \rangle} \langle \mathcal{J}'(\widetilde{u}), \widetilde{u} \rangle \\ &= \left\langle \mathcal{J}'(\widetilde{u}) - \frac{\langle \mathcal{J}'(\widetilde{u}), \widetilde{u} \rangle}{\langle j'_{pq}(\widetilde{u}), \widetilde{u} \rangle} j'_{pq}(\widetilde{u}), \widetilde{v} \right\rangle \end{split}$$

which implies that

$$\mathcal{J}_{\mathcal{M}_{\rho}}^{\prime}(\widetilde{u}) = \mathcal{J}^{\prime}(\widetilde{u}) - \lambda(\widetilde{u})j_{pq}^{\prime}(\widetilde{u}), \ \lambda(\widetilde{u}) = \frac{\langle \mathcal{J}^{\prime}(\widetilde{u}), \widetilde{u} \rangle}{\langle j_{pq}^{\prime}(\widetilde{u}), \widetilde{u} \rangle}$$

Moreover, $\widetilde{u} \in \mathcal{M}_{\rho}$ is a critical point of $\mathcal{J}_{\mathcal{M}_{\rho}}$ if and only if $\mathcal{J}'(\widetilde{u}) = \lambda j'_{pq}(\widetilde{u})$ for some $\lambda \in \mathbb{R}$. Thus, there is a one-to-one correspondence between critical points of $\mathcal{J}_{\mathcal{M}_{\rho}}$ and the weak solutions of problem (1) (see, for example ^{22, Proposition 43.21}).

The following lemma shows, essentially, that $\gamma(\mathcal{M}_{q}) = \infty$.

Lemma 2. For any positive integer k there exists a compact symmetric subset $K \subset \mathcal{M}_{\rho}$ such that $\gamma(K) = k$.

Proof. Let $\phi_1, \phi_2, \dots, \phi_k \in C_0^{\infty}(\Omega)$ be nonnegative functions with disjoint compact supports, supp $\phi_j \subset \Omega_1$, $\forall j = 1, 2, \dots, k$, such that $p^{-1} \int_{\Omega 1} \phi_j^p dx = \rho \ \forall j = 1, 2, \dots, k$. Obviously, $\{\phi_1, \phi_2, \dots, \phi_k\} \subset \mathcal{M}_{\rho}$ is a linearly independent set, thus $V_k :=$ Span $\{\phi_1, \phi_2, \dots, \phi_k\}$ is a k dimensional space. It is clear that $\mathcal{M}_{\rho} \cap V_k$ is the sphere of radius $(p\rho)^{1/p}$ in V_k with respect to the L^p -norm. In particular, $\gamma(\mathcal{M}_{\rho} \cap V_k) = k$ and the proof is complete (see Lemma 1 (2)).

Remark 4. From Lemma 2 we see that the manifold \mathcal{M}_{ρ} contains compact subsets of arbitrarily large genus, i. e., $\Gamma_k \neq \emptyset$ for any $k \ge 1$ (the set Γ_k was defined in Theorem 2).

For the proof of the main result (Theorem 1), the following lemma will play an important role in computations (see ^{16, Lemma 3.1}). **Lemma 3.** Let $D \subset \mathbb{R}^N$ be a smooth bounded domain. Assume that

$$\theta \in (1, N), \ \eta \in (\theta, \theta^*), \ \xi \in \left(0, N\left(1 - \frac{\eta}{\theta^*}\right)\right).$$
 (10)

Then there exists a positive constant *C* such that, for every $u \in W^{1,\theta}(D)$

$$\| u \|_{L^{q}(D)}^{\eta} \leq C \left(\| \nabla u \|_{L^{\theta}(D)}^{\theta} + \| u \|_{L^{\theta}(D)}^{\theta} \right)^{(\eta - \xi)/\theta} \| u \|_{L^{\theta}(D)}^{\xi}.$$
(11)

Remark 5. From $\xi < N\left(1 - \frac{\eta}{\theta^*}\right)$ we have $\xi < \eta$. Inequality (11) is still valid in the case $\theta \ge N$, $\eta > \theta$, with $1 < \xi < \eta$.

