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Abstract

Sometimes when there are some restrictions on the random variables of insurance risk model, it is impossible to calculate the

exact value of ruin probabilities. For these cases, even finding a suitable approximation, is very important from a practical point

of view. In the present paper, we consider the classical insurance surplus model with light tailed claim amount distributions

and try to find some inequalities and optimal estimation on the infinite time ruin probability depending on the amount of initial

reserve when the assumption of net profit does not hold but there exist some other restrictions on the mathematical functions

of random variables of model. The obtained assertions depend on the amount of initial reserve, distribution of nonnegative

claim amounts and claim inter-arrival times. Finally, to show the application and effectiveness of results some examples are

presented.
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1. Introduction 

In studying a company insurance portfolio, it is important to know how the portfolio 

may be expected over a certain period of time. A common criterion to assess risks an 
insurer is called ruin probability. Ruin is a technical term which does not necessarily 

mean that the company is bankrupt but rather that bankruptcy is at hand and that the 
company should therefore be prompted to take action to improve its solvency status. 
Thus, insurance companies customarily take precautions to avoid ruin. Risk theory is 

a branch of mathematics science that is an important part of actuarial education, as it 
uses statistical and mathematical approaches to explain about the financial reserve of 

insurance company to ruin. This theory for a portfolio of business is concerned with 
the excess of the income over the costs or claims paid and insurance companies have 
to use this theory to protect their financial reserve against possible loss.  

Recently, within the actuarial world, modern risk management techniques play a 
central role. Finding adequate models for the claim arrival and claim size distributions 

of a risk process is essential in the theoretical and application of ruin probabilities. 
Risk assessment and management was established as a scientific field about 40–50 
years ago. Approaches and methods were developed for how to conceptualise, assess 

and manage risk. Risk management of an insurance studies the impact of deductible 
and policy limit on the ruin probability. For more results on the risk management one 

can see for example Better, et al. (2008).  
In the financial literature, there are many models and approaches that have been 
adopted to measure risks. Prominent among them are ruin theory models. In risk 

management, insurance companies start to set risk limits. Originally developed for the 
insurance industry, the ruin probability is used to investigate the stochastic processes 

that represent the time evolution of the surplus and serve as the main risk measure to 
quantify the solvency of the company. Thus the ruin probability is considered as an 
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important type of risk measure. In classical risk theory by adding to the previous 
surplus the current premium flow and deducting the claims made during the period, 

the process gives the value of the capital that is available to the insurer at each point 
in time. The risk process is an important stochastic model for the fluctuations of the 

insurer surplus over the time.  
Lundberg's (1903) pioneer work in risk theory received rigorous mathematical 
treatment first by Cramer in (1930) and (1955) and later, by many authors. Lundberg's 

contributions were presented in his monograph collective risk theory. Lundberg's 
model, expounded by Cramer, is termed the Cramer-Lundberg model or the classical 

risk model. The classical Cramer–Lundberg is a compound Poisson model, 
accounting for claims arriving independently at exponential times, random in size, but 
independent and identical distributed. More generalizations of this model exist and 

most of the research has been inclined to computing infinite time ruin probabilities in 
preference to finite time ruin probabilities. The evaluation of ruin probabilities 

strongly depends on the distribution of the claim amounts. Also, very advanced 
models of the classical continuous risk process have been developed. They exist to 
pool together risks faced by individuals or companies who in the event of a loss are 

compensated by the insurer to reduce the financial burden.  
Several authors have presented different approaches for calculating finite and infinite 

time ruin probabilities. For the classical surplus process, recursive algorithms for the 
calculation of this probability have been developed by, for example, De Vylder and 
Goovaerts (1988) and Dickson and Waters (1999). An improvement to the algorithms 

above was done by Cardoso and Waters (2003). This topic has been investigated for a 
long time (see e.g. the book of Goovaerts et al., 1990). Embrechts and Klüppelberg 

(1993) showed how the theory of probability and mathematical statistics are applied 
for solving problems of the insurance field.   
Wang, et al. (2004) studied the compound Poisson risk model with a constant interest 

force for an insurance portfolio and computed the distribution of the surplus 
immediately after ruin. Burnecki, et al. (2005) compared different approximations of 

infinite time ruin probability and showed that approximations based on the Pollaczek-
Khinchin formula obtain the most accurate results. Kasozi and Paulsen (2005) 
obtained the numerical results for infinite time ruin probabilities under interest force. 

