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Abstract

We consider the scattering of a plane wave by a locally perturbed periodic (with respect to x 1) medium. If there is no

perturbation it is usually assumed that the scattered wave is quasi-periodic with the same parameter as the incident plane

wave. As it is well known, one can show existence under this condition but not necessarily uniqueness. Uniqueness fails for

certain incident directions (if the wavenumber is kept fixed), and it is not clear which additional condition has to be assumed in

this case. In this paper we will analyze three concepts. For the Limiting Absorption Principle (LAP) we replace the refractive

index n=n(x) by n(x)+iε in a layer of finite width and consider the limiting case when ε tends to zero. This will give an

unsatisfactory condition. In a second approach we require continuity of the field with respect to the incident direction. This

will give the same satisfactory condition as the third approach where we approximate the incident plane wave by an incident

point source and let the location of the source tend to infinity.

1



ON THE SCATTERING OF A PLANE WAVE BY A PERTURBED
OPEN PERIODIC WAVEGUIDE

ANDREAS KIRSCH

Abstract. We consider the scattering of a plane wave by a locally perturbed periodic
(with respect to x1) medium. If there is no perturbation it is usually assumed that the
scattered wave is quasi-periodic with the same parameter as the incident plane wave.
As it is well known, one can show existence under this condition but not necessarily
uniqueness. Uniqueness fails for certain incident directions (if the wavenumber is kept
fixed), and it is not clear which additional condition has to be assumed in this case. In
this paper we will analyze three concepts. For the Limiting Absorption Principle (LAP)
we replace the refractive index n = n(x) by n(x) + iε in a layer of finite width and
consider the limiting case ε→ 0. This will give an unsatisfactory condition. In a second
approach we require continuity of the field with respect to the incident direction. This
will give the same satisfactory condition as the third approach where we approximate
the incident plane wave by an incident point source and let the location of the source
tend to infinity.

1. Introduction

Let k > 0 be the wave number and θ̂ ∈ R2 be a unit vector with θ̂2 < 0 which are fixed.
In polar coordinates we express θ̂ as θ̂ =

(
sin θ
− cos θ

)
for some |θ| < π

2
. Furthermore, let

n ∈ L∞(R2) be the real valued index of refraction which is assumed to be 2π−periodic
with respect to x1 and equal to 1 for |x2| > h0 for some h0 > 0. Let q ∈ L∞(R2) have
compact support in Q := (0, 2π)× (−h0, h0). It is the aim to solve

(1) ∆u+ k2(n+ q)u = 0 in R2

for the total field u(x) = eikθ̂·x + us(x) as the sum of the incident plane wave of direction

θ̂ and the scattered field us. Furthermore, a suitable radiating condition for us has to be
assumed. In the first part of the paper we consider the unperturbed case; that is, q = 0.

We note that the incident field ui(x) = eikθ̂·x is α−quasi-periodic with respect to x1 with

parameter α = kθ̂1 = k sin θ. (Recall that a function φ = φ(x1) is α−quasi-periodic if
φ(x1 + 2π) = e2παiφ(x1) for all x1 ∈ R.) Therefore, it is common (see, e.g., [2, 1, 4, 6]) to
assume that also the scattered field has to be quasi-periodic with the same parameter α,
and then the Rayleigh expansion provides a suitable radiation condition.
As we will recall below, for fixed k > 0 there exist parameters α (which we will call
propagative wave numbers, see Definition 2.1); that is angles θ of incident directions, for
which no uniqueness holds under the Rayleigh expansion. For these particular angles it
is not clear which solution is – mathematically or physically – the correct one.
There are at least three ways to derive a correct radiation condition in this case where no
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uniqueness holds. A classical way is to apply the Limiting Absorption Principle (LAP).
Noting that the scattered field satisfies the inhomogeneous Helmholtz equation (for q = 0)

(2) ∆us + k2nus = −k2(n− 1)ui in R2

with incident plane wave ui(x) = eikθ̂·x we observe that the application of the LAP to
the wave number k; that is, replacing k by k + iε, does not work because in that case
the right hand side f = k2(n − 1)ui vanishes for |x2| > h0 but is not even bounded
in the layer W := R × (−h0, h0). An alternative is to apply the LAP to the refractive
index n; that is replace n(x) by n(x) + iε inside the waveguide. Since also in this case
we do not expect a H1(R2)−solution for us we have to add a radiation condition. The
“upwards propagation radiation condition“ gives uniqueness in H1

loc(R2) even in the case
of general q; that is, with refractive index n(x) + q(x) + iε. In the unperturbed case q = 0
this condition is equivalent to the Rayleigh expansion. In Section 3 we will study the
question of convergence when ε tends to zero. It will turn out that this principle gives an
unexpected and unsatisfactory answer in the case where no uniqueness holds.

The second approach demands continuity of the solution with respect to the angle of
incidence. As we will see in Section 6 this will pick one particular solution and gives an
additional condition on the field.

In Section 5 we will follow a third approach and consider first the scattering of an incident
point source at z ∈ R2 with z2 > h0 and later let z tend to infinity. Therefore, the incident

field is given by uiz(x) = Φ(x, z), x ∈ R2 \ {z}, where Φ(x, z) = i
4
H

(1)
0 (k|x − z|) denotes

the fundamental solution. We recall the asymptotic behavior

Φ(x, z) = γ
eik|z|√
|z|
e−ikx·z/|z| + O(|z|−3/2) , |z| → ∞ ,

uniformly with respect to directions z/|z| and x from bounded sets. Here, γ = eiπ/4√
8πk

.

Therefore, if θ̂ =
(

sin θ
− cos θ

)
with |θ| < π

2
is the direction of the incident plane wave we define

the source to be z = −tθ̂ and note that

(3)
1

γ
lim
t→∞

[√
t e−ikt Φ(x,−tθ̂)

]
= eik θ̂·x

uniformly for x from bounded sets. Therefore we expect that the solution of the scattering
problem of a point source at z = −tθ̂ (multiplied with the factor 1

γ

√
t e−ikt) converges to

a solution of of the scattering problem for the plane incident field of direction θ̂. We will
prove this convergence result for the unperturbed case; that is, for q = 0, in Section 5.

The last Section 6 is devoted to the case where q is general; that is, where the refractive
index is given by n+ q.

All three approaches use the theory of quasi-periodic scattering problems (either because
the problems themselves are quasi-periodic or via the Floquet-Bloch transform) which
we repeat in Section 2. Also the problems are singular in the sense that they involve
invertible operators Lε for ε 6= 0 which tend to an operator L0 as ε→ 0 which is singular.
For treating the convergence of the corresponding solutions of Lεuε = rε we apply an
abstract singular perturbation result which we learned from [3], Section 1.4. We recall
and extend it in Theorem 2.7 of Section 2.
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Let us summarize some notations on sets and spaces. Let again W := R× (−h0, h0) and
Q := (0, 2π)× (−h0, h0) and, furthermore, Q∞ := (0, 2π)×R and Qh0

+ := (0, 2π)× (h0,∞)

and Qh0
− := (0, 2π) × (−∞,−h0) and Γ± := (0, 2π) × {±h0}; that is, Q∞ = Qh0

− ∪ Γ− ∪
Q ∪ Γ+ ∪Qh0

+ . We set Γ := Γ+ ∪ Γ−.
Furthermore, let H1

α,loc(R2) :=
{
u ∈ H1

loc(R2) : u(·, x2) is α−quasi-periodic
}

where a

function u is α−quasi-periodic if u(x1 + 2π, x2) = eiα2πu(x1, x2) for all x = (x1, x2). We
identify H1

α,loc(R2) sometimes with H1
α,loc(Q

∞); that is, identify quasi-periodic functions

on (0, 2π) with those on R – as we do also by identifying the space {f ∈ L2(R2) :
f vanishes outside of Q∞} with L2(Q∞). In the same way H1

α(Q) is defined. The space
H1
per(Q) denotes the subspace of H1(Q) of 2π−periodic functions with respect to x1.

Finally, the space H
1/2
α (Γ) is the trace space of H1

α,loc(Q
∞) on Γ and H

−1/2
α (Γ) the dual

of H
1/2
−α (Γ).

2. Quasi-Periodic Problems And a Singular Perturbation Result

We first recall some notations.

Definition 2.1. (a) α ∈ R is called a cut-off value if there exists ` ∈ Z with |`+ α| = k.

(b) α ∈ R is called a propagative wave number (or quasi-momentum or Floquet spectral

value) if there exists a non-trivial φ̂ ∈ H1
α,loc(R2) such that

(4) ∆φ̂+ k2n φ̂ = 0 in R2 ,

and φ̂ satisfies the Rayleigh expansion

(5) φ̂(x) =
∑
`∈Z

φ̂±` e
i(`+α)x1+i

√
k2−(`+α)2|x2| for ± x2 > h0

for some φ̂±` ∈ C where the convergence is uniform for |x2| ≥ h0 + δ for all δ > 0. The

functions φ̂ are called propagating (or guided) modes.

If we decompose k into k = ˆ̀+ κ with ˆ̀∈ N ∪ {0} and κ ∈ (−1/2, 1/2] we observe that
the cut-off values are given by ±κ+ ` for any ` ∈ Z.

Since with α also α + ` for every ` ∈ Z is a propagative wave number we can restrict
ourselves to propagative wave numbers in (−1/2, 1/2].

