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Abstract

The fusion of multiple monitoring sensors is crucial to improve the accuracy and robustness of machinery fault diagnosis.

However, existing fault diagnosis methods may underestimate the interference of noise in the multi-sensor fusion process,

leading to unsatisfied performance. To handle this problem, this paper proposes a deep model based on the frequency adaptive

wavelet pyramid. First, an adaptive frequency selection strategy is designed to prune the seriously polluted frequencies and

only retain some key frequencies. Then, the self-attention mechanism is used to perform information fusion on the selected

frequency bands of different sensors. Finally, a wavelet fusion pyramid is adopted by repeating the fusion process at multiple

wavelet decomposition levels. In this way, different sensors can be fused in a more fine-grained manner. The experimental

results on two multi-sensor-based fault diagnosis datasets demonstrate the anti-noise capability of our proposed method.
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The fusion of multiple monitoring sensors is crucial to improve the
accuracy and robustness of machinery fault diagnosis. However, exist-
ing fault diagnosis methods may underestimate the interference of noise
in the multi-sensor fusion process, leading to unsatisfied performance.
To handle this problem, this paper proposes a deep model based on the
frequency adaptive wavelet pyramid. First, an adaptive frequency selec-
tion strategy is designed to prune the seriously polluted frequencies and
only retain some key frequencies. Then, the self-attention mechanism
is used to perform information fusion on the selected frequency bands
of different sensors. Finally, a wavelet fusion pyramid is adopted by
repeating the fusion process at multiple wavelet decomposition levels.
In this way, different sensors can be fused in a more fine-grained man-
ner. The experimental results on two multi-sensor-based fault diagnosis
datasets demonstrate the anti-noise capability of our proposed method.

Introduction: To ensure the stability of rotating machinery in industrial
environments, the information of multiple monitoring sensors is usually
integrated for fault diagnosis [1, 2]. However, the amount of noise that
exists in complex industrial environments brings difficulties to the fusion
of different sensors, leading to poor fault diagnosis performance [3]. As
shown in Figure 1, the overall shapes of the sensor signals are severely
corrupted by noise. Specially, some key frequency bands (see the red
blocks in Figure 1) are hidden in the noisy frequency bands, bringing
difficulties to the multi-sensor fusion process. Therefore, it is urgent to
develop effective anti-noise multi-sensor fusion methods.

In recent years, deep learning has been widely explored to perform
multi-sensor fusion for fault diagnosis. Existing multi-sensor fusion
methods can be classified into the convolutional neural network based
(CNN-based), recurrent neural network based (RNN-based), and hybrid-
model-based categories. Early works explored CNN-structured net-
works for multi-sensor fusion. In [4], different CNNs were applied to
extract features from each sensor. The extracted features were then fed
into the support vector machine for feature fusion. In [5], a 1D-CNN-
based network was proposed to fuse the concatenated multi-sensor data
for fault diagnosis. In [6], a multi-branch CNN was designed to extract
temporal and spatial features from different sensors, respectively. Then,
the attention mechanism was applied to enhance the features of impor-
tant sensors. To capture the long-term dependencies, some works have
explored RNN-based models. In [7], the signals of different sensors were
split into multiple fixed-length segments. These segments were then
horizontally concatenated and input to an LSTM network to construct
both temporal and spatial correlations. In [8], the multi-sensor data was
first decomposed to multiple frequency bands through discrete wavelet
transform (DWT). Then, different frequency bands were concatenated
and fed into an LSTM network for fusion. Furthermore, to integrate the
advantages of CNNs in feature fusion and RNNs in capturing long-term
correlations, hybrid models composed of CNN and RNN subnets have
also been developed for multi-sensor based fault diagnosis [9]. As can be
concluded, although existing multi-sensor fusion methods have obtained
promising performance, these methods may lack fully consideration in
the interference of noise during the multi-sensor fusion process.