Shimizu (2009), introduced a new aspect of a risk process, which is a macro 
approximation of the flow of a risk reserve. Choi, et al. (2010) considered a 

continuous time risk process, where the premium rate is constant and claim process 
forms a compound Poisson process and introduced new approximations of the ruin 
probability. Santana, et al. (2017) computed the approximation of infinite time ruin 

probability in the Cramer-Lundberg risk model with any arbitrary continuous 
distribution of claim sizes. Dong, et al. (2018) calculated the infinite ruin probability 

in the classical risk mode using Laplace transform inversion and Fourier transform. 
Yuen, et al. (2020) computed the infinite time ruin probability by applying the weak 
law of large numbers.  

Chen et al. (2020) applied the block trigonometric exponential neural network to find 
the approximate solutions of the ruin probability in the classical risk model. Lu, et al. 

(2020) studied a numerical method based on Legendre polynomials and extreme 
learning machine algorithm to solve the ruin probabilities in the classical risk model. 
Cheung and Zhang (2021) considered a renewal insurance risk model for a large class 

of interclaim time distributions (including a combination of exponentials), and 
developed an approximation for the ruin probability using Laguerre series expansion 

as a function of the initial surplus level.  

https://epubs.siam.org/author/Embrechts%2C+P
https://epubs.siam.org/author/Kl%C3%BCppelberg%2C+C
https://www.researchgate.net/profile/Krzysztof_Burnecki
https://www.sciencedirect.com/science/article/pii/S0167668708001285?via%3Dihub#!
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Let us start by describing the risk model of insurance company that we will work with 

in this paper. We denote by )(tR  the risk reserve process of an insurance portfolio at 

time t :  

,0,)(
)(

1

 


tYctutR
tN

k

k                                           (1.1) 

where the explanation of notations are given in Table 1.  
 

Table 1. The explanation and role of each term appearing in the risk model  
Notation  Role of notation  

u  Positive initial reserve  
c  Premium income rate  

 ,2,1, kYk  Successive claim amounts with parameter   

 ,2,1, kTk  Sequence of independent inter-arrival times with 
parameter   





)(

1

)(
tN

k

kYtS  
The total amount up to time t  which is a compound 

Poisson process  

 0),( ttN  A Poisson process, which counts the claim 

occurrences until time t  with parameter   

cttS )(  The claim surplus process   

 

The random variable  0),( ttN  is generated by the sequence  ,2,1, kTk  and 

 ,2,1, kYk  are represented by non-negative independent identically distributed 

random variables. We consider model (1.1) for light tailed claim amount distributions. 

In addition, sequences  ,2,1, kTk , and  ,2,1, kYk  are supposed to be 

independent.  
Definition (Light tailed distribution). A random variable Y  is said to be light tailed 

if there exists some finite exponential moment, i.e. )( sYeE  for some 0s .  

In fact, the existence of moment generating function is arguably the most popular 
method for classifying heavy tail versus light tail within the community of academic 

actuaries.  
In many cases, in the insurance risk models, the sizes of the claims have light tailed 
distributions and significant works have been done on analogous problems for the 

light tailed cases. It has become clear that the insurance risk models employing light 
tailed distributions don't have a great tendency for extremal sizes.  

Let ),( su  be the probability of ruin before time s , st 0 :  

.0,,)0(0)(min),(
0













tuuRtRPsu
st

                               (1.2) 

It is clear that, (1.2) can be written as  

.0,)(max),(
1

)(1




















 




tuucTYPsu
n

k

kk
sNn

  

The infinite time ruin probability is defined by  

.0,,)0(0)(inf)(
0













tuuRtRPu
t

                               (1.3) 

Also, for 0, tu , (1.3) can be written as  
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.)(sup)(
11




















 



ucTYPu
n

k

kk
n

  

As s , )(~),( usu  . Sometimes, because of the structure of insurance risk 

model computing the exact value of ruin probability is not possible. There are 

different methods to evaluate the ruin probability, see, e.g., Ma and Sun (2003) and 
Pergamenshchikov and Zeitouny (2006).  
Remark 1. Ma and Sun (2003) studied the classical ruin problem for a mixed 

insurance-finance model in which the risk reserve is connected to a financial market. 
In fact, they extended the classical Cramer–Lundberg model and used the exponential 

martingales to derive two main theorems for the Lundberg–type bounds. Some 
examples are presented to show the versatility of their method.  
Pergamenshchikov and Zeitouny (2006) considered the ruin problem for an insurance 

company for which the premium rate is specified by a bounded non-negative random 

function tc  and derived exact upper and lower bounds for the ruin probability and in 

the case of exponential premium rate, i.e. t

t ec  , with 0 .  

In the present paper, we try to find some inequalities on the infinite time ruin 
probability with some assumptions to allow analysis of the model in more realistic 

cases of insurance.  