3 | **PROOF OF THEOREM 1**

Throughout this section we assume that (h_1) and (h_2) are fulfilled and will be used without mentioning them in the statements below.

The proof of Theorem 1 will follow as a consequence of several intermediate results.

Lemma 4. The functional $\mathcal{J}_{\mathcal{M}_{a}}$ is coercive, i.e.,

$$\lim_{(u_1,u_2)\parallel\to\infty,(u_1,u_2)\in\mathcal{M}_{\rho}}\mathcal{J}(u_1,u_2)=\infty.$$

Proof. Arguing by contradiction, we assume that there exist a positive constant C and a sequence $(\widetilde{u}_n)_n = (u_{1n}, u_{2n})_n \subset \mathcal{M}_\rho$ such that $\|\widetilde{u}_n\| \to \infty$ in \widetilde{W} as $n \to \infty$ and

$$\mathcal{J}_{\lambda}(\widetilde{u}_n) \le C \ \forall \ n \ge 1.$$
⁽¹²⁾

It is obvious that

$$\mathcal{J}(u_{1n}, u_{2n}) \geq \frac{1}{p} \| \nabla u_{1n} \|_{1p}^{p} + \frac{1}{q} \| \nabla u_{2n} \|_{2q}^{q} - \frac{1}{r} \| \gamma_{1} \|_{1\infty} \| u_{1n} \|_{1r}^{r} - \frac{1}{s} \| \gamma_{2} \|_{2\infty} \| u_{2n} \|_{2s}^{s} \quad \forall n \geq 1.$$

$$(13)$$

For $n \ge 1$, denote

$$T_{1n} = \frac{1}{p} \| \nabla u_{1n} \|_{1p}^{p} - \frac{1}{r} \| \gamma_{1} \|_{1\infty} \| u_{1n} \|_{1r}^{r},$$

$$T_{2n} = \frac{1}{q} \| \nabla u_{2n} \|_{2q}^{q} - \frac{1}{s} \| \gamma_{2} \|_{2\infty} \| u_{2n} \|_{2s}^{s}.$$
(14)

As $\|\widetilde{u}_n\| \to \infty$, taking into account the fact that $\widetilde{u}_n \in \mathcal{M}_\rho$, we derive that $\|\nabla u_{1n}\|_{1p} + \|\nabla u_{2n}\|_{2q} \to \infty$. Therefore, without loss of generality, we can assume that, up to a subsequence, $\|\nabla u_{1n}\|_{1p} \to \infty$.

Now, if $r \le p$ we have that $L^r(\Omega_1)$ is continuously embedded into $L^p(\Omega_1)$. Thus, there exists a positive constant *C* independent of *n* such that

$$T_{1n} \ge \frac{1}{p} \| \nabla u_{1n} \|_{1p}^{p} - C \| \gamma_{1} \|_{1\infty} \quad \forall n \ge 1.$$
(15)

On the other hand, if r > p and p < N, we make use of an argument in Figueiredo-Siciliano^{9, lemma 2.2}. Thus, from the inequality $r < p\left(1 + \frac{p}{N}\right)$ (see assumptions (h_2)) we obtain that $r < p_*$ and $0 < r - p < N(1 - r/p_*)$, therefore there exists ξ_1 such that

$$r - p < \xi_1 < N \left(1 - \frac{r}{p_*} \right). \tag{16}$$

Now, for such a ξ_1 , using Lemma 3 with $D = \Omega_1$, $\theta = p$, $\eta = r$ and $u = u_{1n}$, we obtain that there exists a positive constant C_1 (independent of *n*) such that

$$\| u_{1n} \|_{1r}^{r} \leq C_{1} \Big(\| \nabla u_{1n} \|_{1p}^{p} + \| u_{1n} \|_{1p}^{p} \Big)^{(r-\xi_{1})/p} \| u_{1n} \|_{1p}^{\xi_{1}}$$

$$\leq C_{1} \Big(\| \nabla u_{1n} \|_{1p}^{p} + p\rho \Big)^{(r-\xi_{1})/p} (p\rho)^{\xi_{1}/p}.$$

$$(17)$$

Taking into account $(14)_1$ and (17) we have, for all $n \ge 1$,

$$T_{1n} \ge \frac{1}{p} \| \nabla u_{1n} \|_{1p}^{p} - \frac{C_{1}}{r} \| \gamma_{1} \|_{1\infty} \left(\| \nabla u_{1n} \|_{1p}^{p} + p\rho \right)^{(r-\xi_{1})/p} (p\rho)^{\xi_{1}/p}.$$
(18)

