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Abstract

Let $\Omega$ be a bounded domain in $\mathbb{R}ˆN, N\geq 2,$ with smooth boundary $\Sigma$ and let $\Omega 1$
be a subdomain of $\Omega$ with smooth boundary $\Gamma,$ such that $\overline{\Omega} 1\subset \Omega$. Denote

$\Omega 2 = \Omega \setminus \overline{\Omega} 1.$ Consider the transmission eigenvalue problem \begin{equation*}
\left\{\begin{array}{l} -\Delta p u 1+\gamma 1(x)\mid u 1\mid ˆ{r-2}u 1=\lambda \mid u 1\mid ˆ{p-2}u 1\ \ \mbox{in}
˜ \Omega 1,\\[1mm] -\Delta q u 2+\gamma 2(x)\mid u 2\mid ˆ{s-2}u 2=\lambda \mid u 2\mid ˆ{q-2}u 2\ \ \mbox{in}
˜ \Omega 2,\\[1mm] u 1=u 2,˜˜\frac{\partial u 1}{\partial\nu {p}}=\frac{\partial u 2}{\partial\nu {q}} ˜˜ \mbox{on} ˜

\Gamma,\\[1mm] \frac{\partial u 2}{\partial\nu {q}}+\beta (x) \mid u 2\midˆ{\zeta-2} u 2=0 ˜˜ \mbox{on} ˜ \Sigma,

\end{array}\right. \end{equation*} where $\lambda$ is a real parameter $p, q, r, s, \zeta \in (1, \infty)$ and $\gamma i\in
Lˆ{\infty}(\Omega i), ˜i=1, 2, \beta\in Lˆ{\infty}(\Sigma),$ $\beta\geq 0$ a.e. on $\Sigma.$ Under additional suitable

assumptions on $p, q, r, s, \zeta$ we prove the existence of a sequence of eigenvalues $\big(\lambda n\big) n, \lambda -

n\rightarrow \infty.$ The proof is based on the Lusternik-Schnirelmann theory on $Cˆ1-$ manifolds.
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Summary

LetΩ be a bounded domain inℝN , N ≥ 2, with smooth boundary Σ and letΩ1 be a
subdomain of Ω with smooth boundary Γ, such that Ω1 ⊂ Ω. Denote Ω2 = Ω ⧵ Ω1.
Consider the transmission eigenvalue problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−Δpu1 + 
1(x) ∣ u1 ∣r−2 u1 = � ∣ u1 ∣p−2 u1 in Ω1,

−Δqu2 + 
2(x) ∣ u2 ∣s−2 u2 = � ∣ u2 ∣q−2 u2 in Ω2,

u1 = u2,
)u1
)�p

= )u2
)�q

on Γ,
)u2
)�q

+ �(x) ∣ u2 ∣�−2 u2 = 0 on Σ,

where � is a real parameter, p, q, r, s, � ∈ (1,∞), and 
i ∈ L∞(Ωi), i = 1, 2, � ∈
L∞(Σ), � ≥ 0 a.e. on Σ. Under additional suitable assumptions on p, q, r, s, � we
prove the existence of a sequence of eigenvalues

(

�n
)

n, �n →∞. The proof is based
on the Lusternik-Schnirelmann theory on C1− manifolds.
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1 INTRODUCTION

Consider a bounded domain Ω ⊂ ℝN , N ≥ 2, with smooth boundary Σ, and a subdomain Ω1 with smooth boundary Γ, such
that Ω1 ⊂ Ω, as in Fig. 1 below, where Ω2 = Ω ⧵Ω1.
Consider the following transmission eigenvalue problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δpu1 + 
1(x) ∣ u1 ∣r−2 u1 = � ∣ u1 ∣p−2 u1 in Ω1,
−Δqu2 + 
2(x) ∣ u2 ∣s−2 u2 = � ∣ u2 ∣q−2 u2 in Ω2,
u1 = u2,

)u1
)�p
= )u2

)�q
on Γ,

)u2
)�q
+ �(x) ∣ u2 ∣�−2 u2 = 0 on Σ,

(1)

where � is a real parameter.

†On a nonlinear transmission eigenvalue problem.
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FIGURE 1

As usual, for � ∈ (1,∞), we denote by Δ� the �-Laplace operator, i.e., Δ�u = div (∣ ∇u ∣�−2 ∇u).
In the second transmission condition on Γ, )∕)�� , � ∈ {p, q}, denote the conormal derivatives corresponding to the

differential operators of the problem, i.e.,
)v
)��

∶=∣ ∇v ∣�−2 ∇v ⋅ �� ,

with �p being the outward unit normal on the boundary Γ of Ω1 pointing outward and �q = −�p.

