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Abstract

The accurate prediction of radio wave propagation is extremely important for wireless network planning and optimization.

However, inexact matching between the traditional empirical model and actual propagation environments, as well as the

insufficiency of the sample data required for training a deep learning model, lead to unsatisfactory prediction results. Our

paper proposes a field strength prediction model based on a deep neural network that is aimed at a tiny dataset composed of

the geographic information and corresponding satellite images of a target area. This model connects two pretrained networks

to minimize the parameters to be learned. Simultaneously, we construct a convolutional neural network (CNN) model for

comparison based on a previous advanced study in this field. Experimental results show that the proposed model can obtain

the same accuracy as that of previously developed CNN models while requiring less data.
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Field strength prediction based on deep
learning under small sample data

Min Zhou,1 Wei Shao,1 Yang Liu,1 and Xiaoqin Yang1

1College of Communication Engineering, Army Engineering University
of PLA, Nanjing, China
Email: tytglpp@126.com

The accurate prediction of radio wave propagation is extremely impor-
tant for wireless network planning and optimization. However, inex-
act matching between the traditional empirical model and actual prop-
agation environments, as well as the insufficiency of the sample data
required for training a deep learning model, lead to unsatisfactory pre-
diction results. Our paper proposes a field strength prediction model
based on a deep neural network that is aimed at a tiny dataset composed
of the geographic information and corresponding satellite images of a
target area. This model connects two pretrained networks to minimize
the parameters to be learned. Simultaneously, we construct a convolu-
tional neural network (CNN) model for comparison based on a previous
advanced study in this field. Experimental results show that the pro-
posed model can obtain the same accuracy as that of previously devel-
oped CNN models while requiring less data.

Introduction: Radio wave propagation prediction possesses significant
implications for wireless network planning and optimization [1]. The
propagation process of radio waves is extremely complex and is influ-
enced by numerous external factors, such as terrain, weather and envi-
ronmental characteristics [2]. Many studies have been conducted on
radio wave prediction and channel modeling, such as those on traditional
deterministic models [3], stochastic models [4], and some models based
on ray tracing methods [5]. However, deterministic models are compu-
tationally expensive, while most stochastic models ignore the influences
of environmental factors [6], resulting in limited prediction accuracy.
Ray tracing methods have the same problem as that faced by determin-
istic models; that is, they require detailed geographic data and enormous
computational complexity [7].

In recent years, many scholars have considered employing machine
learning to obtain the large-scale propagation characteristics of various
communication environments, such as urban [8, 9], rural [10, 11] and
mixed environments [12], as well as some special environments (tunnels,
mines, roads, etc.) [13–15]. For such methods, an increase in the num-
ber of input feature types helps to achieve improved prediction accuracy
since this enables more comprehensive descriptions of environmental
characteristics.

Therefore, recent studies have taken satellite images as an additional
input feature type because satellite images can intuitively represent the
environmental characteristics of research areas. Jakob et al. proposed a
model by combining a fully connected network (FCN) and a convolu-
tional neural network (CNN) [16]; additionally, they adopted latitudes,
longitudes, the distance between the transmitter and receiver and satel-
lite images as model inputs. With the application of satellite images, the
prediction accuracy was significantly improved. Furthermore, this aca-
demic team introduced a model-aided deep learning method to enhance
the prediction of path losses in some invisible locations [17]. The real-
izations of these works were based on the presence of ideal datasets.
The authors collected relatively complete data through drive test mea-
surements, but it is difficult for many researchers to obtain complete
data.

The contributions of this paper are summarized as follows. We pro-
pose a model based on a deep neural network to accurately predict field
strength in cases with less sample data. The model adopts the transfer
learning method and is composed of two pretrained submodels; there-
fore, the number of parameters it needs to learn is greatly reduced so that
it can accurately predict field strength under small sample size. Simul-
taneously, we refer to the previous study in [16] to construct a CNN
model with sufficient sample data for comparison purposes. The results
show that the prediction accuracy of the proposed model is not inferior
to that of the previously developed CNN model and our proposed model
requires only a small number of samples.