This letter proposes an anti-noise multi-sensor fusion method, named
the Frequency Adaptive Wavelet Pyramid Network (FAWPNet). First,
the input features are decomposed into multiple frequency bands through
DWT, with an adaptive frequency selection strategy based on the Gum-
bel softmax trick [10] to prune the severely polluted frequency bands
harmful to the multisensor fusion process. The Gumbel softmax trick is
applied to handle the non-derivable problem in the frequency selection
process. Second, the self-attention mechanism [11] is leveraged to per-

Fig 1 The signal samples of the same fault category with and without noise.
FFT denotes the Fast Fourier Transform. The waveforms on the right side
represent the spectrums of the signals. The red blocks denote the key fre-
quency regions of these samples.

form multi-sensor fusion on top of the selected frequency bands. Finally,
since it is difficult to select a suitable wavelet decomposition level, a
wavelet pyramid is constructed to perform multi-sensor fusion at multi-
ple decomposition levels. In this way, different sensors can be fused in a
more fine-grained manner.

The main contributions of this letter can be summarized as follows:
1) An adaptive frequency selection strategy is proposed to select key

frequency bands, and discard the frequency bands seriously polluted by
noise.

2) A wavelet pyramid is constructed to perform multi-sensor fusion
on top of the selected frequency bands at multiple wavelet decomposi-
tion levels.

3) Experimental results demonstrate that our method obtains supe-
rior anti-noise performance on two multi-sensor-based fault diagnosis
datasets under different signal-to-noise ratios (SNRs).

Method: The overall framework of FAWPNet is shown in Fig 2 (with
the fusion process of two sensors as an example). As shown, the FAWP-
Net can be divided into three processes, including the adaptive frequency
selection, the multi-sensor fusion and the multi-level fusion based on
wavelet pyramid. These processes are described as follows.

Adaptive Frequency Selection: The input signals of different sensors are
first passed through different convolutional branches, respectively. Then,
the extracted features of each sensor are decomposed into multiple fre-
quency bands through DWT. The DWT decomposition process is pre-
sented as follows:

𝑥𝐿 [𝑡 ] =
∑︁
𝑘

𝑥 [2𝑡 − 𝑘 ] · 𝑙 [𝑘 ], (1)

𝑥𝐻 [𝑡 ] =
∑︁
𝑘

𝑥 [2𝑡 − 𝑘 ] · ℎ [𝑘 ], (2)

where 𝑡 denotes the timestamps of the signal, 𝑘 denotes the timestamps
of the filter, 𝑙 denotes the low-pass filter, ℎ denotes the high-pass filter,
𝑥 denotes the raw signal. Finally, the decomposed frequency bands are
screened to select the key frequency bands, and discard the redundant
ones (1 for “selected” band, and 0 for “discarded” band). Since the fre-
quency selection operation is non-derivable, the Gumbel softmax trick
is introduced to handle this problem. Concretely, in the training phase,
to make the binary selection operation learnable, the Gumbel softmax
trick is leveraged to approximate the one-hot distribution. In the testing
phase, the Gumbel softmax operation is replaced with “argmax” opera-
tion to obtain the selected key frequency bands.

The process of Gumbel softmax trick can be illustrated with the fol-
lowing formula:

𝑀𝑖, 𝑗 [𝑛] =
𝑒𝑥𝑝 ( (𝐹 ′

𝑖, 𝑗
[1, 𝑛] +𝐺𝑖, 𝑗 [1, 𝑛])/𝜏)∑

𝑚=0,1
𝑒𝑥𝑝 ( (𝐹 ′

𝑖, 𝑗
[𝑚, 𝑛] +𝐺𝑖, 𝑗 [𝑚, 𝑛])/𝜏)

, (3)

𝐹 𝑠
𝑖, 𝑗 = 𝑀𝑖, 𝑗 · 𝐹𝑖, 𝑗 , (4)

where 𝑖 is the wavelet decomposition level, 𝑗 is the number of sensors, 𝑛
is the indice of decomposed frequency bands, 𝐹