Throughout the paper we will assume that the following conditions are satisfied

(ℎ)1 p, q, r, s, � ∈ (1,∞), � < q∗,

r < p
(

1 +
p
N

)

in case (r > p and p < N),

s < q
(

1 +
q
N

)

in case (s > q and q < N)
(2)

(here q∗ denotes the critical Sobolev exponent for the boundary trace embedding defined in Remark 1 below);

(ℎ)2 
i ∈ L∞(Ωi), i = 1, 2, � ∈ L∞(Σ), � ≥ 0 a.e. on Σ.

Since function � in (ℎ2) is allowed to be the null function, we call the boundary condition (1)4 a Neumann-Robin boundary
condition.
Note that a similar transmission eigenvalue problem was considered in2, but here we have a different division of Ω into

subdomains Ω1 and Ω2, as well as different boundary conditions.

Remark 1. Recall that, given a smooth domain D ⊂ ℝN and � > 1, the critical Sobolev exponent �∗ is defined by �∗ ∶=
�N
N−�

if 1 < � < N and �∗ ∶= ∞ otherwise. If � < N, we have W 1,�(Ω) → L�(Ω) continuously if 1 ≤ � ≤ �∗ and
compactly if 1 ≤ � < �∗, W 1,N (Ω) → L�(Ω) compactly if 1 ≤ � < ∞ and W 1,�(Ω) → C(Ω) compactly if � > N (see, for
example,4, Section 9.3,5, Theorem 3.9.52).
Recall also that there is a compact boundary trace embedding W 1,�(Ω) → L�()D) for every � ∈ [1, �∗) and similarly as

before in the other ranges of �. Here we denote by �∗ ∶=
�(N−1)
N−�

if � < N and �∗ ∶= ∞ otherwise (see, for example,1).

We assume in what follows that p ≤ q. This does not restrict the generality, as can be seen by checking the proofs of our main
result below (Theorem 1).

Definition 1. A weak solution of problem (1) is a pair u = (u1, u2) ∈ W 1,p(Ω1) ×W 1,q(Ω2), such that ui satisfies the equation
(1)i on Ωi in the sense of distributions, i = 1, 2, and u1, u2 satisfy the boundary and transmission conditions (1)3,4 in the sense
of traces.

Obviously, any solution u = (u1, u2) of problem (1) can be identified with an element u of the space

W ∶=
{

u ∈ W 1,p(Ω) ∶ u|Ω2 ∈ W
1,q(Ω2)

}

,

where u|Ωi = ui, i = 1, 2.
For 1 < � ≤∞, the Lebesgue norms of the spacesL�(Ωi) andL�(Σ)will be denoted by ‖⋅‖i� , i = 1, 2, and ‖⋅‖)� , respectively.
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We endowW with the norm
∥ u ∥∶=∥ u1 ∥1 + ∥ u2 ∥2 ∀ u = (u1, u2) ∈ W , (3)

where ∥ ⋅ ∥i, i = 1, 2, are defined by

‖u1‖1 ∶= ‖∇u1‖1p + ‖u1‖1p, ‖u2‖2 ∶= ‖∇u2‖2q + ‖u2‖2q . (4)

Remark 2. The spaceW defined before can be identified with the space

W̃ ∶= {ũ = (u1, u2) ∈ W 1,p(Ω1) ×W 1,q(Ω2); u1 = u2 on Γ}, (5)

which shows thatW is a reflexive Banach space, as W̃ is a closed subspace of the reflexive productW 1,p(Ω1) ×W 1,q(Ω2) with
reflexive factors (see2, Remark 1.1).

Definition 2. The real number � is said to be an eigenvalue of the problem (1) if (1) has a weak solution ũ� = (u1�, u2�) ∈
W̃ ⧵ {(0, 0)}. In this case ũ� is called an eigenfunction of the problem (1) corresponding to the eigenvalue �, and the pair (�, ũ�)
is called an eigenpair of the problem (1).

The next result gives a characterization of the eigenvalues of problem (1).

Proposition 1. The real number � is an eigenvalue of the problem (1) if and only if there exists ũ� = (u1�, u2�) ∈ W̃ ⧵ {(0, 0)},
such that for all (v1, v2) ∈ W̃

∫
Ω1

∣ ∇u1� ∣p−2 ∇u1� ⋅ ∇v1 dx + ∫
Ω2

∣ ∇u2� ∣q−2 ∇u2� ⋅ ∇v2 dx

+ ∫
Ω1


1 ∣ u1� ∣r−2 u1�v1 dx + ∫
Ω2


2 ∣ u2� ∣s−2 u2�v2 dx + ∫
Σ

� ∣ u2� ∣�−2 u2�v2 d�

= �
(

∫
Ω1

∣ u1� ∣p−2 u1�v1 dx + ∫
Ω2

∣ u2� ∣q−2 u2�v2 dx
)

.