Data generation: The training, validation, and testing of all models cov-
ered in this paper are based on one dataset. The input of the model is
further defined as:

𝑥𝑛 = [𝑙𝑎𝑡 , 𝑙𝑜𝑛, 𝐻 , 𝐼 ].

where 𝑙𝑎𝑡 and 𝑙𝑜𝑛 represent the longitude and latitude coordinates of
the measurement point, respectively, 𝐻 denotes the elevation of the mea-
surement point, and 𝐼 denotes the satellite image of a certain area cen-
tered on the measurement point. Through drive test measurements, we
acquire measured radio wave propagation data in a suburb of Nanjing.
The data include the longitude and latitude of each measurement point
and the corresponding field strength, with a frequency of 2590 MHz.
The measurement area is a 3 km × 2 km rectangular area, including a
certain number of buildings, roads, vegetation, lakes, hills, farmland and
other various environmental features. Finally, 11,298 usable samples are
obtained after data preprocessing.

To obtain the elevation data of each measurement point, we adopt the
digital elevation model (DEM) of Nanjing and then use Python’s GDAL
library to read the DEM data and query the elevation information based
on the latitude and longitude values. Considering the large number of
images required in this paper, we download an internet tile map and
obtain satellite images with the desired size after a series of process-
ing steps conducted from the perspective of convenience and economy.
Specifically, we use the longitude and latitude values of the measurement
points to obtain an internet tile map and then achieve an ideal image size
through stitching and cutting, which can be completed with Python. The
area covered by the satellite images with sizes of 224 × 224 pixels is
approximately ∼ 168 × 168 m, the number of satellite images is the
same as the number of measurement points, and these images have three
color channels (RGB). The satellite images of two adjacent points pos-
sess a high degree of overlap, which is beneficial for model prediction.
The whole process of data generation is shown in Fig. 1.

Fig 1 Flow chart of the data generation process.

Deep neural network construction under small samples: In this section,
we construct a prediction model that is based on a deep neural network
and is suitable for small samples. Four input types (latitudes, longitudes,
elevations and satellite images) and one output type (field strength) are
utilized by this model, whose structure is shown in Fig. 2. We use a
partial dataset (1573 samples) for model training, validation, and testing.

To ensure that the prediction effect obtained with small sample data is
strong, it is necessary to reduce the number of parameters to be learned.
Therefore, we incorporate the idea of transfer learning, start with the pre-
trained model, and fine-tune the model based on the small given dataset
to ensure the accuracy of model prediction. PyTorch provides numerous
off-the-shelf pretrained models, and we use the trained ResNet18 [18]
model to process satellite images. The module used to process the lat-
itude, longitude and elevation data is a three-layer FCN (named NN1),
which was trained in another study of ours [19]. In this study, we obtain
the DEM of a certain area from the Internet. WinProp [20] is an excel-
lent software program for radio propagation modeling and radio network
planning. It can calculate radio data such as the field strengths and path
losses at different locations in a region by setting appropriate calculation
parameters and inputting the DEM. We use the field strength data gen-
erated by a WinProp simulation and the elevation data corresponding to
these positions for training the model, and finally, the model can accu-
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Fig 2 The newly proposed model uses two pretraining submodels (ResNet18 and NN1) to process satellite images and longitude, latitude and elevation data.
The output tensors of NN1 and ResNet18 are concatenated as the input of NN2.

Table 1. Some important structural parameters of the proposed
model.

Output size of NN1 128 × 2

Output size of ResNet18 512 × 50

NN2 layer size [16, 1]

Note: The output size of the last layer of NN1 is changed from 128 × 1 to 128 × 2, and
the output size of the last layer of ResNet18 is changed from 512 × 1000 to 512 × 50.