Finally, if r > p and $p \ge N$, making use of Remark 5 we can choose ξ_1 such that $r - p < \xi_1 < r$. A similar argument to the one in the former case implies that (18) is still satisfied. Summing up, as $\| \nabla u_{1n} \|_{1p} \to \infty$ and $p > r - \xi_1$ if $r \ge p$, we obtain that $T_{1n} \to \infty$ (see (15) and (18)).

Obviously, if q < N, then T_{2n} satisfies an inequality similar to (15); in the contrary case, T_{2n} will satisfy an inequality similar to (18). It follows that $T_{1n} + T_{2n} \rightarrow \infty$.

Summing up, (13) implies that $\mathcal{J}(u_{1n}, u_{2n}) \to \infty$ which contradicts (12). This contradiction shows that \mathcal{J} is coercive on \mathcal{M}_{ρ} and the proof is complete.

Obviously, the functional \mathcal{J} is even and since it is coercive on \mathcal{M}_{ρ} , it is also bounded below on \mathcal{M}_{ρ} . Thus, we can exploit the symmetry property in order to get multiplicity results for the critical points of $\mathcal{J}_{\mathcal{M}_{\rho}}$.

Remark 6. From Lemma 4 and Remark 1, it is easy to see that for every sequence $(\widetilde{u}_n)_n \subset \mathcal{M}_\rho, \widetilde{u}_n = (u_{1n}, u_{2n})$ such that $(\mathcal{J}(\widetilde{u}_n))_n$ is bounded (thus, from Lemma 4, $(\widetilde{u}_n)_n$ is bounded) the sequences

$$\left(\int_{\Omega_{1}} |\nabla u_{1n}|^{p} dx\right)_{n}, \left(\int_{\Omega_{2}} |\nabla u_{2n}|^{q} dx\right)_{n},$$

$$\left(\int_{\Omega_{1}} \gamma_{1} |u_{1n}|^{r} dx\right)_{n}, \left(\int_{\Omega_{2}} \gamma_{2} |u_{2n}|^{s} dx\right)_{n}, \left(\int_{\Sigma} \beta |u_{2n}|^{\zeta} d\sigma\right)_{n}$$
(19)

are bounded.

For the proof of the main result, the following lemma will play an important role in computations.

Lemma 5. Let $\mathcal{K} := K'_{pq} : \widetilde{W}^* \to \mathbb{R}$ be the derivative of K_{pq} defined in (8)₁. Then, for any $\widetilde{u} = (u_1, u_2), \widetilde{v} = (v_1, v_2) \in \widetilde{W}$ one has

$$\langle \mathcal{K}(\widetilde{u}) - \mathcal{K}(\widetilde{v}), u - v \rangle \geq \left(\| \nabla u_1 \|_{1p}^{p-1} - \| \nabla v_1 \|_{1p}^{p-1} \right) \left(\| \nabla u_1 \|_{1p} - \| \nabla v_1 \|_{1p} \right) + \left(\| \nabla u_2 \|_{2q}^{q-1} - \| \nabla v_2 \|_{2q}^{q-1} \right) \left(\| \nabla u_2 \|_{2q} - \| \nabla v_2 \|_{2q} \right) \geq 0.$$

$$(20)$$

Proof. It is obvious that

$$\langle \mathcal{K}(\widetilde{u}) - \mathcal{K}(\widetilde{v}), u - v \rangle$$

= $\| \nabla u_1 \|_{1p}^p + \| \nabla v_1 \|_{1p}^p + \| \nabla u_2 \|_{2q}^q + \| \nabla v_2 \|_{2q}^q$ (21)
 $- (T_1 + T_2) - (T_3 + T_4),$

where we have denoted

$$T_1 := \int_{\Omega_1} |\nabla u_1|^{p-2} \nabla u_1 \cdot \nabla v_1 \, dx, \ T_2 := \int_{\Omega_1} |\nabla v_1|^{p-2} \nabla v_1 \cdot \nabla u_1 \, dx,$$

 T_3, T_4 are similarly defined, by replacing p, Ω_1 with q, Ω_2 , and u_1, v_1 with u_2, v_2 .