(6)

The proof of this result is easy. It can be achieved by using arguments similar to those from the proof of Proposition 1.1 in
Barbu-Moroşanu-Pintea2, so we omit it.

For � > 0, consider the subset� of W̃ defined by

� ∶=
{

ũ = (u1, u2) ∈ W̃ ; 1
p ∫
Ω1

∣ u1 ∣p dx +
1
q ∫
Ω2

∣ u2 ∣q dx = �
}

. (7)

It is easy to verify that� has an infinite number of nonzero elements.

Our goal is to use the Lusternik-Schnirelmann theory on C1−manifolds to investigate the eigenvalues of problem (1).
Specifically, we shall prove the following result.

Theorem 1. Assume that (ℎ1) and (ℎ2) are fulfilled. Then, for any � > 0, there is a sequence of eigenpairs
(

�n,±(u1n, u2n)
)

n of
problem (1), with

(

(u1n, u2n)
)

n ⊂� and �n →∞ as n→∞.

Transmission problems arise in various applications in fluid mechanics, physics, chemistry, biology, etc. See, e.g., Fife6,
Nicaise14, Pflüger15. So, it is important to investigate such kind of problems. Let us recall, for instance, that Figueiredo and
Montenegro7 proved that the following elliptic transmission problem in ℝ2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δu1 = f (x, u1) in Ω1,
−Δu2 = g(x, u2) in Ω2,
u1 = u2,

)u1
)�1
= )u2

)�2
on Γ,

u2 = 0 on Σ,
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with exponential nonlinearities of critical type, has a nontrivial solution. Also, the transmission problem,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δu1 = �f (x, u1) in Ω1,
−Δu2 =∣ u2 ∣2

∗−2 u2 in Ω2,
u1 = u2,

)u1
)�1
= )u2

)�2
on Γ,

u2 = 0 on Σ,

with critical growth, was studied by the same authors in8. Other existence results for nonlinear transmission problems,
approached by variational arguments, are treated for instance in9,11,12,15, and the references therein.
The nonlinear transmission eigenvalue problem (1) we investigate here is closely related to the problems mentioned above.

2 PRELIMINARIES

We start this section by recalling some basic notions on the Krasnosel’skiı̆’s genus which will be used in the proof of our main
result (Theorem 1).
Let X be a real Banach space. We denote by X∗ the dual of X and by ⟨⋅, ⋅⟩ the duality pairing between X∗ and X. Consider

 ⊂ X the set of all nonempty closed and symmetric subsets of X ⧵ {0}.We say that the set A ∈  has genus m and we denote

(A) = m if m is the smallest integer with the property that there exists an odd continuous map from A to ℝm ⧵ {0}. If A = ∅
we have 
(A) = 0 and if there is no such a finite m we set 
(A) = ∞.
In the following lemma we will recall only two properties of the genus that will be used in this paper. More information on

this subject may be found in the references10,17,18,20.

Lemma 1. 17, Lemma 1.1, Theorm 1.2

Let A,B ∈  .
(1) If A ⊂ B, then 
(A) ≤ 
(B);
(2) Let D be a symmetric and bounded neighbourhood of the origin in ℝN and let A ∈  be homeomorphic to )D by an odd
homeomorphism. Then 
(A) = N. In particular, the unit sphere S ⊂ ℝN is a set of genusN.

In order to use variational methods, let us also recall some results related to the Palais-Smale compactness condition. First,
we have the following definition (see, for example,19, pg. 123,22, Definition 44.13).

Definition 3. LetM be a given subset of a real Banach spaceX and let F ∶ D(F ) ⊂ X → ℝ be a functional that has a tangential
mapping F ′M with respect toM at each point u ∈M. Functional F satisfies the local Palais-Smale condition (PS)c with respect
to M if and only if the condition

⎧

⎪

⎨

⎪

⎩

each sequence (un)n in M such that
∥ F ′M(un) ∥→ 0 and F (un)→ c as n→∞
has a convergent subsequence

holds for a fixed c ∈ ℝ.
The above condition is a local version of the following Palais-Smale compactness condition:

⎧

⎪

⎨

⎪

⎩

each sequence (un)n in M such that
∥ F ′M(un) ∥→ 0 and

(

F (un)
)

n is bounded,
has a convergent subsequence.

(PS)

For the definition of the tangential mapping F ′M (or the differential of F with respect toM) see, for example,22, Definition 43.18.
In order to solve the eigenvalue problem (1), the constrained variational method can be applied. We will use the following

Lusternik–Schnirelmann principle on C1−manifolds (Szulkin19, Corollary 4.1).