For the first inter-arrival time 
1T  and first successive claim amount 

1Y , if the 

assumption 0)( 11 cTYE  holds and for some positive w , )( 1wY
eE , then for all 

positive values of u , the assertion  
Rueu )( ,                                                           (1.4) 

holds, where the unique and positive constant R  is computed from the equation 

1)(
)( 11 

cTYR
eE . The proof of equation (1.4) can be found for example in Embrechts 

and Veraverbeke (1982) and Asmussen and Albrecher (2010).  

Note that, to prove the equation (1.4) it is sufficient that for all N ,  

.)(max),(ˆ

1
1

Ru
n

k

kk
Nn

eucTYPNu 























                                (1.5) 

Mikosch (2009) showed that if N , )(~),(ˆ uNu  . The value of )( 11 cTYE   

must be negative in equation (1.4), otherwise the ruin occurs with probability 1. 
Unfortunately, computing the exact value of ruin probabilities can only be for a few 

special cases of the statistical distributions of claim amounts and claim occurrences 
times. Thus, finding a suitable approximation, especially in the infinite time case is 
really important from a practical point of view.  

In the present paper, we restrict ourselves to the collective insurance risk model where 
we make the additional assumptions with some mathematical restrictions on the 

model to find some inequalities on the infinite time ruin probability. These restrictions 
would allow analysis of the model in more realistic cases of insurance and the 
procedure has resulted very useful to obtain new and adequate estimate for the infinite 

time ruin probability. The given Theorems in the present paper are different from the 

inequality (1.4). The assumption 0)( 11  cTYE  is necessary to hold the inequality 

(1.4) but in this paper, we suppose that for all of the sequence of independent random 

variables  ,, 2211 cTYcTY   the assumption 0)(  kk cTYE , Nk , holds.  

The main purpose of this paper is to find easily verifiable conditions and possible 
mathematical restrictions in the classical insurance surplus model, so that we obtain 



  5                                                                                                                            
                  

the optimal estimation on the infinite time ruin probability for light tailed distributions 
of claim amounts.  

The remaining part of this paper is organized as follows. In Section 2, we give the 
main results on the computation of the infinite time ruin probability in the collective 

insurance risk model depending on the amount of initial reserve, distribution of 
nonnegative inter-arrival times and successive claim amounts in the presence of 
positive constant premium income rate with some restrictions on the mathematical 

functions of random variables of model. In Section 3, we demonstrate some examples, 
which show the applicability of the theorems. Moreover, conclusions are given in 

Section 4.  
 
2.  Some inequalities on the infinite time ruin probability  

In this section, we assume that there exist some mathematical restrictions on the 
sequences of independent inter-arrival times and independent successive claim 

amounts. The main results are associated to the infinite time ruin probability in the 
collective insurance risk model with these restrictions.  
Theorem 1. For the classical insurance surplus model (1.1) with positive premium 

income rate c , if the following restrictions hold:  

i) NkcTYE kk  ,0)(  

ii) 


)(sup kY

Nk

eE
 , for some 0 ,  

iii)   ,0)(sup 


tTITE kk
Nk

  

where (.)I  is the indicator function, then there is a positive constant  , such that for 

all positive values of u , the infinite time ruin probability is less or equal than ue  .  
Proof. Consider the ruin probability (1.5), then  

.)(),(ˆ

1 1




















 


N

n

n

k

kk ucTYPNu  

To prove theorem 1, it is sufficient to prove that for some positive  , all 0u  and 

for an arbitrary collection of different values  Nkkk ,,, 21  , the following inequality 

,)(max),,,,(ˆ

1
1

21

u
j

i

kk
Nj

N eucTYPkkku
ii

 


























                                (2.1) 

holds. This inequality will be proved using the following method.  

For all k , putting kkk cTY  . If 1N , then for all 0u , for all r  in the 

interval ],0(   and for 1k , using the Chebyshev’s inequality, we have  

     11

1
),(ˆ 1

kk rrurur

k eEeeePuPku


  .                              (2.2) 

Also for r  in the interval ],0(   and 0t , we have  

 

        

  
  .)0(1

)0(1

)()(11

11

1

11

1

111

11







kk

r

kk

r

kkk

r

k

r

IreE

tIreE

tIrEtIeErEeE

k

k

kk













                            (2.3) 

In order to estimate the right side of (2.3), we use the following well-known 

inequalities:  
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0;
2

1

0,
2

1;1

2

2





x
ex

xe

x
x

xexe

x
x

xx

                              (2.4) 

Using these inequalities, we derive  

     

 

  ,)0(
2

)0(
2

)(21

1

1

1

11

11

1

2
2

2
2







k

r

k

kk

kkk

r

IeE
r

tIE
r

tIrErEeE

k

k











                              (2.5) 

for r  in the interval ],0(   and 0t .  