We have, by the Hölder inequality

$$T_{1} \leq \left(\int_{\Omega_{1}} |\nabla u_{1}|^{p} dx\right)^{\frac{p-1}{p}} \left(\int_{\Omega_{1}} |\nabla v_{1}|^{p} dx\right)^{\frac{1}{p}}.$$
(22)

Similar inequalities can be obtained for the other terms, T_2, T_3, T_4 and using (21) we derive (20).

Lemma 6. The functional \mathcal{J} satisfies the Palais–Smale condition with respect to \mathcal{M}_{ρ} .

Proof. We already know that \mathcal{M}_{ρ} is a C^1 - manifold and $\mathcal{J}_{\mathcal{M}_{\rho}} \in C^1(\mathcal{M}_{\rho}, \mathbb{R})$. Thus, the proof amounts to showing that the functional \mathcal{J} satisfies condition (PS).

Let $(\widetilde{u}_n)_n \subset \mathcal{M}_\rho$, $\widetilde{u}_n = (u_{1n}, u_{2n})$, and $(\lambda_n)_n \subset \mathbb{R}$ be such that $(\mathcal{J}(\widetilde{u}_n))_n$ is bounded and $\mathcal{J}'_{\mathcal{M}_\rho}(\widetilde{u}_n) \to 0$, i.e.,

$$\mathcal{J}'(\widetilde{u}_n) - \lambda_n j'_{pq}(\widetilde{u}_n) = K'_{pq}(\widetilde{u}_n) + k'_{rs\zeta}(\widetilde{u}_n) - \lambda_n j'_{pq}(\widetilde{u}_n) \to 0$$
⁽²³⁾

in \widetilde{W}^* (see Remark 3).

We have already observed that \mathcal{J} is coercive on \mathcal{M}_{ρ} (see Lemma 4); this implies that the sequence $(\widetilde{u}_n)_n$ is bounded in \widetilde{W} . Therefore, we can assume that there is a subsequence, still denoted $(\widetilde{u}_n)_n$, such that

$$\widetilde{u} \to u_* = (u_{1*}, u_{2*}) \text{ in } \widetilde{W}, \ u_{1n} \to u_{1*} \text{ in } L^{\theta_1}(\Omega_1),$$

$$u_{2n} \to u_{2*} \text{ in } L^{\theta_2}(\Omega_2), \ u_{2n} \to u_{2*} \text{ in } L^{\theta_3}(\Sigma),$$
(24)

for some $\widetilde{u}_* \in \widetilde{W}$, with $\theta_1 < p^*$, $\theta_2 < q^*$, $\theta_3 < q_*$ (see Remark 1).

In particular, for $\theta_1 = p$, $\theta_2 = q$ and $\theta_1 = r$, $\theta_2 = s$, $\theta_3 = \zeta$, respectively, we obtain

$$\frac{1}{p} \int_{\Omega_{1}} |u_{1*}|^{p} dx + \frac{1}{q} \int_{\Omega_{2}} |u_{2*}|^{q} dx = \rho \Rightarrow u_{*} \in \mathcal{M}_{\rho},$$

$$\int_{\Omega_{1}} \gamma_{1} |u_{1n}|^{r} dx \rightarrow \int_{\Omega_{1}} \gamma_{1} |u_{1*}|^{r} dx,$$

$$\int_{\Omega_{2}} \gamma_{2} |u_{2n}|^{s} dx \rightarrow \int_{\Omega_{2}} \gamma_{2} |u_{2*}|^{s} dx,$$

$$\int_{\Sigma} \beta |u_{2n}|^{\zeta} d\sigma \rightarrow \int_{\Sigma} \beta |u_{2*}|^{\zeta} d\sigma.$$
(25)