Theorem 2. Suppose that M is a closed symmetric C1−submanifold of a real Banach space X and 0 ∉ M. Suppose also that
F ∈ C1(M,ℝ) is even and bounded below. Define

cj = inf
A∈Γj

sup
x∈A

F (x),
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where Γj = {A ⊂ M ∶ A ∈  , 
(A) ≥ j, and A is compact }. If Γk ≠ ∅ for some k ≥ 1 and if f satisfies (PS)c for all
c = cj , j = 1,⋯ , k, then F has at least k distinct pairs of critical points.

Next, we are going to exploit some properties of the set � (defined by (7)), which is evidently symmetric with respect to
the origin. Let us first introduce some notations.

Kpq(u1, u2) ∶=
1
p ∫
Ω1

∣ ∇u1 ∣p dx +
1
q ∫
Ω2

∣ ∇u2 ∣q dx,

krs� (u1, u2) ∶=
1
r ∫
Ω1


1 ∣ u1 ∣r dx +
1
s ∫
Ω2


2 ∣ u2 ∣s dx +
1
� ∫
Σ

∣ u2 ∣� d�,

jpq(u1, u2) ∶=
1
p ∫
Ω1

∣ u1 ∣p dx +
1
q ∫
Ω2

∣ u2 ∣q dx ∀ (u, u2) ∈ W̃ .

(8)

Since for all ũ = (u1, u2) ∈� we have ⟨j′pq(ũ), ũ⟩ ≠ 0, � is a regular value of the C
1 functional jpq . Therefore,� = j−1pq (�) is

a C1−manifold of codimension 1 in W̃ (see, for example,13, Theorem 2.2.7) with tangent space, in a point ũ = (u1, u2) ∈�, given
by Tũ� = ker j′pq(ũ).
Define the C1 functional,

 ∶ W̃ → ℝ,  (ũ) = Kpq(u1, u2) + krs� (u1, u2) ∀ ũ = (u1, u2) ∈ W̃ . (9)

Obviously,  ∈ C1(�,ℝ).We denote by �
the restriction of the functional  on � and by  ′

�
(ũ) the differential of 

at ũ ∈� with respect to�, i.e. the restriction of  ′(ũ) on Tũ�.

Remark 3. We are going to compute  ′
�
(ũ), ũ ∈ �. Obviously, ũ ∉ Tũ�, thus W = Tũ� ⊕ {�ũ; � ∈ ℝ}. Let P ∶

W̃ → Tũ� be the projection operator. Then, for every ṽ ∈ W̃ , there exists a unique � ∈ ℝ (which depends on ṽ) such that
ṽ = P ṽ + �ũ. In particular, as ⟨j′pq(ũ), P ṽ⟩ = 0, we obtain that � = ⟨j′pq(ũ), ṽ⟩∕⟨j

′
pq(ũ), ũ⟩. Therefore, if ṽ ∈ Tũ

⟨ ′
�
(ũ), ṽ⟩ = ⟨ ′(ũ), P ṽ⟩ = ⟨ ′(ũ), ṽ⟩ −

⟨j′pq(ũ), ṽ⟩

⟨j′pq(ũ), ũ⟩
⟨ ′(ũ), ũ⟩

=
⟨

 ′(ũ) −
⟨ ′(ũ), ũ⟩
⟨j′pq(ũ), ũ⟩

j′pq(ũ), ṽ
⟩

which implies that
 ′
�
(ũ) =  ′(ũ) − �(ũ)j′pq(ũ), �(ũ) =

⟨ ′(ũ), ũ⟩
⟨j′pq(ũ), ũ⟩

.

Moreover, ũ ∈ � is a critical point of �
if and only if  ′(ũ) = �j′pq(ũ) for some � ∈ ℝ. Thus, there is a one-to-one

correspondence between critical points of �
and the weak solutions of problem (1) (see, for example22, Proposition 43.21).

The following lemma shows, essentially, that 
(�) = ∞.

Lemma 2. For any positive integer k there exists a compact symmetric subset K ⊂� such that 
(K) = k.

Proof. Let �1, �2,⋯ , �k ∈ C∞0 (Ω) be nonnegative functions with disjoint compact supports, supp �j ⊂ Ω1, ∀ j = 1, 2,⋯ , k,
such that p−1 ∫Ω1 �

p
jdx = � ∀ j = 1, 2,⋯ , k. Obviously, {�1, �2,⋯ , �k} ⊂ � is a linearly independent set, thus Vk ∶=

Span {�1, �2,⋯ , �k} is a k dimensional space. It is clear that � ∩ Vk is the sphere of radius (p�)1∕p in Vk with respect to the
Lp−norm. In particular, 
(� ∩ Vk) = k and the proof is complete (see Lemma 1 (2)).