Now, we simplify the right hand side of (2.5). We observe that  
 

   

,)(

)()()(

11

111111













c

t
IcE

YtcTIYcTEtIE

kk

kkkkkk





 

also for given the restriction (ii) of the theorem 1,   22 )0(
11

ttIE kk    and 

  )()(sup 1
1 

ceEeE kk Y

Nk

r




. Thus, using the last estimate we derive that if 











2
,0


r , then  

 

  ,)()()()(

)0()()0(

3212

22
2

2

1

1

11

1

1

1










ccceEc

IeeEcIeE

k

kk

k

r

k

rr

k

r

k


















 

where )(2 c  is a constant from the inequality 2
2

2 )(

x

ecx


  for 0x . Substituting 

these results into (2.5), then for all 









2
,0


r  and 0t , we have  

  .
2

)(

2
)(sup2)(sup1 3

2

1

























 rcrt

c

t
ITcEreE kk

Nk
k

Nk

r k
 

Let 
4

1

r
t  , then the inequality  

  ,
2

)(

2)(

1
sup2)(sup1 3

4

1


















































 rcr

rc
ITcEreE kk

k
k

k

r k
                (2.6) 

holds for all 









2
,0


r . Using the inequality (2.6) and also restrictions (i) and (iii), 

imply that  

  11 keE


,                                                             (2.7) 

for 









2
,0


 r  and 1k .  
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According to the inequality (2.2), for the same positive  , 1k  and for all 0u , 

we have  

  ,),(ˆ
11

u

k euPku    

and we result that the inequality (2.1) is correct for 1N . If the inequality (2.1) is 

correct for 1 wN , i.e., for the above positive  , for all positive values of u  and 

an arbitrary collection of different values  wkkk ,,, 21  , we have  

.max),,,,(ˆ

1
1

21

u
j

i

k
wj

w euPkkku  


























                                (2.8) 

Then we must show that the inequality (2.1) is correct for 1wN . According to the 

inequality (2.7) and (2.8), for an arbitrary collection of different values 

 121 ,,, wkkk   and for all positive values of u , we get that  

 

  ,

)()(

)(max)(

,max

max,maxmax),,,,(ˆ

1

11

11

111

11

],(

)(

),(

)(

],(
2

12),(

2
12

2
12

1
11

121

uu

u

xu

u

xu

u

j

i

k
wju

k

j

i

k
wj

kk

j

i

kk
wj

k

j

i

k
wj

w

eeEe

xdFexdFe

xdFxuxdF

uuPuP

uPuPkkku

k

kk

kik

i

i









 

















































































































































 





 

and this completes the proof.       
 
Theorem 2. For the classical insurance surplus model (1.1), if for some constants 

0 , 0 , 0 , 0  and 0 , the following restrictions hold: 

i) ,)(sup 


kk
Nk

cTYE  

ii)   






)0(sup
)(

kk

cTY

Nk

cTYIeE kk ,  

iii) 














)(sup
c

TITE kk
Nk

,  

and for some 









2

1
,0),,,,,( c ,  

0
2

2
2

2







 



c ,                              (2.9) 

then for all positive values of u , the inequality ueu  )(  holds.  

Proof. First, consider that for an arbitrary collection of different values 

Nkkk ,,, 21  , the following inequality is completely clear  

).,,,,(ˆsup),(ˆ 21
,,, 21

N
kkk

kkkuNu
N




   

Therefore, to prove theorem 3, it is sufficient to prove that for all 0 , 0u , 

N , the inequality 

,),,,,(ˆ 21

u

N ekkku                                 (2.10) 
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holds for an arbitrary collection of different values  Nkkk ,,, 21  .  

Proof of theorem 2 is similar to the proof of Theorem 1. Again, let for all k , 

kkk cTY  . If 1N , again consider (2.2) and (2.3) for 1k , r  in the interval 

],0(   and t . Using the mathematical inequalities (2.4), we get that  

     

 

  ,)0(
2

)0(
2

)(21

1

1

1

11

11

1

2
2

2
2







k

r

k

kk

kkk

r

IeE
r

IE
r

IrErEeE

k

k











                        (2.11) 

for any 1k . On the other hand  

 

   

,)(

)()()(

11

111111













c
IcE

YcTIYcTEIE

kk

kkkkkk






                         (2.12) 

and for any positive value  , we have  

  .)0( 22

11
  kk IE                          (2.13) 

 

In addition, using restriction (ii) of the theorem and the inequality xex 2  for 0x , 
we get that  

 

  ,
4

)0(
4

)0(
4

)0(
2

4
)0(

22

2
2

2

2

2

1

1

1

1

1

1

1

1

1

1

































































k

r

k

r

r

k

rk
k

r

k

IeE

IeeE

IeEIeE

k

k

k

kk

                         (2.14) 

for 









2
,0


r .  