We also have

 $\| u_{1n} \|_{1p} + \| u_{2n} \|_{2q} \to \| u_{1*} \|_{1p} + \| u_{2*} \|_{2q} .$ ⁽²⁶⁾

We claim that the sequence $(\lambda_n)_n$ is bounded. Indeed, multiplying (23) by $\widetilde{u}_n \in \mathcal{M}_\rho$ and taking into account that the sequence $(\widetilde{u}_n)_n$ is bounded, we have

$$\int_{\Omega_1} |\nabla u_{1n}|^p dx + \int_{\Omega_2} |\nabla u_{2n}|^q dx + \int_{\Sigma} \beta |u_{2n}|^{\zeta} d\sigma + \int_{\Omega_1} \gamma_1 |u_{1n}|^p dx + \int_{\Omega_2} \gamma_2 |u_{2n}|^q dx - \lambda_n \langle j'_{pq}(\widetilde{u}_n), \widetilde{u}_n \rangle \to 0.$$

Now, since $\langle j'_{pq}(\tilde{u}_n), \tilde{u}_n \rangle \in (\rho, (p+q)\rho)$, making use of Remark 6 we derive that $(\lambda_n)_n$ is bounden. Thus, up to a subsequence, we can assume $\lambda_n \to \lambda$ for some $\lambda \in \mathbb{R}$.

Next, we are going to prove that $\widetilde{u}_n \to u_*$ in \widetilde{W} . Since \widetilde{W} is a reflexive Banach space and $\widetilde{u}_n \to u_*$, using the Lindenstrauss-Asplund-Troyanski theorem (see²¹), it is enough to prove that $\|\widetilde{u}_n\| \to \|\widetilde{u}_*\|$ in order to obtain the strong convergence $\widetilde{u}_n \to \widetilde{u}$. Moreover, using (26) we only need to show that

$$\|\nabla u_{1n}\|_{1p} + \|\nabla u_{2n}\|_{2q} \to \|\nabla u_{1*}\|_{1p} + \|\nabla u_{2*}\|_{2q}.$$
(27)

Note first that, since $(\widetilde{u}_n)_n$ is bounden in \widetilde{W} , (23) implies

$$|\langle \mathcal{J}'_{\mathcal{M}_{\rho}}(\widetilde{u}_{n}), \widetilde{u}_{n} - \widetilde{u}_{*} \rangle | \leq || \mathcal{J}'_{\mathcal{M}_{\rho}}(\widetilde{u}_{n}) ||_{T_{\widetilde{u}_{n}}\mathcal{M}^{*}_{\rho}} \left(|| \widetilde{u}_{n} || + || \widetilde{u}_{*} || \right) \to 0.$$

$$(28)$$

Next, we claim that

$$\langle k'_{rs\zeta}(\widetilde{u}_n), \widetilde{u}_n - \widetilde{u}_* \rangle \to 0.$$
 (29)

Indeed, applying the Hölder inequality we have

$$|\langle k'_{rs\zeta}(\widetilde{u}_{n}), \widetilde{u}_{n} - \widetilde{u}_{*} \rangle | \leq \int_{\Omega_{1}} |\gamma_{1}(u_{1n} - u_{1*})| \cdot |u_{1n}|^{r-1} dx + \int_{\Omega_{2}} |\gamma_{2}(u_{2n} - u_{2*})| \cdot |u_{2n}|^{s-1} dx + \int_{\Sigma} |\beta(u_{1n} - u_{1*})| \cdot |u_{1n}|^{\zeta-1} d\sigma \leq ||\gamma_{1}||_{1\infty} ||u_{1n}||_{1r}^{r-1} ||u_{1n} - u_{1*}||_{1r} + ||\gamma_{2}||_{2\infty} ||u_{2n}||_{2s}^{s-1} ||u_{2n} - u_{2*}||_{2s} + ||\beta||_{\partial\infty} ||u_{2n}||^{\zeta-1}_{\delta\zeta} ||u_{2n} - u_{2*}||_{\delta\zeta} .$$