Remark 4. From Lemma 2 we see that the manifold � contains compact subsets of arbitrarily large genus, i. e., Γk ≠ ∅ for
any k ≥ 1 (the set Γk was defined in Theorem 2).

For the proof of themain result (Theorem 1), the following lemmawill play an important role in computations (see16, Lemma 3.1).

Lemma 3. Let D ⊂ ℝN be a smooth bounded domain. Assume that

� ∈ (1, N), � ∈ (�, �∗), � ∈
(

0, N
(

1 −
�
�∗

))

. (10)
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Then there exists a positive constant C such that, for every u ∈ W 1,�(D)

∥ u ∥�L�(D)≤ C
(

∥ ∇u ∥�L�(D) + ∥ u ∥
�
L�(D)

)(�−�)∕� ∥ u ∥�L�(D) . (11)

Remark 5. From � < N
(

1 − �
�∗

)

we have � < �.
Inequality (11) is still valid in the case � ≥ N, � > �, with 1 < � < �.

3 PROOF OF THEOREM 1

Throughout this section we assume that (ℎ1) and (ℎ2) are fulfilled and will be used without mentioning them in the statements
below.

The proof of Theorem 1 will follow as a consequence of several intermediate results.

Lemma 4. The functional �
is coercive, i.e.,

lim
∥(u1,u2)∥→∞,(u1,u2)∈�

 (u1, u2) = ∞.

Proof. Arguing by contradiction, we assume that there exist a positive constant C and a sequence
(

ũn
)

n =
(

u1n, u2n
)

n ⊂ �

such that ‖ũn‖ →∞ in W̃ as n→∞ and
�(ũn) ≤ C ∀ n ≥ 1. (12)

It is obvious that

 (u1n, u2n) ≥
1
p
∥ ∇u1n ∥

p
1p +

1
q
∥ ∇u2n ∥

q
2q

− 1
r
∥ 
1 ∥1∞∥ u1n ∥r1r −

1
s
∥ 
2 ∥2∞∥ u2n ∥s2s ∀ n ≥ 1.

(13)

For n ≥ 1, denote

T1n =
1
p
∥ ∇u1n ∥

p
1p −

1
r
∥ 
1 ∥1∞∥ u1n ∥r1r,

T2n =
1
q
∥ ∇u2n ∥

q
2q −

1
s
∥ 
2 ∥2∞∥ u2n ∥s2s .

(14)

As ∥ ũn ∥→ ∞, taking into account the fact that ũn ∈ �, we derive that ∥ ∇u1n ∥1p + ∥ ∇u2n ∥2q→ ∞. Therefore, without
loss of generality, we can assume that, up to a subsequence, ∥ ∇u1n ∥1p→∞.
Now, if r ≤ pwe have thatLr(Ω1) is continuously embedded intoLp(Ω1). Thus, there exists a positive constantC independent

of n such that
T1n ≥

1
p
∥ ∇u1n ∥

p
1p −C ∥ 
1 ∥1∞ ∀ n ≥ 1. (15)

On the other hand, if r > p and p < N,we make use of an argument in Figueiredo-Siciliano9, lemma 2.2. Thus, from the inequality
r < p

(

1 + p
N

)

(see assumptions (ℎ2)) we obtain that r < p∗ and 0 < r − p < N(1 − r∕p∗), therefore there exists �1 such that

r − p < �1 < N
(

1 − r
p∗

)

. (16)

Now, for such a �1, using Lemma 3 with D = Ω1, � = p, � = r and u = u1n, we obtain that there exists a positive constant C1
(independent of n) such that

∥ u1n ∥r1r≤ C1
(

∥ ∇u1n ∥
p
1p+ ∥ u1n ∥

p
1p

)(r−�1)∕p ∥ u1n ∥
�1
1p

≤ C1
(

∥ ∇u1n ∥
p
1p +p�

)(r−�1)∕p(p�)�1∕p.
(17)

Taking into account (14)1 and (17) we have, for all n ≥ 1,

T1n ≥
1
p
∥ ∇u1n ∥

p
1p −

C1
r
∥ 
1 ∥1∞

(

∥ ∇u1n ∥
p
1p +p�

)(r−�1)∕p(p�)�1∕p. (18)

Finally, if r > p and p ≥ N, making use of Remark 5 we can choose �1 such that r − p < �1 < r. A similar argument to the one
in the former case implies that (18) is still satisfied. Summing up, as ∥ ∇u1n ∥1p→ ∞ and p > r − �1 if r ≥ p, we obtain that
T1n →∞ (see (15) and (18)).
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Obviously, if q < N, then T2n satisfies an inequality similar to (15); in the contrary case, T2n will satisfy an inequality similar
to (18). It follows that T1n + T2n →∞.
Summing up, (13) implies that  (u1n, u2n) → ∞ which contradicts (12). This contradiction shows that  is coercive on �

and the proof is complete.