Table 2. The relevant parameters of the previous model.

Channels [100, 50, 20, 3]

Kernel size [(5,5), (3,3), (3,3), (2,2)]

Max pooling [2, 2, 2, 2]

NN1 layer size [64, 64, 3]

NN2 layer size [16, 1]

rately predict a field strength value through the input latitude, longitude
and elevation data.

Furthermore, we modify the structures of the last fully connected lay-
ers of ResNet18 and NN1 to minimize the number of model parameters
to be learned. Then, the output tensors of NN1 and ResNet18 are con-
catenated as the input of NN2, which is a new two-layer FCN without
pretraining. The hyperparameter optimization process of the model is
carried out by Optuna, and the output sizes of the last layers of ResNet18
and NN1 are determined. Some important structural parameters of the
proposed model are shown in Table 1.

Construction of a comparison model with sufficient sample data using
a previous study : To verify the superiority of our proposed network
(named the proposed model), we compare it with the prediction model
(named the previous model) referred to in [16]. The previous model is
trained, validated and tested with a complete dataset composed of 11298
samples, and this model does not undergo any pretraining.

In this model, we use some convolution modules to extract the fea-
tures of satellite images. Each convolution module is constructed by
stacking convolution, leaky rectified linear unit (ReLU), batch normal-
ization and maximum pooling layers. Four such convolution modules
are used. The partial structure of the previous model is shown in Fig. 3;
this structure replaces ResNet18. Furthermore, NN1, used for process-
ing longitude, latitude and elevation data, is replaced with an untrained
three-layer FCN, and the NN2 structure remains unchanged. ReLUs are
used in all activation functions. The relevant parameters of the previous
model are shown in Table 2.

Fig 3 The partial structure of the previous model.

Model training: To reduce the overfitting risks faced by the proposed
model and the previous model, in the data preprocessing stage, we
employ data augmentation techniques, such as rotation, random clip-
ping, and affine transformation, to increase the generalization capabili-
ties of these deep neural networks.

In the training stage, we adopt the Optuna framework to optimize suit-
able hyperparameters, such as the batch size and learning rate. The adap-
tive moment estimation (Adam) optimizer is used to minimize the loss
function. Here, the two models employ the mean squared error (MSE)
as the loss function. The validation set is predicted after each epoch of
training. The changes observed in the MSE during training and testing
are shown in Fig. 4. To observe these fluctuations more intuitively, the
MSE values are standardized. It can be found that the deviation between
the training error and the testing error lies within the acceptable range.

Simulation results: Two models are used to predict the field strength
values, and the corresponding MSE, root mean square error (RMSE) and
mean absolute error (MAE) values are obtained on the test set. The bar
chart containing the error values of the two models is shown in Fig. 5. It
can be found that the model with small sample data can achieve the same
effects as those of the previous model in terms of these three indicators,
and the error slightly decreases. The distributions of the predicted values
and the measured data provided by the two models are shown in Fig. 6.
The fitting effects of the two methods are good from the visual point
of view. The results show that the prediction accuracy of the proposed
method can reach that of the previous model in experiments. Although
the test performance of the model is not greatly improved, the require-
ment of the new model regarding the number of data samples is signifi-
cantly reduced. We use 11,298 data samples for the training, validation
and testing of the previous model and finally obtain good results. How-
ever, in the newly proposed model, we only use a small part of the dataset
(1,573 sample data) to achieve the same experimental effect. Therefore,
it can be concluded that under small data samples, our new model can
obtain a prediction accuracy that is not inferior to that of the previous
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Fig 4 MSE changes during training and testing (the MSE values are stan-
dardized for ease of observation).

Fig 5 The MSE, RMSE and MAE values of two different models are com-
pared.

(a) Previous model (b) Proposed model

Fig 6 The distribution of predicted values and measured data for the two
models.

model with sufficient data samples.