Under the following assumption it can easily be seen that every propagating mode φ̂
corresponding to some propagative wave number α is evanescent; that is, φ̂±` = 0 for all

|`+ α| ≤ k; that is, there exist c, δ > 0 with |φ̂(x)| ≤ c e−δ|x2| for all |x2| > h0.

Assumption 2.2. Let |`+α| 6= k for all propagative wave numbers α and all ` ∈ Z; that
is, the cut-off values are no propagative wave numbers.

Under Assumption 2.2 it can also be shown (see, e.g. [9]) that at most a finite number of
propagative wave numbers exist in [−1/2, 1/2]. Furthermore, if α is a propagative wave

number with mode φ̂ then −α is a propagative wave number with mode φ̂. Therefore,
we can numerate the propagative wave numbers in [−1/2, 1/2] such they are given by

3



{α̂j : j ∈ J} where J ⊂ Z is symmetric with respect to 0 and α̂−j = −α̂j for j ∈ J .
Furthermore, it is known that every eigenspace

(6) X̂j :=
{
φ̂ ∈ H1

α̂j ,loc
(R2) : φ̂ satisfies (4) and (5)

}
is finite dimensional with some dimension mj > 0. We note that the elements of X̂j are

in H2(Q∞) and even analytic for |x2| > h0. We construct an orthonormal basis in X̂j

as follows. Let j ∈ J be fixed. First we choose an arbitrary inner product (·, ·)X̂j in X̂j.

Then we consider the following finite dimensional eigenvalue problem in X̂j.

Determine λ`,j ∈ R, ` = 1, . . . ,mj, and non-trivial φ̂`,j ∈ X̂j for ` = 1, . . . ,mj such that

(7) −2i

∫
Q∞

∂φ̂`,j
∂x1

ψ dx = λ`,j
(
φ̂`,j , ψ

)
X̂j

for all ψ ∈ X̂j .

This eigenvalue problem is self-adjoint because the left hand side defines a hermitean
sesqui-linear form on the finite dimensional space X̂j. Let the eigenfunctions be normal-

ized such that
(
φ̂`,j , φ̂`′,j

)
X̂j

= δ`,`′ for `, `′ = 1, . . . ,mj.

Remark 2.3. In [8] it is shown (for the case of the source problem ∆u+k2nu = −f in the
half plane {x ∈ R2 : x2 > 0} and additional Neumann boundary conditions for x2 = 0)
that the Limiting Absorption Principle (LAP) with respect to k leads to the eigenvalue
problem with inner product (φ, ψ)X̂j = 2k

∫
Q∞ nφψ dx while the LAP with respect to n in

the layer W leads to the eigenvalue problem with inner product (φ, ψ)X̂j = k2
∫
Q
φψ dx.

We make a further assumption which is equivalent to the fact that the group velocities
do not vanish (see [7]).

Assumption 2.4. Let λ`,j 6= 0 for all ` = 1, . . . ,mj and j ∈ J ; that is, there is no

non-trivial φ ∈ X̂j with
∫
Q∞

∂φ
∂x1

ψ dx = 0 for all ψ ∈ X̂j.

In all of the paper we make Assumptions 2.2, and 2.4 without mentioning this anymore.

After these preparations we will now consider quasi-periodic source problems with source
functions f ∈ L2(Q∞) which are not compactly supported.

Let f ∈ L2(Q∞) such there exist c, δ > 0 with |f(x)| ≤ ce−δ|x2| for all |x2| > h0. For any
α ∈ R consider the problem to determine u ∈ H1

α,loc(Q
∞) such that

(8a) ∆u+ k2nu = −f in Q∞ ,

and u satisfies the generalized Rayleigh condition

(8b)
∑
`∈Z

∣∣(signx2)
du`(x2)

dx2

− i
√
k2 − (`+ α)2 u`(x2)

∣∣2 −→ 0 , |x2| → ∞ .

Here, u`(x2) = 1√
2π

∫ 2π

0
u(x1, x2)e−i(`+α)x1dx1 are the Fourier coefficients of u(·, x2). The

corresponding α−quasi-periodic Dirichlet-to-Neumann operator Λα : H
1/2
α (Γ)→ H

−1/2
α (Γ)

is given by

(9) (Λαφ)(x1,±h0) :=
i√
2π

∑
`∈Z

√
k2 − (`+ α)2 φ`(±h0) ei(`+α)x1 , x1 ∈ (0, 2π) ,

4



for φ ∈ H1/2
α (Γ).

The following theorem collects properties of the problem (8a), (8b). For a proof we refer
to [7], Theorem 4.1–4.3 and Remark 4.4.

Theorem 2.5. Let Assumptions 2.2 and 2.4 hold.

(a) For every α ∈ R the problem (8a), (8b) is equivalent to the variational equation

(10)

∫
Q

[∇u · ∇ψ − k2nuψ] dx−
∫
Γ

(Λαu)ψ ds =

∫
Q

f ψ dx+

∫
Γ

∂w

∂ν
ψ ds

for all ψ ∈ H1
α(Q) where ∂w/∂ν := ±∂w±/∂x2 on Γ±. Here, w± ∈ H1

α,loc(Q
h0
± )

are the (uniquely determined) solutions of ∆w± + k2w± = −f in Qh0
± , w± = 0 on

Γ±, which satisfy the generalized Rayleigh condition (8b); that is,∑
`∈Z

∣∣∣∣(signx2)
dw±` (x2)

dx2

− i
√
k2 − (`+ α)2w±` (x2)

∣∣∣∣2 −→ 0 , x2 → ±∞ ,

where w±` (x2) are the Fourier coefficients of w±(·, x2).
(b) For every α ∈ R the variational equation (10) can be written as

Lαu = rα in H1
α(Q)

where rα ∈ H1
α(Q) and Lα : H1

α(Q)→ H1
α(Q) are given by

(Lαu, ψ)H1(Q) =

∫
Q

[∇u · ∇ψ − k2nuψ] dx−
∫
Γ

(Λαu)ψ ds ,

(rα, ψ)H1(Q) =

∫
Q

f ψ dx+

∫
Γ

∂w

∂ν
ψ ds

for u, ψ ∈ H1
α(Q). The operator Lα is a Fredholm operator with index zero and

Riesz number one (that is, the null spaces of Lα and L2
α coincide). The operator

Lα is invertible if, and only if, α is not a propagative wave number. If α = α̂j + `
(for some ` ∈ Z) is a propagative wave number then the nullspaces of Lα and its
adjoint L∗α coincide and are given by the restrictions to Q of the corresponding

modes in X̂j.
(c) If α = α̂j + ` is a propagative wave number for some ` ∈ Z and j ∈ J then the

problem (8a), (8b) is solvable if, and only, if
∫
Q∞ f φ̂ dx = 0 for all φ̂ ∈ X̂j.

(d) Define Jα : H1
per(Q) → H1

α(Q) by (Jαφ)(x) := eiαx1φ(x) and r̃α ∈ H1
per(Q) and

the operator L̃α from H1
per(Q) into itself by r̃α := J−1

α rα and L̃α := J−1
α LαJα,

respectively. If α̂ ∈ R is not a cut-off value then there exists a neighborhood
U ⊂ C of α̂ such that α 7→ r̃α and α 7→ L̃α are analytic as mappings from U into
H1
per(Q) and L

(
H1
per(Q)

)
, respectively.

We note that in the case where f ∈ L2(Q∞) has compact support in Q the generalized
Rayleigh condition (8b) can be replaced by the Rayleigh expansion (5) and the function
w appearing in (10) vanishes. Application of this theorem yields existence of the following
quasi-periodic scattering problem.
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Theorem 2.6. For given wave number k > 0 and unit vector θ̂ =
(

sin θ
− cos θ

)
with |θ| < π

2
;

that is, θ̂2 = − cos θ < 0, set α := kθ̂1 = k sin θ. Then there exists u ∈ H1
α,loc(R2) such

that ∆u+ k2nu = 0 in R2, and us(x) := u(x)− eikθ̂·x satisfies the Rayleigh expansion (5).

Proof: The scattered field us satisfies (8a) with f = k2(n − 1)ui where ui(x) = eikθ̂·x

denotes the incident field. If α is not a propagative wave number then there exists a
unique solution us by parts (a) and (b) of Theorem 2.5. If α = α̂j + ` is a propagative

wave number for some ` ∈ Z and j ∈ J then we have to show that
∫
Q∞(n− 1)uiφ̂ dx = 0

for all φ̂ ∈ X̂j. From the differential equation for φ̂ we obtain

k2

∫
Q∞

(n− 1)ui φ̂ dx =

∫
Q∞

ui [∆φ̂+ k2φ̂] dx =

∫
Q∞

[∆ui + k2ui] φ̂ dx = 0

by Green’s second theorem. We used that the product ui φ̂ is 2π−periodic with respect
to x1, that ui is bounded, and that φ̂ decays exponentially for |x2| → ∞. �

The following theorem is a special case of a singular perturbation result in [3], Section 1.4.
We add the characterization of the limiting solution and give a more direct proof for the
convenience of the reader.