Obviously, the functional  is even and since it is coercive on�, it is also bounded below on�. Thus, we can exploit the
symmetry property in order to get multiplicity results for the critical points of �

.

Remark 6. From Lemma 4 and Remark 1, it is easy to see that for every sequence
(

ũn
)

n ⊂�, ũn = (u1n, u2n) such that
(

 (ũn)
)

n
is bounded (thus, from Lemma 4,

(

ũn
)

n is bounded) the sequences
(

∫
Ω1

∣ ∇u1n ∣p dx
)

n
,
(

∫
Ω2

∣ ∇u2n ∣q dx
)

n
,

(

∫
Ω1


1 ∣ u1n ∣r dx
)

n
,
(

∫
Ω2


2 ∣ u2n ∣s dx
)

n
,
(

∫
Σ

� ∣ u2n ∣� d�
)

n

(19)

are bounded.

For the proof of the main result, the following lemma will play an important role in computations.

Lemma 5. Let ∶= K ′
pq ∶ W̃

∗ → ℝ be the derivative of Kpq defined in (8)1. Then, for any ũ = (u1, u2), ṽ = (v1, v2) ∈ W̃ one
has

⟨(ũ) −(ṽ), u − v⟩
≥
(

∥ ∇u1 ∥
p−1
1p − ∥ ∇v1 ∥

p−1
1p

)(

∥ ∇u1 ∥1p − ∥ ∇v1 ∥1p
)

+
(

∥ ∇u2 ∥
q−1
2q − ∥ ∇v2 ∥

q−1
2q

)(

∥ ∇u2 ∥2q − ∥ ∇v2 ∥2q
)

≥ 0.
(20)

Proof. It is obvious that
⟨(ũ) −(ṽ), u − v⟩

=∥ ∇u1 ∥
p
1p + ∥ ∇v1 ∥

p
1p + ∥ ∇u2 ∥

q
2q + ∥ ∇v2 ∥

q
2q

− (T1 + T2) − (T3 + T4),

(21)

where we have denoted

T1 ∶= ∫
Ω1

∣ ∇u1 ∣p−2 ∇u1 ⋅ ∇v1 dx, T2 ∶= ∫
Ω1

∣ ∇v1 ∣p−2 ∇v1 ⋅ ∇u1 dx,

T3, T4 are similarly defined, by replacing p, Ω1 with q, Ω2, and u1, v1 with u2, v2.
We have, by the Hölder inequality

T1 ≤
(

∫
Ω1

∣ ∇u1 ∣p dx
)

p−1
p
(

∫
Ω1

∣ ∇v1 ∣p dx
)

1
p . (22)

Similar inequalities can be obtained for the other terms, T2, T3, T4 and using (21) we derive (20).

Lemma 6. The functional  satisfies the Palais–Smale condition with respect to�.

Proof. We already know that � is a C1− manifold and �
∈ C1(�,ℝ). Thus, the proof amounts to showing that the

functional  satisfies condition (PS).
Let

(

ũn
)

n ⊂�, ũn = (u1n, u2n), and
(

�n
)

n ⊂ ℝ be such that
(

 (ũn)
)

n is bounded and 
′
�
(ũn)→ 0, i.e.,

 ′(ũn) − �nj′pq(ũn) = K
′
pq(ũn) + k

′
rs� (ũn) − �nj

′
pq(ũn)→ 0 (23)

in W̃ ∗ (see Remark 3).
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We have already observed that  is coercive on � (see Lemma 4); this implies that the sequence
(

ũn
)

n is bounded in W̃ .
Therefore, we can assume that there is a subsequence, still denoted

(

ũn
)

n, such that

ũ⇀ u∗ = (u1∗, u2∗) in W̃ , u1n → u1∗ in L�1(Ω1),
u2n → u2∗ in L�2(Ω2), u2n → u2∗ in L�3(Σ),

(24)

for some ũ∗ ∈ W̃ , with �1 < p∗, �2 < q∗, �3 < q∗ (see Remark 1).
In particular, for �1 = p, �2 = q and �1 = r, �2 = s, �3 = �, respectively, we obtain

1
p ∫
Ω1

∣ u1∗ ∣p dx +
1
q ∫
Ω2

∣ u2∗ ∣q dx = � ⇒ u∗ ∈�,

∫
Ω1


1 ∣ u1n ∣r dx→ ∫
Ω1


1 ∣ u1∗ ∣r dx,

∫
Ω2


2 ∣ u2n ∣s dx→ ∫
Ω2


2 ∣ u2∗ ∣s dx,

∫
Σ

� ∣ u2n ∣� d� → ∫
Σ

� ∣ u2∗ ∣� d�.