Conclusion: In this work, we propose a field strength prediction model
based on a deep neural network, which is used to accurately predict the
field strength in a study area possessing few sample data. We connect
two pretraining submodels to minimize the number of parameters to be
learned. Compared with the previous model, our proposed model can
achieve similar performance with less data. Therefore, our model can

solve the problem that it is difficult to accurately predict radio wave
propagation in cases with insufficient sample data. Additionally, this
work enriches radio wave propagation prediction methods and improves
the efficiency of wireless network planning and optimization.
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The accurate prediction of radio wave propagation is extremely impor-
tant for wireless network planning and optimization. However, inex-
act matching between the traditional empirical model and actual prop-
agation environments, as well as the insufficiency of the sample data
required for training a deep learning model, lead to unsatisfactory pre-
diction results. Our paper proposes a field strength prediction model
based on a deep neural network that is aimed at a tiny dataset composed
of the geographic information and corresponding satellite images of a
target area. This model connects two pretrained networks to minimize
the parameters to be learned. Simultaneously, we construct a convolu-
tional neural network (CNN) model for comparison based on a previous
advanced study in this field. Experimental results show that the pro-
posed model can obtain the same accuracy as that of previously devel-
oped CNN models while requiring less data.

Introduction: Radio wave propagation prediction possesses significant
implications for wireless network planning and optimization [1]. The
propagation process of radio waves is extremely complex and is influ-
enced by numerous external factors, such as terrain, weather and envi-
ronmental characteristics [2]. Many studies have been conducted on
radio wave prediction and channel modeling, such as those on traditional
deterministic models [3], stochastic models [4], and some models based
on ray tracing methods [5]. However, deterministic models are compu-
tationally expensive, while most stochastic models ignore the influences
of environmental factors [6], resulting in limited prediction accuracy.
Ray tracing methods have the same problem as that faced by determin-
istic models; that is, they require detailed geographic data and enormous
computational complexity [7].

In recent years, many scholars have considered employing machine
learning to obtain the large-scale propagation characteristics of various
communication environments, such as urban [8, 9], rural [10, 11] and
mixed environments [12], as well as some special environments (tunnels,
mines, roads, etc.) [13–15]. For such methods, an increase in the num-
ber of input feature types helps to achieve improved prediction accuracy
since this enables more comprehensive descriptions of environmental
characteristics.

Therefore, recent studies have taken satellite images as an additional
input feature type because satellite images can intuitively represent the
environmental characteristics of research areas. Jakob et al. proposed a
model by combining a fully connected network (FCN) and a convolu-
tional neural network (CNN) [16]; additionally, they adopted latitudes,
longitudes, the distance between the transmitter and receiver and satel-
lite images as model inputs. With the application of satellite images, the
prediction accuracy was significantly improved. Furthermore, this aca-
demic team introduced a model-aided deep learning method to enhance
the prediction of path losses in some invisible locations [17]. The real-
izations of these works were based on the presence of ideal datasets.
The authors collected relatively complete data through drive test mea-
surements, but it is difficult for many researchers to obtain complete
data.

The contributions of this paper are summarized as follows. We pro-
pose a model based on a deep neural network to accurately predict field
strength in cases with less sample data. The model adopts the transfer
learning method and is composed of two pretrained submodels; there-
fore, the number of parameters it needs to learn is greatly reduced so that
it can accurately predict field strength under small sample size. Simul-
taneously, we refer to the previous study in [16] to construct a CNN
model with sufficient sample data for comparison purposes. The results
show that the prediction accuracy of the proposed model is not inferior
to that of the previously developed CNN model and our proposed model
requires only a small number of samples.