Theorem 2.7. Let α̂ ∈ I for some open interval I ⊂ R, Kα compact operators from
some Hilbert space X into itself and rα ∈ R(Lα) for all α ∈ I where Lα := I −Kα, and
R(Lα) denotes the range of Lα. Furthermore, let Lα be one-to-one (thus invertible) for
all α 6= α̂ and let Lα̂ = I − Kα̂ have Riesz number one. Let P : X → N := N (Lα̂) be
the projection onto the nullspace of Lα̂ along the direct decomposition X = N ⊕R where
R = R(Lα̂). Finally, let α 7→ rα and α 7→ Kα be analytic in a neighborhood U ⊂ C of α̂
and let PL′α̂|N be an isomorphism from N onto itself where L′α̂ denotes the derivative of
Lα with respect to α at α = α̂.
Then the mapping α 7→ uα := L−1

α rα has an extension to an analytic mapping from U
into X. The limit uα̂ = limα→α̂ uα is the unique solution of the system Lα̂uα̂ = rα̂ and
PL′α̂uα̂ = Pr′α̂ where r′α̂ denotes the derivative of rα at α = α̂. Furthermore, there exists
a closed interval I0 ⊂ I containing α̂ in its interior and c > 0 with

(11) ‖uα‖X ≤ c
[
sup
β∈I0
‖rβ‖X + sup

β∈I0
‖∂rβ/∂β‖X

]
for all α ∈ I0 .

Proof: Without loss of generality we assume that α̂ = 0. First we show uniqueness of

the system L0u0 = r0 and PL′0u0 = Pr′0. Let u
(j)
0 for j = 1, 2 denote two solutions. Then

u0 = u
(1)
0 − u

(2)
0 satisfies L0u0 = 0 and PL′0u0 = 0; that is, u0 ∈ N and thus u0 = 0

because PL′0 is one-to-one on N .

For α 6= 0 we decompose uα into uα = uNα +uRα with uNα ∈ N and uRα ∈ R and project the
equation Lαuα = rα ontoN andR; that is, PLα(uNα +uRα ) = Prα andQLα(uNα +uRα ) = Qrα
where Q = I − P is the projection onto R.
The operator QL0|R is an isomorphism from R onto itself as easily seen. Therefore, by

a perturbation argument there exist Aα :=
[
QLα|R

]−1
from R onto itself for all α in a

neighborhood V ⊂ U of 0 and they depend analytically on α ∈ V . Therefore, substituting
6



uRα = Aα(Qrα −QLαuNα ) into the first equation yields

PLα(I − AαQLα)uNα = Prα − PLαAαQrα in N ,

which we write briefly as Cαu
N
α = sα. From PL0 = 0 and Pr0 = 0 we conclude that

C0 = 0 and s0 = 0. Therefore, Cαu
N
α = sα is equivalent to 1

α
(Cα − C0)uNα = 1

α
(sα − s0).

The operators 1
α

(Cα − C0) and the elements 1
α

(rα − r0) depend analytically on α in the

neighborhood V of α = 0 with limα→0
1
α

(Cα − C0) = C ′0 and limα→0
1
α

(sα − s0) = s′0. By
the chain rule we compute C ′0 = PL′0|N and s′0 = Pr′0 − PL′0A0r0. Since C ′0 = PL′0|N is
invertible by assumption also 1

α
(Cα − C0) is invertible for α in some interval I0 and its

inverses are uniformly bounded with respect to α ∈ I0, thus ‖uNα ‖X ≤ c‖(sα− s0)/α‖X ≤
c′ supβ ‖s′β‖X . Also, it is easily seen that uNα converges to the unique solution uN0 ∈ N of

C ′0u
N
0 = s′0; that is, of PL′0u

N
0 = Pr′0 − PL′0A0r0.

Finally, we observe from above that uRα converges to uR0 = A0(Qr0 − QL0u
N
0 ) = A0r0.

Therefore, uN0 satisfies PL′0u
N
0 = Pr′0 − PL′0u

R
0 ; that is, PL′0u0 = Pr′0 which ends the

proof. �

Remark 2.8. From the proof of this theorem we observe that we can modify the assump-
tions on the mappings α 7→ rα and α 7→ Kα. If these mappings are only continuously
differentiable in an open interval J ⊂ I (as a subset of R) which contains α̂ then the
solution maps α 7→ uα is continuous from J into X, and the estimate (11) holds. Also, if
the assumption on the injectivity of Lα holds only for α ∈ J with α > α̂ then the one-sided
limit uα̂ = limα→α̂,α>α̂ uα exists and solves the system Lα̂uα̂ = rα̂ and PL′α̂uα̂ = Pr′α̂.

3. The Limiting Absorption Principle

In this section we consider the unperturbed case; that is, q = 0, and prove the limiting
absorption principle (LAP) with respect to the refractive index; that is, we replace n(x)
in W := R× (−h0, h0) by n(x) + iεq(x) for ε > 0 and let ε tend to zero. Here q ∈ L∞(W )
is any fixed non-negative function which is 2π−periodic with respect to x1 and satisfies
q(x) ≥ q0 on some open set Ω ⊂ Q for some q0 > 0. As an example we can take the
constant function q = 1. Therefore, let

nε(x) :=

{
n(x) + iεq(x) for x ∈ W ,

1 for x ∈ R2 \W .

The incident plane wave is given by ui(x) = eikθ̂·x where θ̂ =
(

sin θ
− cos θ

)
for some fixed |θ| < π

2
.

Then ui is α−quasi-periodic with parameter α := kθ̂1 = k sin θ. Therefore, for ε > 0 we
wish to determine uε ∈ H1

α,loc(Q
∞) such that

(12) ∆uε + k2nε uε = 0 in R2

and the scattered field usε := uε − ui satisfies the Rayleigh expansion (5). The scattered
field satisfies ∆usε + k2nεu

s
ε = −k2(nε − 1)ui, and by (10) its the variational form is given

by ∫
Q

[∇usε · ∇ψ − k2nε u
s
ε ψ] dx−

∫
Γ

(Λαu
s
ε)ψ ds = k2

∫
Q

(nε − 1)ui ψ dx

7



for all ψ ∈ H1
α(Q). Green’s theorem applied to ui and ψ in Q yields∫

Q

[∇ui · ∇ψ − k2nε u
i ψ] dx−

∫
Γ

∂ui

∂ν
ψ ds = −k2

∫
Q

(nε − 1)ui ψ dx

and thus by adding both equations∫
Q

[∇uε · ∇ψ − k2nε uε ψ] dx−
∫
Γ

(Λαuε)ψ ds(13)

=

∫
Γ

[
∂ui

∂ν
− Λαu

i

]
ψ ds =

∫
Γ+

[
∂ui

∂x2

− Λαu
i

]
ψ ds

= 2ik θ̂2 e
ikθ̂2h0

2π∫
0

eiαx1 ψ(x1, h0) dx1 = −2ik cos θ e−ikh0 cos θ

2π∫
0

eiαx1 ψ(x1, h0) dx1

for all ψ ∈ H1
α(Q). Here we used that for x2 < −h0 the incident field satisfies the Rayleigh

condition, thus ∂ui

∂ν
= Λαu

i on Γ−. Furthermore, for x2 > h0 the α−quasi-periodic solution

of the Dirichlet problem with boundary data ui on Γ+ is given by eiαx1+|θ̂2|(x2−2h0), thus

Λαu
i = ik |θ̂2|eiαx1+ikθ̂2h0 on Γ+.

Lemma 3.1. For all ε > 0 there exists a unique solution uε ∈ H1
α,loc(Q

∞) of (12), (5) or,
equivalently, (13).

Proof: Since by Theorem 2.5 this equation can be written as Lεuε = r in H1
α(Q) where

Lε is a Fredholm operator of index zero it suffices to prove uniqueness. For ui = 0 we
substitute ψ = uε into the variational equation and obtain

0 =

∫
Q

[
|∇uε|2 − k2nε|uε|2

]
dx −

∫
Γ

(Λαuε)uε ds

=

∫
Q

[
|∇uε|2 − k2nε|uε|2

]
dx − i

∑
σ∈{+,−}

∑
`∈Z

√
k2 − (`+ α)2 |uε,`(σh0)|2 .

Taking the imaginary part

0 = −εk2

∫
Q

q |uε|2dx −
∑

σ∈{+,−}

∑
|`+α|<k

√
k2 − (`+ α)2 |uε,`(σh0)|2

yields uε = 0 in Ω. Unique continuation implies that uε vanishes in all of Q. �

Theorem 3.2. Let Assumptions 2.2 and 2.4 hold, and let uε ∈ H1
α,loc(Q

∞) be the unique
solution of the quasi-periodic scattering problem (12), (5) for the plane incident wave of

direction θ̂ =
(

sin θ
− cos θ

)
for some fixed |θ| < π

2
. Here, α := kθ̂1 = k sin θ. Then uε converges

to some u0 in H1(Q) which is a solution of (12), (5) for ε = 0, and u0 is the only solution

which satisfies in addition
∫
Q
q u0 φ̂ dx = 0 for all modes φ̂ ∈ X̂j in the case that α = α̂j+`

(for some ` ∈ Z and j ∈ J) is a propagative wave number.
8



Proof: We note that now α is fixed and ε takes the role of the parameter which tends
to zero. We write (13) again in the form Lεuε = r where Lε : H1

α(Q) → H1
α(Q) and

r ∈ H1
α(Q) are given by (compare with part (b) of Theorem 2.5)

(Lεu, ψ)H1
α(Q) :=

∫
Q

[∇u · ∇ψ − k2nε uψ] dx−
∫
Γ

(Λαu)ψ ds ,

(r, ψ)H1
α(Q) := −2ik cos θ e−ikh0 cos θ

2π∫
0

eiαx1 ψ(x1, h0) dx1

for u, ψ ∈ H1
α(Q).