(25)

We also have
∥ u1n ∥1p + ∥ u2n ∥2q→∥ u1∗ ∥1p + ∥ u2∗ ∥2q . (26)

We claim that the sequence
(

�n
)

n is bounded. Indeed, multiplying (23) by ũn ∈ � and taking into account that the sequence
(

ũn
)

n is bounded, we have

∫
Ω1

∣ ∇u1n ∣p dx + ∫
Ω2

∣ ∇u2n ∣q dx + ∫
Σ

� ∣ u2n ∣� d�

+ ∫
Ω1


1 ∣ u1n ∣p dx + ∫
Ω2


2 ∣ u2n ∣q dx − �n⟨j′pq(ũn), ũn⟩ → 0.

Now, since ⟨j′pq(ũn), ũn⟩ ∈ (�, (p + q)�), making use of Remark 6 we derive that
(

�n
)

n is bounden. Thus, up to a subsequence,
we can assume �n → � for some � ∈ ℝ.
Next, we are going to prove that ũn → u∗ in W̃ . Since W̃ is a reflexive Banach space and ũn ⇀ u∗, using the Lindenstrauss-

Asplund-Troyanski theorem (see21), it is enough to prove that ∥ ũn ∥→∥ ũ∗ ∥ in order to obtain the strong convergence ũn → ũ.
Moreover, using (26) we only need to show that

∥ ∇u1n ∥1p + ∥ ∇u2n ∥2q→∥ ∇u1∗ ∥1p + ∥ ∇u2∗ ∥2q . (27)

Note first that, since
(

ũn
)

n is bounden in W̃ , (23) implies

∣ ⟨ ′
�
(ũn), ũn − ũ∗⟩ ∣≤∥  ′

�
(ũn) ∥Tũn∗

�

(

∥ ũn ∥ + ∥ ũ∗ ∥
)

→ 0. (28)

Next, we claim that
⟨k′rs� (ũn), ũn − ũ∗⟩ → 0. (29)
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Indeed, applying the Hölder inequality we have

∣ ⟨k′rs� (ũn), ũn − ũ∗⟩ ∣ ≤ ∫
Ω1

∣ 
1(u1n − u1∗) ∣ ⋅ ∣ u1n ∣r−1 dx

+ ∫
Ω2

∣ 
2(u2n − u2∗) ∣ ⋅ ∣ u2n ∣s−1 dx

+ ∫
Σ

∣ �(u1n − u1∗) ∣ ⋅ ∣ u1n ∣�−1 d�

≤∥ 
1 ∥1∞∥ u1n ∥r−11r ∥ u1n − u1∗ ∥1r
+ ∥ 
2 ∥2∞∥ u2n ∥s−12s ∥ u2n − u2∗ ∥2s
+ ∥ � ∥)∞∥ u2n ∥

�−1
)� ∥ u2n − u2∗ ∥)� .

(30)

Since
(

∥ u1n ∥r−11r

)

n,
(

∥ u2n ∥s−12s

)

n and
(

∥ u2n ∥
�−1
)�

)

n are bounded (see Remark 6), using (24) we derive (29).
In a similar way, as

(

�n
)

n is bounded, we obtain

⟨�nj
′
pq(ũn), ũn − ũ∗⟩ → 0. (31)

Now, (29) and (31) along with (28) and (23), imply

⟨K ′
pq(ũn), ũn − ũ∗⟩ → 0. (32)

Then, using (32) and the convergence ũn ⇀ ũ∗, we first notice that

lim
n→∞

⟨K ′
pq(ũn) −K

′
pq(ũ∗), ũn − ũ∗⟩

= lim
n→∞

(

⟨K ′
pq(ũn), ũn − ũ∗⟩ − ⟨K ′

pq(ũ∗), ũn − ũ∗⟩
)

= 0.
(33)

Using inequality (20) with ũ = ũn = (u1n, u2n), ṽ = ũ∗ = (u1∗, u2∗) and (33) we obtain

0 ≤
(

∥ ∇u1n ∥
p−1
1p − ∥ ∇u1∗ ∥

p−1
1p

)(

∥ ∇u1n ∥1p − ∥ ∇u1∗ ∥1p
)

+
(

∥ ∇u2n ∥
q−1
2q − ∥ ∇u2∗ ∥

q−1
2q

)(

∥ ∇u2n ∥2q − ∥ ∇u2∗ ∥2q
)

≤ ⟨K ′
pq(ũn) −K

′
pq(ũ∗), ũn − ũ∗⟩ → 0,

(34)

and we conclude that
∥ ∇u1n ∥1p + ∥ ∇u2n ∥2q→∥ ∇u1∗ ∥1p + ∥ ∇u2∗ ∥2q . (35)

According to (26) and (35) we finally obtain the strong convergence of
(

ũn
)

n.