Data generation: The training, validation, and testing of all models cov-
ered in this paper are based on one dataset. The input of the model is
further defined as:

𝑥𝑛 = [𝑙𝑎𝑡 , 𝑙𝑜𝑛, 𝐻 , 𝐼 ].

where 𝑙𝑎𝑡 and 𝑙𝑜𝑛 represent the longitude and latitude coordinates of
the measurement point, respectively, 𝐻 denotes the elevation of the mea-
surement point, and 𝐼 denotes the satellite image of a certain area cen-
tered on the measurement point. Through drive test measurements, we
acquire measured radio wave propagation data in a suburb of Nanjing.
The data include the longitude and latitude of each measurement point
and the corresponding field strength, with a frequency of 2590 MHz.
The measurement area is a 3 km × 2 km rectangular area, including a
certain number of buildings, roads, vegetation, lakes, hills, farmland and
other various environmental features. Finally, 11,298 usable samples are
obtained after data preprocessing.

To obtain the elevation data of each measurement point, we adopt the
digital elevation model (DEM) of Nanjing and then use Python’s GDAL
library to read the DEM data and query the elevation information based
on the latitude and longitude values. Considering the large number of
images required in this paper, we download an internet tile map and
obtain satellite images with the desired size after a series of process-
ing steps conducted from the perspective of convenience and economy.
Specifically, we use the longitude and latitude values of the measurement
points to obtain an internet tile map and then achieve an ideal image size
through stitching and cutting, which can be completed with Python. The
area covered by the satellite images with sizes of 224 × 224 pixels is
approximately ∼ 168 × 168 m, the number of satellite images is the
same as the number of measurement points, and these images have three
color channels (RGB). The satellite images of two adjacent points pos-
sess a high degree of overlap, which is beneficial for model prediction.
The whole process of data generation is shown in Fig. 1.

Fig 1 Flow chart of the data generation process.

Deep neural network construction under small samples: In this section,
we construct a prediction model that is based on a deep neural network
and is suitable for small samples. Four input types (latitudes, longitudes,
elevations and satellite images) and one output type (field strength) are
utilized by this model, whose structure is shown in Fig. 2. We use a
partial dataset (1573 samples) for model training, validation, and testing.

To ensure that the prediction effect obtained with small sample data is
strong, it is necessary to reduce the number of parameters to be learned.
Therefore, we incorporate the idea of transfer learning, start with the pre-
trained model, and fine-tune the model based on the small given dataset
to ensure the accuracy of model prediction. PyTorch provides numerous
off-the-shelf pretrained models, and we use the trained ResNet18 [18]
model to process satellite images. The module used to process the lat-
itude, longitude and elevation data is a three-layer FCN (named NN1),
which was trained in another study of ours [19]. In this study, we obtain
the DEM of a certain area from the Internet. WinProp [20] is an excel-
lent software program for radio propagation modeling and radio network
planning. It can calculate radio data such as the field strengths and path
losses at different locations in a region by setting appropriate calculation
parameters and inputting the DEM. We use the field strength data gen-
erated by a WinProp simulation and the elevation data corresponding to
these positions for training the model, and finally, the model can accu-
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Fig 2 The newly proposed model uses two pretraining submodels (ResNet18 and NN1) to process satellite images and longitude, latitude and elevation data.
The output tensors of NN1 and ResNet18 are concatenated as the input of NN2.

Table 1. Some important structural parameters of the proposed
model.

Output size of NN1 128 × 2

Output size of ResNet18 512 × 50

NN2 layer size [16, 1]

Note: The output size of the last layer of NN1 is changed from 128 × 1 to 128 × 2, and
the output size of the last layer of ResNet18 is changed from 512 × 1000 to 512 × 50.

Table 2. The relevant parameters of the previous model.

Channels [100, 50, 20, 3]

Kernel size [(5,5), (3,3), (3,3), (2,2)]

Max pooling [2, 2, 2, 2]

NN1 layer size [64, 64, 3]

NN2 layer size [16, 1]

rately predict a field strength value through the input latitude, longitude
and elevation data.