Substituting the results (2.12), (2.13) and (2.14) into (2.10), then for r  in the interval 










2
,0


 and 1k , we get that  

 

.
2

2
21

2

2
)(sup2)(sup1

2

2

2

2

1












































rr
cr

rr

c

t
ITcEreE kk

Nk
k

Nk

r k

 

For   in the interval 








2

1
,0 , let r . Then using the restriction (iv), we have that 

  11 kr
eE


, for any 1k . This together with inequality (2.2) for any 1k  and all 

positive value of u , implies that  
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  .),(ˆ
11

u

k euPku    

Therefore, as similar approach to the proof of Theorem 1, the inequality (2.10) is 
proved.        

Remark 2. If in the insurance risk model, for any Nk , the assumption 

0)(  kk cTYE  holds together with two natural related assumptions (see Theorem 1), 

then for some positive  , the infinite time ruin probability is less or equal than ue  . 
But if we know all restrictions and assumptions in the insurance risk model (see 

Theorem 2), then using a different approach, we compute the inequality ueu  )(  

on the infinite time ruin probability.  

Theorem 3. For the classical insurance surplus model (1.1), if the restrictions given in 
Theorem 1 hold, then for all r  in the interval ],0( R , the inequality  

1)(sup
)(






kk cTYr

Nk

eE ,  

holds, and for all positive values of u , 
















)(supinf)(

)(

],0(

kk cTYr

Nk

ru

Rr
eEeu .  

Proof. As before, let for all k , kkk cTY  . According to the given restriction in 

the theorem and using (2.6), there exist r  in the interval ],0( R , such that 

  1sup 1 


kr

k

eE


 and this is proof of the first part of the theorem.  

To prove the second part, consider that according to the inequality (2.2), for 0u , r  

in the interval ],0( R  and 1k , we have  

    .sup),(ˆ 1

11

kr

k

ru

k eEeuPku





  

Using the given approach for the proof of Theorem 3, we derive  

 1sup),(ˆ kr

k

ru eEeNu





 . 

Then it is clear that, for 0u  and ],0( Rr , the infinite time ruin probability is less 

or equal than  1sup kr

k

ru eEe




 , and this completes the proof of the second part of the 

theorem.       
As an intuitively explanation the obtained results in Theorem 3 is useful for 

computing the optimal estimation of ruin probability. For example, if 

1ˆ)(sup
)(






beE kk cTYr

Nk

, for ],0( Rr , then the estimate of Theorem 3, implies that for 

0u , Ruebu  ˆ)( .  

 

3. Some numerical examples  
In this section, to show the applicability of theorems some numerical examples are 
presented. In example 1, we study the discrete risk model with given the probability 

density functions of claim amounts and continuous risk model of insurance company. 
In example 2, we investigate the insurance risk model with Gamma and exponential 

distributions of claim amounts and inter-arrival times, respectively. In example 3, the 
dataset covering losses resulting from different car claims events which is provided by 
Iran insurance company that occurred between 2005 and 2021.  

Example 1. Suppose that in a classical insurance surplus model the premium income 

rate is equal to one, the sequence of independent inter-arrival times  ,2,1, kTk  

are equal to 1, and a sequence of independent successive claim amounts 
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 ,2,1, kYk  are such that for all z  and  5,4,3,2,1k , the two random 

variables kzY 5  and kY  have the same distribution function and the probability density 

functions are given in Table 2.  
 

Table 2. Probability density functions of claim amounts  

kY  0 1 k  

)( kk yYP   
23

1

3

1
1

kk
  

k3

1
 

23

1

k
 

First of all, according to Theorem 2 for all  61.0,0 , we obtain:  

  ,
1275

,
48

,
27

,
12

,0max)0(sup

,
3

1
1

3

2
sup)(sup

432
)(


 eeeee

cTYIeE

k
cTYE

kk

cTY

Nk

Nk
kk

Nk

kk 


























 

and   .0)1(sup 


kk
Nk

TITE  According to the obtained estimates, we get that 

conditions of Theorem 2 hold with parameters in Table 3.  
 