Since the functional  satisfies the Palais–Smale condition with respect to � and is bounded from below, it has sublevels
with finite genus.

Lemma 7. For any c ∈ ℝ, the set c = {u ∈�;  (u) ≤ c} has finite genus.

For the proof of this result we refer the reader to Benci-Frotunato3, Lemma 9.
The existence of infinitely many critical points ±ũn, n ≥ 1, for  on � is a consequence of Lemma 2, Lemma 4, Lemma

6 and Theorem 2. These critical points ±ũn, n ≥ 1, give rise to Lagrange multipliers �n, n ≥ 1, and then to infinitely many
solutions (�n,±ũn), n ≥ 1, of problem (1).
In order to complete the proof of Theorem 1, we only need to prove that �n → ∞. For this purpose, let k ≥ 1 be an arbitrary

but fixed integer. By Lemma 7 we deduce that 
(k) = nk for some integer nk. Now, from Lemma 2, there exists a compact
Kk ∈ � ∩  such that 
(Kk) = nk + 1. In particular, this implies that Γnk+1 is nonempty (for the definition of this set see
Theorem 2). Using property (1) from Lemma 1, we obtain that for anyA ∈ Γnk+1,we have supA  > k, and consequently ck ≥ k
(ck was defined in Theorem 2). In addition, since is bounded belowwe have that c1 > −∞, therefore−∞ < c1 ≤⋯ ≤ ck <∞.
Since, from Lemma 6,  satisfies the Palais–Smale condition with respect to � it is known that ck is a critical value of �

(see, for example,17 and20).
Summing up, for any positive integer k there are �k ∈ ℝ and ũk = (u1k, u2k) ∈� such that

 ′(ũk) = �kj′pq(ũk),  (ũk) = ck ≥ k. (36)
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In particular, (36) implies that

�k ≥
⟨ ′(ũk), ũk⟩
�(p + q)

∀ k ≥ 1,

 (ũk)→∞ as k→∞. (37)
Thus, in order to complete the proof it remains to show that (37) implies

⟨ ′(ũk), ũk⟩ =∥ ∇u1k ∥
p
1p + ∥ ∇u2k ∥

q
2q +∫

Σ

� ∣ u2k ∣� d�

+ ∫
Ω1


1 ∣ u1k ∣r dx + ∫
Ω2


2 ∣ u2k ∣s dx→∞ as k→∞.
(38)

On the one hand, we have

 (ũk) ≤∥ ∇u1k ∥
p
1p + ∥ ∇u2k ∥

q
2q +∫

Σ

� ∣ u2k ∣� d�

+ ∥ 
1 ∥1∞∥ u1k ∥r1r + ∥ 
2 ∥2∞∥ u2k ∥
s
2s→∞.

(39)

On the other hand, using Lemma 3, there exist �1 < r, �2 < s with r − �1 < p, s − �2 < q such that for all k ≥ 1 we have the
following inequalities (see also the proof of Lemma 4)

∥ u1k ∥r1r ≤ C1
(

∥ ∇u1k ∥
p
1p +p�

)

r−�1
p if p ≥ N,

∥ u2k ∥s2s ≤ C2
(

∥ ∇u2k ∥
q
2q +q�

)

s−�2
q if q ≥ N,

∥ u1k ∥r1r ≤ C3 if p < N, ∥ u2k ∥r2s≤ C4 if q < N ∀ k ≥ 1,

(40)

where C1,⋯ , C4 are positive constants independent of k. Thus (39) and (40) imply

∥ ∇u1k ∥1p + ∥ ∇u2k ∥2q +∫
Σ

� ∣ u2k ∣� d� →∞ as k→∞. (41)

Finally, since

⟨ ′(ũk), ũk⟩ ≥∥ ∇u1k ∥
p
1p + ∥ ∇u2k ∥

q
2q +∫

Σ

� ∣ u2k ∣� d�

− ∥ 
1 ∥1∞∥ u1k ∥r1r − ∥ 
2 ∥2∞∥ u2k ∥
s
2s ∀ k ≥ 1,

(42)

using (40) and (41) we obtain (38) which completes the proof.
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