If α is no propagative wave number then L0 is invertible and one has convergence of uε
to the unique solution u0 of L0u0 = r in H1(Q) as ε tends to zero.
Let now α be a propagative wave number. It is the aim to apply Theorem 2.7 in the
modification of Remark 2.8 with X = H1

α(Q). Then we know from Theorem 2.5 that
the Riesz number of L0 is one and the nullspaces N of L0 and its adjoint L∗0 coincide
and are given by the restrictions to Q of the space of corresponding propagating modes.
Furthermore, Lε depends obviously analytically on ε. It remains to show that r is in the
range of L0 and that PL′0|N is an isomorphism from N onto itself (where L′0 denotes
the derivative with respect to ε at ε = 0). Since the nullspaces of L0 and its adjoint L∗0
coincide we have to show that (r, φ̂)H1

α(Q) = 0 for all propagating modes φ̂ corresponding
to the propagative wave number α. We have

(r, φ̂)H1
α(Q) = −2ik cos θ e−ikh0 cos θ

2π∫
0

eiαx1 φ̂(x1, h0) dx1 = 0

because the Fourier coefficients of the propagating modes φ̂ vanish for all |` + α| < k, in
particular for ` = 0 because |α| = k| sin θ| < k. Furthermore,(

L′0v, ψ
)
H1(Q)

= −ik2

∫
Q

q v ψ dx , v, ψ ∈ H1
α(Q) ,

which shows that PL′0|N is an isomorphism fromN onto itself. Application of Theorem 2.7
yields convergence of uε to u0 as ε tends to zero, and u0 solves the k sin θ−quasi-periodic

scattering problem and, in addition,
∫
Q
q u0 φ̂ dx = 0 for all modes φ̂. �

This result is quite unsatisfactory because the orthogonality condition
∫
Q
q u0 φ̂ dx = 0

depends on q. The scattering problem for the limiting case ε = 0, however, is independent
of q. Therefore, also the extra condition in the case of a propagative wave number should
be independent of q.

4. Continuity With Respect to the Direction of Incidence

We continue with the unperturbed case; that is, q = 0, and the scattering of a plane
wave uiϕ(x) = eikϕ̂·x for some ϕ̂ =

(
sinϕ
− cosϕ

)
with |ϕ| < π

2
such that α := kϕ̂1 = k sinϕ is

not a propagative wave number in the sense of Definition 2.1. Then Theorem 2.5 yields
uniqueness and existence of a α−quasi-periodic solution uϕ of ∆uϕ+k2nuϕ = 0 such that

9



uϕ − uiϕ satisfies the Rayleigh expansion (5). Let now θ̂ =
(

sin θ
− cos θ

)
with |θ| < π

2
such that

α̂ := kθ̂1 = k sin θ is a propagative wave number and consider ϕ in a neighborhood of
θ. It is the aim to prove that the unique solution uϕ converges to a solution uθ of the

problem for θ̂ and give a characterization.

We recall from (13) that the scattering problem for the incident direction ϕ̂ is equivalent
to the variational equation∫

Q

[∇uϕ · ∇ψ − k2nuϕ ψ] dx−
∫
Γ

(Λαuϕ)ψ ds(14)

= −2ik cosϕ e−ikh0 cosϕ

2π∫
0

eiαx1 ψ(x1, h0) dx1 for all ψ ∈ H1
α(Q)

where α = k sinϕ. With this variational formulation of the scattering problem we are
able to prove the following convergence result.

Theorem 4.1. Let Assumptions 2.2 and 2.4 hold and let α̂ := k sin θ for some |θ| < π
2

be a propagative wave number; that is, α̂ = k sin θ = ˆ̀+ α̂j for some ˆ̀ ∈ Z and j ∈ J .
Furthermore, let uϕ be the unique solution of the k sinϕ−quasi-periodic scattering problem

of the plane wave incidence of direction ϕ̂ =
(

sinϕ
− cosϕ

)
for ϕ in a neighborhood of θ. Then

uϕ converges in H1(Q) to some uθ as ϕ tends to θ, and uθ is a α̂−quasi-periodic solution

of the scattering problem corresponding to the incident field of direction θ̂ and the only

solution which also satisfies
∫
Q∞

∂uθ
∂x1

φ̂ dx = 0 for all propagating modes φ̂ ∈ X̂j.

Proof: We transform (14) into the 2π−periodic form by setting ũϕ(x) = e−ik sinϕx1uϕ(x)
and substitute the form of the Dirichlet-Neumann map. This yields∫

Q

[
∇ũϕ · ∇ψ − 2ik sinϕ

∂ũϕ
∂x1

ψ − k2(n− sin2 ϕ) ũϕ ψ
]
dx(15)

−i
∑

σ∈{+,−}

∑
`∈Z

√
k2 − (`+ k sinϕ)2 ũϕ,`(σh0)ψ`(σh0)

= −2ik cosϕ e−ikh0 cosϕ

2π∫
0

ψ(x1, h0) dx1 for all ψ ∈ H1
per(Q) .

Here, ũϕ,`(±h0) are the Fourier coefficients of ũϕ(·,±h0). We write this as L̃ϕũϕ = r̃ϕ
in H1

per(Q) where L̃ϕ := J−1
α LαJα as in Theorem 2.5. Since α̂ = k sin θ is a propagative

wave number it is not a cut-off value by Assumption 2.2. Therefore, by Theorem 2.5 the
operator L̃ϕ satisfies the smoothness assumptions of Theorem 2.7 in a neighborhood of θ,

and also the right hand side r̃ϕ depends obviously analytically on ϕ. Furthermore, L̃θ has
Riesz number one and the nullspaces N of Lθ and its adjoint L∗θ coincide and are given
by the restrictions to Q of the space of corresponding propagating modes (transformed to
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the periodic case). The derivatives with respect to ϕ are given by

(L̃′ϕṽ, ψ̃)H1(Q) = −2ik cosϕ

∫
Q

[ ∂ṽ
∂x1

+ ik sinϕ ṽ
]
ψ̃ dx

+ ik cosϕ
∑

σ∈{+,−}

∑
`∈Z

`+ k sinϕ√
k2 − (`+ k sinϕ)2

ṽ`(σh0) ψ̃`(σh0) ,

(r̃′ϕ, ψ̃)H1(Q) = 2ik sinϕ e−ikh0 cosϕ
[
1− ikh0 cosϕ

] 2π∫
0

ψ̃(x1, h0) dx1

for ṽ, ψ̃ ∈ H1
per(Q). To show that PL̃′θ is one-to-one on N we compute (L̃′ϕṽ, ψ̃)H1(Q) for

ṽ, ψ̃ ∈ N . As mentioned above, ṽ(x) = e−ik sin θ x1v(x) and ψ̃(x) = e−ik sin θ x1ψ(x) in Q

with propagating modes v, ψ ∈ X̂j which have expansions outside of Q in the forms

v(x) =
1√
2π

∑
|`+k sin θ|>k

v`(±h0) ei(`+k sin θ)x1−
√

(`+k sin θ)2−k2(|x2|−h0) , ±x2 > h0 ,

ψ(x) =
1√
2π

∑
|`+k sin θ|>k

ψ`(±h0) ei(`+k sin θ)x1−
√

(`+k sin θ)2−k2(|x2|−h0) , ±x2 > h0 ,

respectively. A direct computation yields that∫
Q

∂v

∂x1

ψ dx =

∫
Q

[ ∂ṽ
∂x1

+ ik sin θ ṽ
]
ψ̃ dx and(16a)

∞∫
h0

2π∫
0

∂v

∂x1

ψ dx1 dx2 =
i

2

∑
|`+k sin θ|>k

`+ k sin θ√
(`+ k sin θ)2 − k2

v`(h0)ψ`(h0)

= −1

2

∑
|`+k sin θ|>k

`+ k sin θ√
k2 − (`+ k sin θ)2

v`(h0)ψ`(h0)(16b)

and analogously for the integral over (0, 2π)× (−∞,−h0). Therefore,

(L̃′θṽ, ψ̃)H1(Q) = −2ik cos θ

∫
Q∞

∂v

∂x1

ψ dx

for ṽ, ψ̃ ∈ N . Therefore, PL̃′θṽ = 0 for some ṽ ∈ N implies that
∫
Q∞

∂v
∂x1

ψ dx = 0 for all

ψ ∈ X̂j which implies that v vanishes identically by Assumption 2.4.

Application of Theorem 2.7 yields continuity of ϕ 7→ ũϕ in H1(Q) and PL̃′θũθ = P r̃′θ; that

is, (L̃′θũθ, ψ̃)H1(Q) = (r̃′θ, ψ̃)H1(Q) for all ψ̃ ∈ N . As above we go back to the quasi-periodic
11



fields uθ and ψ. We observe that for x2 > h0 and x2 < −h0 the total field uθ is given by

uθ(x) = eik sin θ x1
[
e−ik cos θ x2 − eik cos θ(x2−2h0)

]
+

1√
2π

∑
`∈Z

uθ,`(h0) ei(`+k sin θ)x1−
√

(`+k sin θ)2−k2(x2−h0) , x2 > h0 ,

uθ(x) =
1√
2π

∑
`∈Z

uθ,`(−h0) ei(`+k sin θ)x1−
√

(`+k sin θ)2−k2(−x2−h0) , x2 < −h0 ,

where uθ,`(±h0) = 1√
2π

∫ 2π

0
uθ(x1,±h0)e−i(`+k sin θ)x1dx1. From this and the fact that∫ 2π

0
ψ(x1, h0)e−ik sin θ x1dx1 vanishes the propagating modes we conclude as before that

(L̃′θũθ, ψ)H1(Q) = −2ik cos θ

∫
Q∞

∂uθ
∂x1

ψ dx and (r̃′θ, ψ)H1(Q) = 0

for all propagating modes ψ ∈ X̂j which proves
∫
Q∞

∂uθ
∂x1

ψ dx = 0 for all modes. �

We note that this condition on uθ is independent of h0 in contrast to the condition obtained
by the LAP.