′
𝑖, 𝑗

∈ R2×𝑁 is the binary
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Fig 2 An overall framework of FAWPNet.

selection matrix (𝑁 represents the number of frequency bands in one
decomposition level), 𝐺𝑖, 𝑗 is a Gumbel noise for all frequency bands,
𝑀𝑖, 𝑗 ∈ R𝑁 is the “argmax” vector, 𝐹𝑖, 𝑗 ∈ R𝐶×𝑁×𝐿 is decomposed
frequency bands (𝐶 is the channel number of frequency bands and 𝐿

is the length of frequency bands), 𝐹 𝑠
𝑖, 𝑗

∈ R𝐶×𝑁 ′×𝐿 is the selected fre-
quency bands (𝑁

′
is the number of the selected frequency bands), 𝜏 is a

temperature hyperparameter. When 𝜏 is closer to 0, the Gumbel softmax
distribution becomes one-hot. When 𝜏 is closer to infinity, the Gumbel
softmax distribution becomes uniform.

Multi-sensor Fusion: The self-attention mechanism is used to construct
correlations between different sensors in the fusion process. First, the
selected frequency bands (𝐹 𝑠

𝑖, 𝑗
) of different sensors are concatenated as

𝐹𝑎
𝑖

∈ R𝐶×𝑆′×𝐿 , where 𝑆
′

denotes the number of selected frequency
bands of all sensors. Then, the self-attention mechanism is used to con-
struct correlations between different sensors on top of 𝐹𝑎

𝑖
. Finally, the

correlated frequency bands are passed through an averagepooling oper-
ation for multi-sensor fusion.

The process of self-attention operation can be illustrated as follows:

𝐹𝑎𝑡𝑡
𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

𝑓 (𝐹𝑎
𝑖
) · 𝑔 (𝐹𝑎

𝑖
))

√
𝑑

) · ℎ (𝐹𝑎
𝑖 ) , (5)

where 𝑓 , 𝑔 and ℎ denote the linear transformations, 𝐹𝑎
𝑖

is the concate-
nated selected frequency bands of different sensors,

√
𝑑 is the dimen-

sions of 𝑓 (𝐹𝑎
𝑖
) , which is introduced for normalization, 𝐹𝑎𝑡𝑡

𝑖
is the

weighted frequency bands of multiple sensors.

Multi-level Fusion Based on Wavelet Pyramid: A problem still remains
to be tackled is that, it is difficult to choose a suitable wavelet decomposi-
tion level for multi-sensor fusion. Considering different wavelet decom-
position levels produce frequency bands with different fine granularity,
we repeat frequency selection and multi-sensor fusion process at mul-
tiple decomposition levels (see Figure 2). In this way, the multi-sensor
fusion process can be more sufficient. Subsequently, the fused features
of different decomposition levels are concatenated and fed into a linear
layer for classification.

Performance Evaluation:

Dataset: Two multi-sensor based machinery fault diagnosis datasets
are used to evaluate the compared methods. The first dataset is the
Case Western Reserve University Bearings (CWRU) dataset [12]. In our
experiments, only three types of measurement signals are used, includ-
ing the signals recorded by accelerations placed at the motor drive end,
fan end and supporting base plate, respectively. Moreover, ten kinds of
bearing state categories are used for evaluation, following the sugges-
tions in [13].

The second dataset is the Southeast University Gearbox (SEU)
dataset [14]. The gearbox data are acquired by accelerations embedded
in the Drivetrain Dynamics Simulator (DDS). This dataset comprises
the signals with regard to the motor vibration of the planetary gearbox,
motor torque and vibration of the parallel gearbox. In our experiments,

ten kinds of bearing state categories are used for evaluation, following
the suggestions in [13].