Table 3. The values of parameters in Theorem 2   
Parameter            

Value 

3

1
 

5

3
 

12

5

3

e
 

1 0 

 
Substituting the obtained constants into inequality (2.9), we derive the parameter   in 

the interval  41.0,0 . If we choose 3.0 , then from Theorem 2, we have that 

1
50

9

)( peu
u




 , for all 0u .  

Now, according to the Theorem 3, we need to compute the term )(sup
)( kk cTYr

Nk

eE




. 

First, consider that  5,4,3,2,1k  and   in the interval 








5

4
,0 . The values of 





5

1

)()(
k

kk

yY
yYPeeE kk   are given in Table 4.  

Table 4. The values of )( kY
eE


 for  5,4,3,2,1k    

k  1 2 3 4 5 

)( kY
eE


 3

12 e
 

12

92 2   ee
 

27

233 3   ee
 

12

434 4   ee
 

75

695 5   ee
 

Therefore, for all values of  5,4,3,2,1k , 
3

12
)(sup





 e

eE kY

k

. Also, for positive 

value r , the values of )(
)( kk cTYr

eE


 are given in Table 5.  

 

Table 5. The values of )(
)( kk cTYr

eE


 for  5,4,3,2,1k  

k  1 2 3 4 5 

)(
)( kk cTYr

eE
  

r

r

e

e

3

12 
 

r

rr

e

ee

12

92 2 
 

r

rr

e

ee

27

233 3 
 

r

rr

e

ee

12

434 4 
 

r

rr

e

ee

75

695 5 
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For all r  in the interval 









50

45
,0 , and 0u ;  

.)(supinf)( 2
50

45

)(

50

45
,0

peeEeu
u

cTYr

Nk

ru

r

kk 


























  

Now to compute the values of infinite time ruin probability )(u , we have performed 

the Monte Carlo simulation method. As we said before for amount of initial reserve 

0u , as N , )(~),(ˆ uNu  . To estimate these values, we consider the amount 

of initial  15,,2,1,0 u  and 1000N  samples. For each amount of initial with 

1000 random claims in the discrete risk model, the value of ),(ˆ Nu  is computed. We 

repeat this process 10000 times and calculate how many times on average they fall 

below zero in order to get values of infinite time ruin probability )(u . The values of 

ruin probabilities are given in Table 6. Also, the results are depicted in Figures 1 and 

2. According to the obtained values of ruin probability, it is observed that )(u  

decreases as the initial reserve increases.  

 
Table 6. The values of ruin probabilities 

u  )(u  
1p  

2p  

0 0.15953 1 1 

1 0.13784 0.83527 0.40657 

2 0.07520 0.69767 0.16529 

3 0.01036 0.58274 0.06720 

4 0.00732 0.48675 0.02732 

5 0.00281 0.40657 0.01111 

6 0.000941 0.22959 0.00451 

7 0.000485 0.28365 0.00183 

8 0.000106 0.23692 0.00074 

9 0.000075 0.19789 0.00030 

10 0.000031 0.16529 0.00012 

11 0.0000056 0.13806 5.0177e-5 

12 0.0000022 0.11532 2.0399e-5 

13 0.0000007 0.09632 8.2938e-6 

14 0.0000003 0.08045 3.3720e-6 

15 0.0000001 0.06720 1.3709e-6  
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Figure 1. Ruin probabilities )(u , 
1p  and 

2p  

 
 

Figure 2. Ruin probabilities )(u , 
1p  and 

2p  

 
 
Example 2. Suppose that in a risk model of insurance company the premium income 

rate is equal to 1.1 , a sequence of independent inter-arrival times  ,2,1, kTk  are 

distributed according to the following density function: 

,
)(

)( 1 ktk
k

T et
k

k
tf

k




  

and a sequence of independent successive claim amounts  ,2,1, kYk  are 

distributed according to the Exponential density function:  

     .0,3cosexp3cos)(  ttkktf
kY  

Then  

,
5

3

10

11

3cos

1
sup)(sup 













 k
cTYE

Nk
kk

Nk
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  ,
5

)(
sup)4(sup

44

1

e
dt

k

etk
tTITE

tkkk

Nk
kk

Nk




 






 

and the distribution function of random variable )( kk cTY   is given by:  

   

    .1
)(

1.1)(

1

11

10
,0max

1.13cos dyeye
k

k

yTdPxyYPtcTYP

kyk
t

ytk
k

kkkk































 

The random variable )( kk cTY   has the following density: 

      .
)(

3cos
)( )(cos1.13.3

0

13cos dyeye
k

kk
tf ykkktk

k

cTY kk






 


  

Therefore for all   in the interval )2,0( ; the following assertion holds:  

 

     

.
)2(8

5

)(

3cos
sup

)(sup)0(sup

cos3

0

)(cos1.13.3

0

1

0

)(





























































dtedyey
k

kk

dttfecTYIeE

tkykkk
k

Nk

cTY

t

Nk
kk

cTY

Nk
kk

kk

The parameters and their values are given in Table 7.  
 