5. Approximation by Point Sources

We begin with the scattering problem of a point source at z ∈ R2 with z2 > h0. The total
field uz(x) = Φ(x, z) + usz(x) is required to satisfy

(17) ∆uz + k2(n+ q)uz = 0 in R2 \ {z} ,
the following open waveguide radiation condition, and usz := uz − Φ(·, z) ∈ H1

loc(R2).

Definition 5.1. Let ψ+, ψ− ∈ C∞(R) be any (fixed) functions with ψ±(x1) = 1 for
±x1 ≥ σ0 (for some σ0 > 2π + 1) and ψ±(x1) = 0 for ±x1 ≤ σ0 − 1. Denote by D
a disc centered at the origin which contains the source z and the support of q and by
WH := R× (−H,H) the layer of width 2H for any H > 0.

A solution u ∈ H1
loc(R2 \ D) of ∆u + k2nu = 0 in R2 \ D satisfies the open waveguide

radiation condition with respect to given inner products (·, ·)X̂j in X̂j if

(a) u has a decomposition in the form u = urad + uprop where urad ∈ H1(WH \D) for
all H > h0 and

(18) uprop(x) =
∑
j∈J

[
ψ+(x1)

∑
λ`,j>0

a`,j φ̂`,j(x) + ψ−(x1)
∑
λ`,j<0

a`,j φ̂`,j(x)

]
for x ∈ R2 \ D and some a`,j ∈ C. Here, λ`,j ∈ R and φ̂`,j ∈ X̂j for j ∈ J are
the eigenvalues and corresponding eigenfunctions, respectively, of the eigenvalue
problem (7) in X̂j.

(b) The radiating part urad satisfies the generalized angular spectrum radiation condi-
tion

(19)

∞∫
−∞

∣∣∣∣(signx2)
∂(Furad)(ω, x2)

∂x2

− i
√
k2 − ω2 (Furad)(ω, x2)

∣∣∣∣2 dω −→ 0
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as |x2| → ∞ where (Furad)(·, x2) denotes the Fourier transform of urad(·, x2) with
respect to x1.
We normalize the Fourier transform as (Fφ)(t) = 1√

2π

∫∞
−∞ φ(s) e−ist ds for t ∈ R.

We transform this scattering problem to a problem with a compactly supported source.
Indeed, for some ε > 0 we choose a function η ∈ C∞(R2) with η(y) = 1 for |y| ≤ ε/2 and
η(y) = 0 for |y| ≥ ε. We decompose uz as uz = ηzΦ(·, z) + ûsz with ûsz := uz − ηzΦ(·, z)
where we have set ηz(x) = η(x − z). Then ûsz satisfies (note that (1 − n + q) ηz vanishes
identically if z2 > h0 + ε)

(20) ∆ûsz + k2(n+ q) ûsz = − fz in R2 ,

where the right hand side fz := 2∇ηz ·∇xΦ(·, z) + ∆ηz Φ(·, z) is supported in the annulus
{x ∈ R2 : ε/2 < |x− z| < ε} which we assume to be in D.

It has been shown in [9] for the case of a half plane problem that the radiation condition
of Definition 5.1 for compactly supported source functions f ∈ L2(Q) is a consequence
of the limiting absorption principle. In [7] it is shown that the source problem (20) for
any source function f ∈ L2(Q) has a unique solution satisfying the open waveguide radi-
ation condition. Furthermore, we note that the solution ûsz of (20) satisfies the radiation
condition if, and only if, the solution uz of (17) satisfies the radiation condition because
ûsz − uz vanishes for |x− z| > ε.

From now on we consider again the unperturbed case q = 0. In this case the coefficients
a`,j = a`,j(z) are given explicitly by

(21) a`,j(z) :=
2πi

|λ`,j|

∫
K(z,ε)

fz(x) φ̂`,j(x) dx ,

see again [7]. It is the aim to prove the following convergence result.

Theorem 5.2. Let Assumptions 2.2 and 2.4 hold and let θ̂ =
(

sin θ
− cos θ

)
∈ R2 be a fixed unit

vector with |θ| < π
2
; that is, θ̂2 < 0. In addition, let α̂ := kθ̂1 = k sin θ not be a cut-off

value in the sense of Definition 2.1. Let ut be the unique solution of the unperturbed (that

is, for q = 0) scattering problem of the point source at z = −tθ̂ for t|θ̂2| > 2h0 such that

ust := ut −Φ(·,−tθ̂) ∈ H1
loc(R2) and ut satisfies the open waveguide radiation condition of

Definition 5.1. Then

(22)
1

γ
lim
t→∞

[√
t e−iktut

]
= vθ in H1(QR)

for any R > 0 where QR := (−R,R) × (−h0, h0), and where vθ ∈ H1
α̂,loc(R2) solves the

α̂−quasi-periodic scattering problem ∆vθ + k2nvθ = 0 in R2 such that the scattered field

vsθ(x) := vθ(x)− eikθ̂·x satisfies the Rayleigh expansion (5) for α = α̂ = k sin θ.

If α̂ = k sin θ = ` + α̂j is a propagative wave number (for some ` ∈ Z and j ∈ J) with

corresponding space X̂j of propagating modes then the total field vθ is the only solution
which satisfies in addition

(23)

∫
Q∞

∂vθ
∂x1

φ̂ dx = 0 for all φ̂ ∈ X̂j .
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We note that the convergence of the total fields in (22) corresponds exactly to the con-
vergence of the incident fields in (3). Therefore, this theorem justifies rigorously the
assumption that one searches right away for k sin θ−quasi-periodic solutions of the scat-
tering problem. We note however that this result holds also for the case that k sin θ is
a propagative wave number. In this case there is no uniqueness of the scattering prob-
lem by the plane wave of direction θ̂ of incidence, and Theorem 5.2 formulates the extra
orthogonality condition (23) which coincides with the condition of Theorem 4.1.

We were not able to prove Theorem 5.2 in the case that k sin θ − ` is one of the cut-off
values ±κ for some ` ∈ Z.

Proof of Theorem 5.21: For the moment we consider any z ∈ R2 with z2 > h0 + ε. From
(20) (for q = 0) we note that the radiating part uz,rad of usz solves

(24) ∆uz,rad + k2nuz,rad = − fz − gz in R2 ,

where

fz = 2∇ηz · ∇xΦ(·, z)−∆ηz Φ(·, z) = (∆ + k2)
[
(ηz − 1)Φ(·, z)

]
and(25a)

gz = (∆ + k2n)uz,prop =
∑
j∈J

mj∑
`=1

a`,j(z)ϕ`,j with(25b)

ϕ`,j(x) =

{
2ψ′+(x1)

∂φ̂`,j(x)

∂x1
+ ψ′′+(x1) φ̂`,j(x) if λ`,j > 0 ,

2ψ′−(x1)
∂φ̂`,j(x)

∂x1
+ ψ′′−(x1) φ̂`,j(x) if λ`,j < 0 .

Now we use the Floquet-Bloch transform F to transform (24) to a family of quasi-periodic
problems. For functions v ∈ C∞0 (R2) the transform is defined as

(Fv)(x, α) :=
∑
`∈Z

v(x1 + 2π`, x2) e−iα2π` , x ∈ R2 .

Then it is known (see, e.g., [10]) that F has an extension to an isomorphism from H1(W )
onto

L2
(
I,H1

α(Q)
)

:=

{
u ∈ L2

(
Q× I

)
:
u(·, α) ∈ H1

α(Q) for almost all α and
α 7→ ‖u(·, α)‖H1(Q) is in L2(I)

}
where I = (−1/2, 1/2) (or any other interval of length 1). The inverse is given by
u =

∫
I
(Fu)(·, α)dα in W where (Fu)(·, α) is extended α−quasi-periodically to W .

We know from [7] that the Floquet-Bloch transformed equation

(26) ∆uα,z + k2nuα,z = −(Ffz)(·, α) − (Fgz)(·, α) in Q∞

for uα,z = (Fuz,rad)(·, α) is solvable for all α ∈ R (without exception) and that α 7→ uα,z
has an extension to a mapping in W 1,1

(
I,H1(Q)

)
and is even analytic in neighborhoods

of points α̂ which are no cut-off values. By part (b) of Theorem 2.5 this equation can be
written as a variational equation in the form

(27)

∫
Q

[∇uα,z ·∇ψ−k2nuα,z ψ] dx−
∫
Γ

(Λαuα,z)ψ ds =

∫
Q

(Fgz)(·, α)ψ dx+

∫
Γ

∂wα,z
∂ν

ψ ds

1We note already here that we will interrupt the proof by four Lemmas.
14



for all ψ ∈ H1
α(Q) or shortly as Lαuα,z = rα,z in H1

α(Q) where rα,z ∈ H1
α(Q) denotes the

Riesz representation of the right hand side. Note that Ffz vanishes in Q and therefore
appears only implicitly in w+

α,z. The functions w±α,z ∈ H1
α,loc(Q

h0
± ) are the α−quasi-periodic

solutions of

∆w+
α,z + k2w+

α,z = −(Ffz)(·, α)− (Fgz)(·, α)

= −(∆ + k2)F
(
(ηz − 1)Φ(·, z)

)
− (Fgz)(·, α)

= −(∆ + k2)F
(
(ηz − 1)Φ(·, z) + Φ(·, z∗)

)
− (Fgz)(·, α)

in Qh0
+ with w+

α,z = 0 for x2 = h0 and

∆w−α,z + k2w−α,z = −(Fgz)(·, α) in Qh0
−

with w−α,z = 0 for x2 = −h0, satisfying the generalized Rayleigh condition (8b). Here we

used the definition of fz and the fact that ηz vanishes in Qh0
− . The point z∗ = (z1, 2h0−z2)>

is the reflection of z at the line x2 = h0.