Since $\left(\| u_{1n} \|_{1r}^{r-1} \right)_n$, $\left(\| u_{2n} \|_{2s}^{s-1} \right)_n$ and $\left(\| u_{2n} \|_{\partial\zeta}^{\zeta-1} \right)_n$ are bounded (see Remark 6), using (24) we derive (29). In a similar way, as $(\lambda_n)_n$ is bounded, we obtain

$$\langle \lambda_n j'_{pq}(\widetilde{u}_n), \widetilde{u}_n - \widetilde{u}_* \rangle \to 0.$$
 (31)

Now, (29) and (31) along with (28) and (23), imply

$$\langle K'_{na}(\widetilde{u}_n), \widetilde{u}_n - \widetilde{u}_* \rangle \to 0.$$
 (32)

Then, using (32) and the convergence $\widetilde{u}_n \rightarrow \widetilde{u}_*$, we first notice that

$$\lim_{n \to \infty} \langle K'_{pq}(\widetilde{u}_n) - K'_{pq}(\widetilde{u}_*), \widetilde{u}_n - \widetilde{u}_* \rangle = \lim_{n \to \infty} \left(\langle K'_{pq}(\widetilde{u}_n), \widetilde{u}_n - \widetilde{u}_* \rangle - \langle K'_{pq}(\widetilde{u}_*), \widetilde{u}_n - \widetilde{u}_* \rangle \right) = 0.$$
(33)

Using inequality (20) with $\tilde{u} = \tilde{u}_n = (u_{1n}, u_{2n}), \tilde{v} = \tilde{u}_* = (u_{1*}, u_{2*})$ and (33) we obtain

$$0 \leq \left(\| \nabla u_{1n} \|_{1p}^{p-1} - \| \nabla u_{1*} \|_{1p}^{p-1} \right) \left(\| \nabla u_{1n} \|_{1p} - \| \nabla u_{1*} \|_{1p} \right) + \left(\| \nabla u_{2n} \|_{2q}^{q-1} - \| \nabla u_{2*} \|_{2q}^{q-1} \right) \left(\| \nabla u_{2n} \|_{2q} - \| \nabla u_{2*} \|_{2q} \right) \leq \left\langle K_{ro}'(\widetilde{u}_{n}) - K_{ro}'(\widetilde{u}_{*}), \widetilde{u}_{n} - \widetilde{u}_{*} \right\rangle \to 0,$$
(34)

and we conclude that

$$\|\nabla u_{1n}\|_{1p} + \|\nabla u_{2n}\|_{2q} \to \|\nabla u_{1*}\|_{1p} + \|\nabla u_{2*}\|_{2q} .$$
(35)

According to (26) and (35) we finally obtain the strong convergence of $(\widetilde{u}_n)_n$.

Since the functional \mathcal{J} satisfies the Palais–Smale condition with respect to \mathcal{M}_{ρ} and is bounded from below, it has sublevels with finite genus.

Lemma 7. For any $c \in \mathbb{R}$, the set $\mathcal{J}_c = \{u \in \mathcal{M}_a; \mathcal{J}(u) \le c\}$ has finite genus.

For the proof of this result we refer the reader to Benci-Frotunato^{3, Lemma 9}.

The existence of infinitely many critical points $\pm \tilde{u}_n$, $n \ge 1$, for \mathcal{J} on \mathcal{M}_ρ is a consequence of Lemma 2, Lemma 4, Lemma 6 and Theorem 2. These critical points $\pm \tilde{u}_n$, $n \ge 1$, give rise to Lagrange multipliers λ_n , $n \ge 1$, and then to infinitely many solutions $(\lambda_n, \pm \tilde{u}_n)$, $n \ge 1$, of problem (1).