Furthermore, we modify the structures of the last fully connected lay-
ers of ResNet18 and NN1 to minimize the number of model parameters
to be learned. Then, the output tensors of NN1 and ResNet18 are con-
catenated as the input of NN2, which is a new two-layer FCN without
pretraining. The hyperparameter optimization process of the model is
carried out by Optuna, and the output sizes of the last layers of ResNet18
and NN1 are determined. Some important structural parameters of the
proposed model are shown in Table 1.

Construction of a comparison model with sufficient sample data using
a previous study : To verify the superiority of our proposed network
(named the proposed model), we compare it with the prediction model
(named the previous model) referred to in [16]. The previous model is
trained, validated and tested with a complete dataset composed of 11298
samples, and this model does not undergo any pretraining.

In this model, we use some convolution modules to extract the fea-
tures of satellite images. Each convolution module is constructed by
stacking convolution, leaky rectified linear unit (ReLU), batch normal-
ization and maximum pooling layers. Four such convolution modules
are used. The partial structure of the previous model is shown in Fig. 3;
this structure replaces ResNet18. Furthermore, NN1, used for process-
ing longitude, latitude and elevation data, is replaced with an untrained
three-layer FCN, and the NN2 structure remains unchanged. ReLUs are
used in all activation functions. The relevant parameters of the previous
model are shown in Table 2.

Fig 3 The partial structure of the previous model.

Model training: To reduce the overfitting risks faced by the proposed
model and the previous model, in the data preprocessing stage, we
employ data augmentation techniques, such as rotation, random clip-
ping, and affine transformation, to increase the generalization capabili-
ties of these deep neural networks.

In the training stage, we adopt the Optuna framework to optimize suit-
able hyperparameters, such as the batch size and learning rate. The adap-
tive moment estimation (Adam) optimizer is used to minimize the loss
function. Here, the two models employ the mean squared error (MSE)
as the loss function. The validation set is predicted after each epoch of
training. The changes observed in the MSE during training and testing
are shown in Fig. 4. To observe these fluctuations more intuitively, the
MSE values are standardized. It can be found that the deviation between
the training error and the testing error lies within the acceptable range.

Simulation results: Two models are used to predict the field strength
values, and the corresponding MSE, root mean square error (RMSE) and
mean absolute error (MAE) values are obtained on the test set. The bar
chart containing the error values of the two models is shown in Fig. 5. It
can be found that the model with small sample data can achieve the same
effects as those of the previous model in terms of these three indicators,
and the error slightly decreases. The distributions of the predicted values
and the measured data provided by the two models are shown in Fig. 6.
The fitting effects of the two methods are good from the visual point
of view. The results show that the prediction accuracy of the proposed
method can reach that of the previous model in experiments. Although
the test performance of the model is not greatly improved, the require-
ment of the new model regarding the number of data samples is signifi-
cantly reduced. We use 11,298 data samples for the training, validation
and testing of the previous model and finally obtain good results. How-
ever, in the newly proposed model, we only use a small part of the dataset
(1,573 sample data) to achieve the same experimental effect. Therefore,
it can be concluded that under small data samples, our new model can
obtain a prediction accuracy that is not inferior to that of the previous
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Fig 4 MSE changes during training and testing (the MSE values are stan-
dardized for ease of observation).

Fig 5 The MSE, RMSE and MAE values of two different models are com-
pared.

(a) Previous model (b) Proposed model

Fig 6 The distribution of predicted values and measured data for the two
models.

model with sufficient data samples.

Conclusion: In this work, we propose a field strength prediction model
based on a deep neural network, which is used to accurately predict the
field strength in a study area possessing few sample data. We connect
two pretraining submodels to minimize the number of parameters to be
learned. Compared with the previous model, our proposed model can
achieve similar performance with less data. Therefore, our model can

solve the problem that it is difficult to accurately predict radio wave
propagation in cases with insufficient sample data. Additionally, this
work enriches radio wave propagation prediction methods and improves
the efficiency of wireless network planning and optimization.
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