Lemma 5.3. ∂w±α,z/∂x2 are given by

∂w+
α,z(x1, h0)

∂x2

=
1

2π

∑
`∈Z

ei
√
k2−(`+α)2(z2−h0) ei(`+α)(x1−z1)

+
1√
2π

∑
`∈Z

∞∫
h0

(Fgz)`(y2, α) ei
√
k2−(`+α)2(y2−h0) dy2 e

i(`+α)x1 ,

∂w−α,z(x1,−h0)

∂x2

= − 1√
2π

∑
`∈Z

∞∫
h0

(Fgz)`(−y2, α) ei
√
k2−(`+α)2(y2−h0) dy2 e

i(`+α)x1

for x1 ∈ (0, 2π) where (Fgz)`(y2, α) = 1√
2π

∫ 2π

0
(Fgz)(y, α)e−i(`+α)y1dy1 are the Fourier

coefficients of (Fgz)(·, y2, α).

Proof: We write (ηz − 1)Φ(·, z) + Φ(·, z∗) = −G+(·, z) + ηzΦ(·, z) where G+(x, z) =
Φ(x, z) − Φ(x, z∗) denotes the Green’s function for the half space {x ∈ R2 : x2 > h0}.
Furthermore, the Floquet-Bloch transform (FG+(·, z))(x, α) is just the α−quasi-periodic
Green’s function in Qh0

+ , given by(
FG+(·, z)

)
(x, α)

=
i

4π

∑
`∈Z

1√
k2 − (`+ α)2

[
ei
√
k2−(`+α)2|x2−z2| − ei

√
k2−(`+α)2(x2+z2−2h0)

]
ei(`+α)(x1−z1) .

Indeed, this follows from the connection between the Fourier transform F and the Floquet-
Bloch transform F

(Fφ)(`+ α) =
1√
2π

∫ ∞
−∞

φ(s) e−is(`+α) ds =
1√
2π

2π∫
0

(Fφ)(t, α) e−i(`+α)t dt

(just decompose the region of integration into
⋃
`∈Z(2π`, 2π` + 2π)), writing this as

(Fφ)(t, α) = 1√
2π

∑
`∈Z(Fφ)(` + α) ei(`+α)t, and using formulas 3. and 4. in [5], Sec-

tion 6.677.
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Therefore, F
(
G+(·, z) − ηzΦ(·, z)

)
is smooth near x = z and vanishes for x2 = h0 and

satisfies the Rayleigh expansion (5) because ηz vanishes near x2 = h0 and for |x| > |z|+ε.
Therefore,

w+
α,z = F

(
G+(·, z)− ηzΦ(·, z)

)
(·, α) + v+

α,z in Qh0
+

where v+
α,z is the radiating solution of ∆v+

α,z+k
2v+
α,z = −(Fgz)(·, α) in Qh0

+ with v+
α,z = 0 for

x2 = h0. Expanding v+
α,z into a Fourier series and solving the one dimensional boundary

value problem d
dx2
v+
`,α,z(x2) + (k2 − (` + α)2)v+

`,α,z(x2) = −(Fgz)`(x2, α) for x2 > h0 and

v+
`,α,z(h0) = 0 and the generalized Rayleigh condition (8b) for its Fourier coefficients gives

v+
`,α,z(x2) =

i

2

∞∫
h0

(Fgz)`(y2, α)
ei
√
k2−(`+α)2|x2−y2| − ei

√
k2−(`+α)2(x2+y2−2h0)√

k2 − (`+ α)2
dy2 .

This proves the form for w+
α,z. Since w−α,z plays the role of v+

α,z in Qh0
− the representation

is shown analogously. �

With this result we rewrite (27) as

(Lαuα,z, ψ)H1(Q) =

∫
Q

(Fgz)(·, α)ψ dx+
1√
2π

∑
`∈Z

ei
√
k2−(`+α)2(z2−h0) e−i(`+α)z1 ψ`(h0)

+
∑

σ∈{+,−}

∑
`∈Z

ψ`(σh0)

∞∫
h0

(Fgz)`(σy2, α) ei
√
k2−(`+α)2(y2−h0) dy2 ,(28)

where the operator Lα from H1
α(Q) into itself is again defined as

(Lαv, ψ)H1(Q) :=

∫
Q

[∇v · ∇ψ − k2n v ψ] dx−
∫
Γ

(Λαv)ψ ds , v, ψ ∈ H1
α(Q) .

At this point we define the sources z to be z = z(t) = −t θ̂ for t > 0 where θ̂ =
(

sin θ
− cos θ

)
for

|θ| < π
2

is the fixed direction of the incident plane wave with θ̂2 = − cos θ < 0. We choose

t > 0 such that z2(t) = −tθ̂2 = t cos θ > 2h0. Then z2(t) → ∞ as t → ∞. We change
the symbols slightly and write uα,t and gt and a`,j(t) for uα,z(t) and gz(t) and a`,j(z(t)),
respectively.

It is now the aim to study the inverse Floquet-Bloch transform ut(x) =
∫ 1/2

−1/2
uα,t(x)dα

when t tends to infinity. We will decompose ut into components and split the region into
parts and discuss the contributions separately.

From the definitions (25b) and (21) of gz and a`,j(z), respectively, the exponential decay

of φ̂`,j, and the fact that the support of fz is contained in the disc {x ∈ R2 : |x− z| ≤ ε}
we first note that |a`,j(t)| ≤ c e−δt and thus

(29) ‖ut,prop‖H1(QR) ≤ cR
∑
j∈J

mj∑
`=1

|a`,j(t)| ≤ c e−δt

for some c > 0 and

(30) |(Fgt)(x, α)| + |∂(Fgt)(x, α)/α| ≤ c e−δ(t+|x2|) , x ∈ Q∞ \Q ,
16



for all t > 0, R > 0, and α ∈ [−1/2, 1/2].

We split the first series on the right hand side of (28) into propagating and evanescent

parts. Decompose k again into the form k = ˆ̀+κ with ˆ̀∈ N0 and κ ∈ (−1/2, 1/2]. Then
±κ are the cut-off values. We can always decompose [−1/2, 1/2] in the form [−1/2, 1/2] =
I1 ∪ I2 ∪ I3 with closed intervals Im such that their interiors are pairwise disjoint and find
corresponding sets Lm ⊂ {−ˆ̀, . . . , ˆ̀} such that |` + α| ≤ k for all α ∈ Im and ` ∈ Lm
and |` + α| ≥ k for all α ∈ Im and ` /∈ Lm for m = 1, 2, 3. For example, if κ ≥ 0 then

I1 = [−κ, κ] with L1 = {−ˆ̀, . . . , ˆ̀}, I2 = [−1/2,−κ] with L2 = {−ˆ̀ + 1, . . . , ˆ̀}, and

I3 = [κ, 1/2] with L3 = {−ˆ̀, . . . , ˆ̀− 1}. Some of the intervals can degenerate into points
(as I3 in the preceding example if κ = 1/2 or I1 if κ = 0) and some of the sets Lm can be

empty (as L2 and L3 in the preceding example if ˆ̀= 0). The cut-off values are contained
in the boundary points of Im.

For α ∈ Im (where m ∈ {1, 2, 3} is kept fixed) we rewrite (28) in the form(
Lαuα,t, ψ

)
H1(Q)

=
1√
2π

∑
`∈Lm

eit[(`+α)θ̂1+
√
k2−(`+α)2|θ̂2|] e−i

√
k2−(`+α)2h0 ψ`(h0)

+
1√
2π

∑
`/∈Lm

et[i(`+α)θ̂1−
√

(`+α)2−k2|θ̂2|] e
√

(`+α)2−k2h0 ψ`(h0)(31)

+

∫
Q

(Fgt)(·, α)ψ dx +
∑

σ∈{+,−}

∑
`∈Z

ψ`(σh0)

∞∫
h0

(Fgt)`(σy2, α) ei
√
k2−(`+α)2(y2−h0) dy2

for all ψ ∈ H1
α(Q). We recall that if α is not a propagative wave number then this equation

is uniquely solvable. If α = α̂j is a propagative wave number in Im then, by the choice of

a`,j(t), this equation is also solvable because rα̂j ,t is orthogonal to X̂j; that is, the right

hand side of (31) vanishes for modes ψ = φ̂j ∈ X̂j corresponding to α̂j. This has been
shown in [7].