Table 7. The values of parameters in Theorem 2   
Parameter            

Value 

5

3
 

10

13
 

28

25
 

10

44
 

4

5

e
 

 
The same as example 1, substituting the obtained constants into inequality (2.9), we 

obtain  0285.0,0 . If we choose 025.0 , then from Theorem 2, for all 0u , 

we get that 
11

400

13

)( peu
u




 .  

Now, according to the Theorem 3, we need to compute the term )(sup
)( kk cTYr

Nk

eE




. For 

all   in the interval )2,0( ; 
 

  



















 2

2

cos3

3cos
sup)(sup

k

k
eE

Nk

Y

Nk

k . Also, for r  in 

the interval  2.1,0 , we have  

 
   

.1
1.11

1

cos3

3cos
sup)(sup

)(






















k

Nk

cTYr

Nk rkr

k
eE kk  

Then for all positive values of u , we derive  

 
.)(supinf)( 22

2.1)(

2.1,0
peeEeu ucTYr

Nk

ru

r

kk 







 






  

After all these calculations, we again apply the implementation of Monte Carlo 

method in order to estimate the values of ruin probability )(u  as in the previous 

example. We also analyze the same way, where the amount of initial reserve 

 15,,2,1,0 u  and 1000N . Finally, with repetition the process, the infinite time 
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ruin probabilities are computed. The values of ruin probabilities are given in Table 8. 
Also, the results are depicted in Figures 3 and 4.  
 

Table 8. The values of ruin probabilities  
u  )(u  

11p  
22p  

0 0.19115 1 1 

1 0.10844 0.96802 0.30119 

2 0.03886 0.93706 0.09071 

3 0.00825 0.90712 0.02732 

4 0.00557 0.87909 0.00822 

5 0.00151 0.85001 0.00247 

6 0.00021 0.82283 0.00074 

7 0.000075 0.79652 0.000224 

8 0.0000083 0.77105 6.77287e-5 

9 0.0000024 0.74639 2.03995e-5 

10 0.0000012 0.72252 6.14421e-6 

11 0.0000000 0.69942 1.85060e-6 

12 0.0000000 0.67705 5.57390e-7 

13 0.0000000 0.65540 1.67882e-7 

14 0.0000000 0.63444 5.05653e-8 

15 0.0000000 0.61416 1.52299e-8  

 

Figure 3. Ruin probabilities )(u , 
11p  and 

22p  

 
 

Figure 4. Ruin probabilities )(u , 11p  and 22p  
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Example 3 (Implementation of risk model results with empirical data).  
In this example, we first explain in detail the empirical insurance data set used in the 

sequel. The data set is provided by one of the largest and oldest Iran insurance 
company which is owned by the Iranian government and claim occurrences from the 

class of legal expenses insurance, which refers to insurance protection covering the 
costs of a legal dispute. The data set we consider consists of different cars claims 
which occurred during the time period from 01 January 2005 to 31 December 2021. 

For each claim payment, only the day of the payment is recorded as any finer 
granularity is not of particular interest to the insurance company. As the process is 

aggregated over multiple clients and claim occurrences, on some days there are 
multiple arrivals with the same timestamp (day). Based on the obtained information 
from the insurance company, the initial reserve u  is assumed to be 567 million 

dollars. One challenge about working with the data set provided to us by the insurance 

company was its overall size with a high average number of claims per day for some 
of the big cities.  

We shown that the use of a Poisson process for claim occurrences per year during 
(2005-2021) would be suitable and fit the two exponential distributions to the 

successive claim amounts and claim inter-arrival times  ,2,1, kTk . The 

goodness of fit test is done on the data at significance level 05.0 . The 
2512.0 valuep  for the goodness of fit test is reported. The result indicates 

evidence for the null hypothesis that justifying application of the Poisson process.  
Also, the number of claim occurrences per in the first per week (7 days) over the 

whole time period of days gives in Figure 5.  
  