In order to complete the proof of Theorem 1, we only need to prove that $\lambda_n \to \infty$. For this purpose, let $k \ge 1$ be an arbitrary but fixed integer. By Lemma 7 we deduce that $\gamma(\mathcal{J}_k) = n_k$ for some integer n_k . Now, from Lemma 2, there exists a compact $K_k \in \mathcal{M}_\rho \cap \mathcal{E}$ such that $\gamma(K_k) = n_k + 1$. In particular, this implies that Γ_{n_k+1} is nonempty (for the definition of this set see Theorem 2). Using property (1) from Lemma 1, we obtain that for any $A \in \Gamma_{n_k+1}$, we have $\sup_A \mathcal{J} > k$, and consequently $c_k \ge k$ (c_k was defined in Theorem 2). In addition, since \mathcal{J} is bounded below we have that $c_1 > -\infty$, therefore $-\infty < c_1 \le \cdots \le c_k < \infty$. Since, from Lemma 6, \mathcal{J} satisfies the Palais–Smale condition with respect to \mathcal{M}_ρ it is known that c_k is a critical value of $\mathcal{J}_{\mathcal{M}_\rho}$ (see, for example, ¹⁷ and ²⁰).

Summing up, for any positive integer k there are $\lambda_k \in \mathbb{R}$ and $\widetilde{u}_k = (u_{1k}, u_{2k}) \in \mathcal{M}_{\rho}$ such that

$$\mathcal{J}'(\widetilde{u}_k) = \lambda_k j'_{pq}(\widetilde{u}_k), \ \mathcal{J}(\widetilde{u}_k) = c_k \ge k.$$
(36)

In particular, (36) implies that

$$\lambda_{k} \geq \frac{\langle \mathcal{J}'(\widetilde{u}_{k}), \widetilde{u}_{k} \rangle}{\rho(p+q)} \, \forall \, k \geq 1,$$
$$\mathcal{J}(\widetilde{u}_{k}) \to \infty \text{ as } k \to \infty.$$
(37)

Thus, in order to complete the proof it remains to show that (37) implies

$$\langle \mathcal{J}'(\widetilde{u}_k), \widetilde{u}_k \rangle = \| \nabla u_{1k} \|_{1p}^p + \| \nabla u_{2k} \|_{2q}^q + \int_{\Sigma} \beta | u_{2k} |^{\zeta} d\sigma + \int_{\Omega_1} \gamma_1 | u_{1k} |^r dx + \int_{\Omega_2} \gamma_2 | u_{2k} |^s dx \to \infty \text{ as } k \to \infty.$$

$$(38)$$

On the one hand, we have

$$\mathcal{J}(\widetilde{u}_{k}) \leq \| \nabla u_{1k} \|_{1p}^{p} + \| \nabla u_{2k} \|_{2q}^{q} + \int_{\Sigma} \beta \| u_{2k} \|_{\zeta}^{\zeta} d\sigma + \| \gamma_{1} \|_{1\infty} \| u_{1k} \|_{1r}^{r} + \| \gamma_{2} \|_{2\infty} \| u_{2k} \|_{2s}^{s} \to \infty.$$
(39)

On the other hand, using Lemma 3, there exist $\xi_1 < r$, $\xi_2 < s$ with $r - \xi_1 < p$, $s - \xi_2 < q$ such that for all $k \ge 1$ we have the following inequalities (see also the proof of Lemma 4)

$$\| u_{1k} \|_{1r}^{r} \leq C_{1} (\| \nabla u_{1k} \|_{1p}^{p} + p\rho)^{\frac{r-\epsilon_{1}}{p}} \text{ if } p \geq N,$$

$$\| u_{2k} \|_{2s}^{s} \leq C_{2} (\| \nabla u_{2k} \|_{2q}^{q} + q\rho)^{\frac{s-\epsilon_{2}}{q}} \text{ if } q \geq N,$$

$$\| u_{1k} \|_{1r}^{r} \leq C_{3} \text{ if } p < N, \quad \| u_{2k} \|_{2s}^{r} \leq C_{4} \text{ if } q < N \forall k \geq 1,$$

$$(40)$$

where C_1, \dots, C_4 are positive constants independent of k. Thus (39) and (40) imply

$$\|\nabla u_{1k}\|_{1p} + \|\nabla u_{2k}\|_{2q} + \int_{\Sigma} \beta |u_{2k}|^{\zeta} d\sigma \to \infty \text{ as } k \to \infty.$$