The right hand side of (31) suggests to decompose uα,t for α ∈ Im into a sum of the form

(32) uα,t =
i

4π

∑
`∈Lm

eit[(`+α)θ̂1+
√
k2−(`+α)2|θ̂2|] 1√

k2 − (`+ α)2
v`,α + u

(1)
α,t

with functions v`,α ∈ H1
α(Q) for ` ∈ Lm which are independent of t and solutions of(

Lαv`,α, ψ
)
H1(Q)

= −2i
√

2π
√
k2 − (`+ α)2 e−i

√
k2−(`+α)2h0 ψ`(h0)

= −2i
√
k2 − (`+ α)2 e−i

√
k2−(`+α)2h0

2π∫
0

ψ(x1, h0) ei(`+α)x1dx1(33)

for all ψ ∈ H1
α(Q). The solutions exist for all α ∈ Im because for every propagative wave

number α = α̂j ∈ Im the right hand side of (33) vanishes for every ψ = φ̂ ∈ X̂j. Indeed, in

this case φ̂ is evanescent; that is, the Fourier coefficients 1√
2π

∫ 2π

0
φ̂(x1, h0, α̂) e−i(`+α̂)x1dx1

vanish for |` + α̂| < k; that is, for all ` ∈ Lm. This proves existence of a solution for
all α ∈ Im. The functions v`,α are solutions of α−quasi-periodic scattering problems for
plane wave incidence as the next lemma shows.
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Lemma 5.4. v`,α is the restriction to Q of a solution of the α−quasi-periodic scattering

problem of the incident plane wave of direction θ̂` = 1
k

(
` + α,−

√
k2 − (`+ α)2

)>
to

determine the total field v`,α as the sum v`,α(x) = ei(`+α)x1−i
√
k2−(`+α)2x2 + vs`,α(x) such

that

(34) ∆v`,α + k2n v`,α = 0 in R2 ,

and the scattered field vs`,α satisfies the Rayleigh expansion (5) outside of Q.

Proof: We consider the scattering problem and make an ansatz for the solution in the
form

v`,α(x) = ṽs`,α(x) +

{
ei(`+α)x1

[
e−i
√
k2−(`+α)2x2 − ei

√
k2−(`+α)2(x2−2h0)

]
, x2 > h0,

0 , x2 < −h0 ,

where

(35) ṽs`,α(x) =
1√
2π

∑
`′∈Z

a`′(±h0) ei(`
′+α)x1+i

√
k2−(`′+α)2(|x2|−h0) for ± x2 > h0 .

Then v`,α = ṽs`,α on Γ = Γ+ ∪ Γ− and thus

∂v`,α(x1, h0)

∂x2

= (Λαv`,α)(x1, h0) − 2i
√
k2 − (`+ α)2 e−i

√
k2−(`+α)2h0 ei(`+α)x1 ,

∂v`,α(x1,−h0)

∂x2

= (Λαv`,α)(x1,−h0) .

Therefore, the variational form of (34) is∫
Q

[
∇v`,α · ∇ψ − k2nv`,α ψ

]
dx−

∫
Γ

(Λv`,α)ψ ds

= −2i
√
k2 − (`+ α)2 e−i

√
k2−(`+α)2h0

2π∫
0

ei(`+α)x1ψ(x1, h0) dx1 for all ψ ∈ H1
per(Q)

which coincides with (33). �

Lemma 5.5. Let α̂ be a fixed value in the interior of Im and v`,α as in the previous lemma
for ` ∈ Lm and α ∈ Im. Then the solution map α 7→ v`,α can be extended to an analytic
map from an open neighborhood U ⊂ C of α̂ into H1(Q). Furthermore, if α̂ = α̂j is a
propagative wave number then this extension into α̂j satisfies

(36)

∫
Q∞

∂v`,α̂j
∂x1

φ̂ dx = 0

for all corresponding modes φ̂ ∈ X̂j.

We omit the proof because it follows from Theorem 4.1 if one writes (`+α)/k as (`+α)/k =

k sinϕ in the incident plane wave of direction θ̂`.
18



Next we consider the remaining term

u
(1)
α,t := uα,t −

i

4π

∑
`∈Lm

eit[(`+α)θ̂1+
√
k2−(`+α)2|θ̂2|] 1√

k2 − (`+ α)2
v`,α

of (32) which satisfies(
Lαu

(1)
α,t, ψ

)
H1
α(Q)

=
1√
2π

∑
`/∈Lm

et[i(`+α)θ̂1−
√

(`+α)2−k2|θ̂2|] e
√

(`+α)2−k2h0 ψ`(h0)

+

∫
Q

(Fgt)(x, α)ψ(x) dx+
∑

σ∈{+,−}

∑
`∈Z

ψ`(σh0)

∞∫
h0

(Fgt)`(σy2, α) ei
√
k2−(`+α)2(y2−h0) dy2

for all ψ ∈ H1
per(Q) which we write briefly as Lαu

(1)
α,t = r

(1)
α,t + r

(2)
α,t + r

(3)
α,t.

Lemma 5.6. There exists c > 0 such that∫
Im

‖u(1)
α,t‖H1(Q) dα ≤

c

t
for all t|θ̂2| ≥ 2h0 .

Proof: We decompose Im into a finite union of closed intervals I ⊂ Im with non-
intersecting interiors where I is one of the following two types.
First case: Let I ⊂ Im does not contain any of the propagative wave numbers α̂j. Then

L̃−1
α is uniformly bounded with respect to α ∈ I. We estimate the three terms r

(j)
α,t on the

right hand side. The inequality of Cauchy-Schwarz and the trace theorem yields for every
α ∈ Im

‖r(1)
α,t‖H1(Q) ≤ c

(∑
`/∈Lm

e−2
√

(`+α)2−k2 (t|θ̂2|−h0)

)1/2

where c > 0 is independent of α and t. Furthermore, (30) implies

‖r(2)
α,t‖H1(Q) ≤ ‖(Fgt)(·, α)‖L2(Q) ≤ c e−δt for all α ∈ Im .

For r
(3)
α,t we consider first |`| ≥ k + 1. Then |ei

√
k2−(`+α)2(y2−h0)| = e−

√
(`+α)2−k2(y2−h0) and

thus  ∑
|`|≥k+1

|ψ`(h0)|
∞∫

h0

∣∣(Fgt)`(y2, α)
∣∣ ∣∣ei√k2−(`+α)2(y2−h0)

∣∣ dy2

2

≤
∑
|`|≥k+1

|ψ`(h0)|2
∑
|`|≥k+1

∞∫
h0

∣∣(Fgt)`(y2, α)
∣∣2dy2

∞∫
h0

e−2
√

(`+α)2−k2(y2−h0)dy2

≤ c1‖ψ‖2
H1(Q)‖(Fgt)(·, α)‖2

L2(Q
h0
+ )
≤ c2 e

−2δt‖ψ‖2
H1
per(Q)
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for all α ∈ [−1/2, 1/2] by (30). The remaining finite sum is estimated as

∑
|`|≤k+1

|ψ`(h0)|
∞∫

h0

∣∣(Fgt)`(y2, α)
∣∣ ∣∣ei√k2−(`+α)2(y2−h0)

∣∣ dy2

≤
∑
|`|≤k+1

|ψ`(h0)|
∞∫

h0

∣∣(Fgt)`(y2, α)
∣∣ dy2 ≤

√
2k + 3√

2π
‖ψ‖H1(Q)

2π∫
0

∞∫
h0

∣∣(Fgt)(y, α)
∣∣ dy2 dy1

≤ c ‖ψ‖H1(Q) e
−δt for all α ∈ [−1/2, 1/2]

where we used (30) again. The restrictions of these estimates to α ∈ I and the uniform
boundedness of L̃−1

α yields the existence of c > 0 with

(37) ‖u(1)
α,t‖H1(Q) ≤ c

(∑
`/∈Lm

e−t
√

(`+α)2−k2 |θ̂2|
)1/2

+ c e−δt

for all α ∈ I and t|θ̂2| ≥ 2h0

Second case: Let I ⊂ Im contain no cut-off value (that is, I ⊂ int Im; that is, |`+ α| 6= k
for all ` ∈ Z and α ∈ I). In this case we wish to apply Theorem 2.7 (in the modification

of Remark 2.8) to the equation L̃αũ
(1)
α,t = r̃

(1)
α,t + r̃

(2)
α,t + r̃

(3)
α,t in the space H1

per(Q) of periodic

functions. We have to show that r̃
(j)
α,t is differentiable with respect to α and have to

bound the derivative. First we note that in this case of I there exists c0 > 0 with√
(`+ α)2 − k2 ≥ c0(|`|+ 1) for all α ∈ I and ` /∈ Lm. We begin with r̃

(1)
α,t. For α ∈ I and

` /∈ Lm we have ∣∣∣∣ ∂∂αeit(`+α)θ̂1−
√

(`+α)2−k2(t|θ̂2|−h0)

∣∣∣∣
=

∣∣∣∣itθ̂1 −
`+ α√

(`+ α)2 − k2
(t|θ̂2| − h0)

∣∣∣∣ e−√(`+α)2−k2(t|θ̂2|−h0)

≤ c t e−c0(|`|+1)(t|θ̂2|−h0) .

This yields ∑
`/∈Lm

∣∣∣∣ ∂∂αeit(`+α)θ̂1−
√

(`+α)2−k2(t|θ̂2|−h0)

∣∣∣∣ |ψ`(h0)|

≤ c t ‖ψ‖H1
per(Q)

(∑
`/∈Lm

e−2c0(|`|+1)(t|θ̂2|−h0)

)1/2

≤ c t e−c0(t|θ̂2|−h0) ‖ψ‖H1
per(Q) ;

that is, ‖∂r̃(1)
α,t/∂α‖H1

per(Q) ≤ c t e−c0(t|θ̂2|−h0) ≤ c t e−c0t|θ̂2|/2 for all α ∈ I and t|θ̂2| ≥ 2h0.