 
Figure 5. The number of claim occurrences per week 

 

In the risk model (1.1) the premium income rate is constant but in reality this 
assumption rarely happens because of the annual inflation. Therefore, for this dataset, 

we set the mean of all premium income rates as 37.254c  dollars. Using the 

goodness of fit tests at significance level 05.0  we have obtained 
3157.0 valuesp  and 2840.0 , which show that the successive claim amounts and 

independent inter-arrival times being the exponential distributions with parameters   

and  , respectively. These parameters are estimated with maximum likelihood 

estimation using data set as 18.105ˆ   and 60.4ˆ  .  
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We generate 1000N  simulations of a risk process with u  and c  given above. The 

simulation results for the first 10 years are presented in Figure 6.  
 

 
Figure 6. Plotting the empirical risk process with 100u  and 37.254c  for the first 10 
years against the simulated paths of risk process for successive claim amounts and 

independent inter-arrival times distributed as exponential distributions with 18.105ˆ   and 

60.4ˆ  .  

 
According to the obtained estimates, we get that conditions of Theorem 2 hold with 

parameters 518 , 
4

17
 , 

5

2
 , 

6

19
  and 1 . Substituting the obtained 

constants into inequality (2.9), we obtain  4307.0,0 . Choosing 215.0 , then 

we derive the inequality )()( 1
27

1

ueu
u

 


 for all 0u . For all   in the interval 

)4,0(  and  5.1,0r , the inequalities 







 1
)(sup kY

Nk

eE  and 1)(sup
)(






kk cTYr

Nk

eE  

hold. Thus for all positive value of u , )()( 2

5.1 ueu u    .  

For our data set, we compute the infinite time ruin probability using two formulas. 

One of them is given in Rolski et al. (1999), where we compute the values of )(u  by 

,1)( ueu 




 









  where   is a solution of ,1)( 







cLT

 and (.)TL  is the 

Laplace transform of claim inter-arrival times distribution and another formula is an 

approximation formula which is given in Choi et al. (2010) as )(uH , which the 

relative security loading 125.10 . In Table 9, the values of ruin probabilities 

)(u , )(uH , )(1 u  and )(2 u  are listed for various values of u . The values of )(1 u  

and )(2 u  assure us that the ruin probabilities will be less than or equal to them. The 

values of )(2 u  is the best estimate for ruin probabilities.  
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Table 9. The values of ruin probabilities  
u  )(u  )(uH  )(1 u  )(2 u  

0 0.2504 0.3157 1  1  

1 0.1916 0.2028 0.9636 0.2231 

2 0.0325 0.0371 0.9286 0.0497 

3 0.0233 0.0210 0.8948 0.0280 

4 0.0015 0.0019 0.8680 0.00247 

5 0.0002 0.0004 0.8309 0.00055 

10 3.8624178e-28 4.3172364e-16 0.7386 3.0590231e-7 

50 5.2394254e-52 8.0435422e-74 0.3057 3.9754497e-31 

60 7.7208111e-87 10.51813502e-25 0.1084 8.1940126e-40 

80 9.2344612e-95 0.0000000 0.0516 7.6676480e-53 

90 4.34555134e-71 0.0000000 0.0356 2.34555134e-59 

100 0.0000000 0.0000000 0.0246 7.17509597e-66 

150 0.0000000 0.0000000 0.00386 1.92194773e-98 

 
4. Conclusions  

In this work, we investigated the infinite time ruin probability of a classical insurance 

risk model in the presence of positive constant interest rate with statistical and 
mathematical methods for all positive initial surplus when the assumption of net profit 

does not hold, but some other restrictions hold on the mathematical functions of 
random variables of model. Our goal is to make conditions leading to the risk model 
for computing some inequalities on the infinite time ruin probability. Theorem 1 

confirms the existence of positive constant   in the interval 








2
,0


 for some 0  to 

find the inequality on the infinite time ruin probability. Theorem 2 gives another 

inequality on the infinite time ruin probability depends on the values of 









2

1
,0  

when for some constants the inequality (2.9) holds. In order to get these constants all 
requirements for the model should have expressive form but because of the existence 

of large number of constants in the process it is difficult to obtain an optimal 
estimation. Theorem 3 computes the sharpest inequality for all δ in the interval in the 

interval ],0( R . Finally, to show the application of theorems, three examples 

presented. In example 1, the inter-arrival times are equal to one and discrete 

probability density functions are supposed for claim amounts. In example 2, inter-

arrival times are distributed as Gamma distribution and claim amounts follow the 
Exponential distribution. According to the Theorems 2 and 3, the inequalities on the 
infinite time ruin probabilities computed and the results show that the optimal 

estimation can be obtain using Theorem 3. In example 3, we used the empirical 
insurance data set which is provided by Iran insurance company and using of 

Theorems 3 shows that optimal estimation holds on the infinite time ruin probability.  
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