$$\tag{41}$$

Finally, since

$$\langle \mathcal{J}'(\widetilde{u}_{k}), \widetilde{u}_{k} \rangle \geq \| \nabla u_{1k} \|_{1p}^{p} + \| \nabla u_{2k} \|_{2q}^{q} + \int_{\Sigma} \beta \| u_{2k} \|^{\zeta} d\sigma - \| \gamma_{1} \|_{1\infty} \| u_{1k} \|_{1r}^{r} - \| \gamma_{2} \|_{2\infty} \| u_{2k} \|_{2s}^{s} \forall k \geq 1,$$

$$(42)$$

using (40) and (41) we obtain (38) which completes the proof.

References

- 1. Adams R, Fournier J. Sobolev Spaces, 2nd ed, Pure and Applied Mathematics, Vol. 140. New York–London: Academic Press; 2003.
- Barbu L, Moroşanu G, Pintea C. A nonlinear elliptic eigenvalue-transmission problem with Neumann boundary condition. Ann Mat Pura Appl. 2019;198:821–836.
- 3. Benci V, Fortunato D. An eigenvalue problem for the Schrödinger–Maxwell equations. *Topol Methods Nonlinear Anal.* 1998;11:283–293.
- 4. Brézis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer; 2011.
- 5. Denkowski Z, Migórski S, Papageorgiou NS. An Introduction to Nonlinear Analysis: Theory. New York: Springer; 2003.
- 6. Fife PC. Dynamics of internal layers and diffusive interfaces. Society for industrial and applied mathematics; 1988.
- 7. Figueiredo GM, Montenegro M. A transmission problem on \mathbb{R}^2 with critical exponential growth. Arch Math. 2012;99(3):271–279.

- 8. Figueiredo GM, Montenegro M. On a nonlinear elliptic transmission problem with critical growth. *J Convex Anal.* 2013;20:947–954. 2013;
- Figueiredo GM, Siciliano G. Normalized solutions for an horizontal transmission problem. *Appl Anal.* 2021;100(15):3174-3181.
- 10. Krasnosel'skii MA. Topological methods in the theory of nonlinear integral equations. New York: MacMillan; 1964.
- 11. Li FY, Zhang Y, Zhu XL, Liang ZP. Ground-state solutions to Kirchhoff-type transmission problems with critical perturbation. *J Math Anal Appl.* 2020;482(2):123568.
- 12. Ma TF, Muñoz Rivera JE. Positive solutions for a nonlinear nonlocal elliptic transmission problem. *Appl Math Lett*. 2003;16:243–248.
- 13. Papageorgiou NS, Kyritsi ST. Handbook of Applied Analysis, Advances in Mechanics and Mathematics. New York: Springer; 2009.
- 14. Nicaise S. Polygonal interface problems. Lang; 1993.
- 15. Pflüger K. Nonlinear transmission problem in bounded domains of \mathbb{R}^n . Appl Anal. 1996;62:391–403.
- 16. Pisani L, Siciliano G. Neumann condition in the Schrödinger-Maxwell system. *Topol Methods Nonlinear Anal.* 2007;29:251–264.
- 17. Rabinowitz PH, Variational methods for nonlinear eigenvalue problems. Rome: Edizioni Cremonese; 139-195; 1974. (1974), 139-195.
- Rabinowitz PH, et al. (ed.). Minimax methods in critical point theory with applications to differential equations. American Mathematical Society; 1986.
- 19. Szulkin A. Ljusternik–Schnirelmann theory on C¹-manifolds. Ann Inst H. Poincaré Anal Non Linéaire. 1998;5(2):119–139.
- 20. Struwe M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Berlin: Springer; 2000.
- 21. Troyanski SL. On locally uniformly convex and differentiable norms in certain non-separable Banach spaces. *Studia Math.* 1970/71;37:173–180.
- 22. Zeidler E. Nonlinear functional analysis and its applications: III: variational methods and optimization. New York: Springer; 2013.
- 23. Zeidler E. Ljusternik-Schnirelman theory on general level sets. Math Nachr. 1986;129:235-259.