The estimates of ‖∂r̃(j)
α,t/∂α‖H1

per(Q) for j = 2, 3 follow the same arguments as for ‖r(j)
α,t‖H1(Q)

using in addition that |`+α|/|
√
k2 − (`+ α)2| is uniformly bounded with respect to ` ∈ Z

and α ∈ I.

Therefore, application of Remark 2.8 yields an estimate of the form (37) where the second
term is replaced by c2 t e

−c3t for some c2, c3 > 0. Since we can decompose Im as a finite
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union of closed intervals I of the first or second type with non-intersecting interiors2 we
have an estimate of the form

‖u(1)
α,t‖H1(Q) ≤ c1

(∑
`/∈Lm

e−t
√

(`+α)2−k2 |θ̂2|
)1/2

+ c2 t e
−c3t

for all α ∈ Im and t|θ̂2| ≥ 2h0. Therefore, by the inequality of Cauchy-Schwarz,∫
Im

‖u(1)
α,t‖H1(Q) dα ≤ c

(∑
`/∈Lm

∫
Im

e−t
√

(`+α)2−k2 |θ̂2|dα

)1/2

+ c2 t e
−c3t .

For large values of |`|, say |`| ≥ k + 1, we use the estimate
√

(`+ α)2 − k2 ≥ c0|`| which
yields that the series over |`| ≥ k + 1 decays exponentially to zero as t tends to infinity.

For fixed ` /∈ Lm with |`| ≤ k + 1 we make the substitution β = ψ(α) =
√

(`+ α)2 − k2.
Then ∫

Im

e−t
√

(`+α)2−k2 |θ̂2|dα =

∫
ψ(Im)

e−tβ|θ̂2|
β√

β2 + k2
dβ ≤ 1

k

∫
ψ(Im)

β e−tβ|θ̂2| dβ

which tends to zero as 1/t2. Indeed, if ψ(Im) = [a, b] with b > a ≥ 0 then this follows
from

b∫
a

β e−sβ dβ =
1

s

(
a e−sa − b e−sb

)
− 1

s2

(
e−sb − e−sa

)
.

This ends the proof. �

We go back to the decomposition (32) of uα,t for α ∈ Im and consider the integrals (for
` ∈ Lm)

i

4π

∫
Im

eit[(`+α) θ̂1+
√
k2−(`+α)2|θ̂2|] 1√

k2 − (`+ α)2
v`,α dα

in H1(QR) (for some fixed R > 0) with the method of stationary phase. We recall
from Lemmas 5.4 and 5.5 that v`,α is the total α−quasi-periodic field corresponding to

the incident plane wave ei(`+α)x1−i
√
k2−(`+α)2x2 which is analytic with respect to α in the

interior of Im and is also in W 1,1
(
Im, H

1(QR)
)
.

We define ψ(s) = s θ̂1 +
√
k2 − s2 |θ̂2| for |s| ≤ k. Then it easily seen that s̃ = kθ̂1 is the

only critical point (that is, ψ′(s̃) = 0) and ψ(s̃) = k and ψ′′(s̃) = − 1

kθ̂22
< 0. There is

exactly one ˜̀∈ Z and α̃ ∈ (−1/2, 1/2] with s̃ = kθ̂1 = ˜̀+ α̃. We note that α̃ 6= ±κ; that

is, α̃ is not a cut-off value by assumption on kθ̂1.

Then there exists exactly one interval Im̃ such that α̃ is in the interior of Im̃ and ˜̀∈ Lm̃.

2Note that the cut-off values are no propagative wave numbers by assumption.
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Since v˜̀,α is smooth in Im̃ the method of stationary phase is applicable to the integral
over Im̃ which gives

i

4π

∫
Im̃

eit[(
˜̀+α) θ̂1+

√
k2−(˜̀+α)2|θ̂2|] 1√

k2 − (˜̀+ α)2

v˜̀,α dα

=
i

4π
√
k2 − (˜̀+ α̃)2

eitk−iπ/4

√
2πk θ̂2

2

t
v˜̀,α̃ + o(1/

√
t)

= γ
eikt√
t
v˜̀,α̃ + o(1/

√
t)

as t → ∞. For ` ∈ Lm̃ \ {˜̀} the function α 7→ (` + α) θ̂1 +
√
k2 − (`+ α)2 |θ̂2| is

monotonous. Substituting β = (`+α) θ̂1+
√
k2 − (`+ α)2 |θ̂2| and using partial integration

yields that these integrals decay as O(1/t). Therefore, by (32) and Lemma 5.6,∫
Im̃

uα,t dα = γ
eitk√
t
v˜̀,α̃ + o(1/

√
t)

as t → ∞ in H1(QR). For the intervals Im with m 6= m̃ and ` ∈ Lm partial integration
yields again that these integrals decay as O(1/t). Therefore, the integration can be done
over all of [−1/2, 1/2], and the inverse Floquet-Bloch transform gives

ut =

1/2∫
−1/2

uα,t dα = γ
eitk√
t
v˜̀,α̃ + o(1/

√
t)

in H1(QR). From Lemma 5.4 we observe that v˜̀,α̃ is the solution of the α̃−quasi-periodic

scattering problem for the incident plane wave uinc(x) = ei(
˜̀+α̃)x1−i

√
k2−(˜̀+α̃)2x2 = eikθ̂·x;

that is, v`,α̃ = vθ with the field vθ from Theorem 5.2. If kθ̂1 is a propagative wave number

α̂j + ` for some ` ∈ Z then
∫
Q∞

∂vθ
∂x1

φ̂ dx = 0 for all corresponding modes φ̂ ∈ X̂j by

Lemma 5.5. Finally we note that the propagating part ut,prop tends to zero exponentially
by (29) and ut = ũst on Q. This ends the proof of Theorem 5.2. �

6. The Case of a Locally Perturbed Periodic Index

Now we consider the more general problem that the periodic refractive index n is per-
turbed by some function q ∈ L∞(R2) with support in Q. The following result on unique-
ness and existence has been shown in [7].

Theorem 6.1. Let Assumptions 2.2 and 2.4 hold and, in the case q 6= 0, the additional
assumption that no bound states exist; that is, no non-trivial w ∈ H1(R2) with ∆w +
k2(n + q)w = 0 in R2 exist; that is, k2 is not in the point spectrum of − 1

n+q
∆. Then for

all f ∈ L2(Q) there exists a unique solution u ∈ H1
loc(R2) of ∆u + k2(n + q)u = −f in

R2 which satisfies the open waveguide radiation condition of Definition 5.1. Furthermore,
the solution operator f 7→ u|Q is bounded from L2(Q) into H1(Q).

It is the aim to prove the following extension of Theorem 5.2.
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Theorem 6.2. Let Assumptions 2.2 and 2.4 hold and let θ̂ =
(

sin θ
− cos θ

)
∈ R2 be a fixed

unit vector with |θ| < π
2
; that is, θ̂2 < 0. In addition, let α̂ := kθ̂1 = k sin θ not be a

cut-off value in the sense of Definition 2.1 and assume that there exist no bound states.
Let wt = Φ(·,−tθ̂) + wst be the unique solution of the scattering problem

(38) ∆wt + k2(n+ q)wt = 0 in R2 \ {−tθ̂} ,

of the point source at z = −tθ̂ for t|θ̂2| > 2h0 such that wst ∈ H2
loc(R2) and wt satisfies the

open waveguide radiation condition of Definition 5.1. Then

(39)
1

γ
lim
t→∞

[√
t e−iktwt

]
= vθ + w in H1(QR)

for any R > 0 where again QR := (−R,R) × (−h0, h0). Here, vθ ∈ H1
α̃,loc(R2) is exactly

the limit function as in Theorem 5.2; that is, vθ solves the α̂−quasi-periodic scattering

problem ∆vθ + k2nvθ = 0 in R2 for such that the scattered field vsθ(x) := vθ(x) − eikθ̂·x

satisfies the Rayleigh expansion (5) for |x2| > h0. If kθ̂1 = k sin θ is a propagative wave
number then vθ satisfies in addition the orthogonality condition (36).
The function w ∈ H1

loc(R2) solves the source problem ∆w + k2(n + q)w = −k2q vθ in R2,
and satisfies the open waveguide radiation condition of Definition 5.1.

Proof: We define ut = ust + Φ(·,−tθ̂) as in Theorem 5.2 to be the unique solution

of the unperturbed scattering problem ∆ut + k2nut = 0 in R2 \ {−tθ̂} for the point

source incidence at z = −tθ̂ such that ust ∈ H1
loc(R2) and ut satisfies the open waveguide

radiation condition of Definition 5.1. Then Theorem 5.2 implies that 1
γ
e−ikt
√
tut converges

in H1(Q) to the solution vθ of the α̂−quasi-periodic scattering problem for the plane wave

of incidence θ̂. In the case that kθ̂1 is a propagative wave number vθ satisfies in addition
the orthogonality condition (36). Then w̃t = wt−ut satisfies ∆w̃t+k2(n+ q)w̃t = −k2qut
in R2 and the open waveguide radiation condition of Definition 5.1. The convergence of
1
γ
e−ikt
√
tut to vθ in H1(Q) yields convergence of 1

γ
e−ikt
√
tw̃t to w in H1(Q) because of the

continuous dependence of the solution on the right hand side. This ends the proof. �
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