Experimental Settings: Different models are implemented in Pytorch
1.7.1 on a PC with a single Nvidia RTX 1080Ti GPU. These models
are optimized using the cross-entropy loss and the Adam optimizer. The
learning rate was initialized as 1e-3 and decreased according to the train-
ing loss. Besides, the batch size and the training epochs were set to 64
and 200, respectively. Each dataset is separated into the training dataset
and testing dataset with a ratio of 4 to 1. Moreover, the final testing
results can be obtained by averaging the testing results of 5-fold cross-
validation.

Comparisons of Different Methods: The proposed model is compared
with three multi-sensor fusion based fault diagnosis methods, including
DCNN [5], LSTM [7] and MS-PACNN [6]. To evaluate the anti-noise
performance of different models, we add random Gaussian white noise
with different SNRs to each data channel of different sensors. The for-
mula of SNR is listed as follows:

SNR = 10log(PSignal/PNoise) , (6)

where PSignal represents the power of the original signal, PNoise repre-
sents the power of the added Gaussian noise. Table 1 presents the quan-
titative performance of FAWPNet and three compared methods under six
different SNRs (including -10, -6, -2, 2, 6, 10). As can be observed from
Table 1, FAWPNet performs obviously better than the compared meth-
ods. Therefore, it is demonstrated that the proposed method has superior
anti-noise capabilities for multi-sensor based fault diagnosis.

Table 1. The classification results of the proposed model and the
compared methods under different intensities of Gaussian noise.

Dataset Methods
SNR(dB)

-10 -6 -2 2 6 10

CWRU

DCNN 80.15 89.22 98.09 99.78 99.81 99.98

LSTM 70.76 67.59 63.81 58.40 72.25 70.88

MB-PACNN 94.65 95.21 96.39 98.26 99.06 99.61

FAWPNet 98.65 99.33 99.88 99.98 99.98 1

SEU

DCNN 71.08 65.11 72.13 85.62 89.80 92.29

LSTM 53.11 51.54 83.99 96.37 97.06 97.20

MB-PACNN 98.24 94.52 95.89 95.93 97.22 97.75

FAWPNet 99.50 99.90 99.94 99.98 1 1

Ablation Experiments: This section provides the ablation experiments
of FAWPNet. To be specific, the ablation experimental results of the
adaptive frequency selection strategy and the wavelet fusion pyramid
are presented, respectively.

To demonstrate the effectiveness of the adaptive frequency selection
strategy, the models with and without the frequency selection process
(FAWPNet-W) are compared. It is worth mentioning that, instead of
selecting the key frequency bands, FAWPNet-W uses the self-attention
mechanism to weight all of the frequency bands. The experimental
results are presented in Table 2. As can be observed, FAWPNet shows a
clear advantage compared with FAWPNet-W under all different SNRs.
The experimental results indicates that, it is difficult to handle the inter-
ference of noise through the weighting operations, while the frequency
selection strategy can effectively improve the anti-noise capability of the
network by discarding the polluted frequency bands.

To demonstrate the effectiveness of the wavelet fusion pyramid, the
pyramids with different decomposition levels are compared. In Table
2, FAWPNet shows better performance than the model with only two
decomposition levels (FAWPNet-2) under all different SNRs. These
experimental results illustrate that, the multi-level wavelet pyramid fuses
the information of multiple sensors more sufficiently.

Discussion: To further illustrate the process of frequency selection, we
show the spectrums of two samples (selected from the CWRU dataset)

2 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el



Table 2. The classification results of ablation experiments under dif-
ferent intensities of Gaussian noise.

Dataset Methods
SNR(dB)

-10 -6 -2 2 6 10

CWRU

FAWPNet-W 97.77 98.95 99.50 99.83 99.97 99.93

FAWPNet-2 97.92 98.61 99.36 99.65 99.83 99.90

FAWPNet 98.65 99.33 99.88 99.98 99.98 1

SEU

FAWPNet-W 94.70 98.79 98.94 99.12 99.64 99.73

FAWPNet-2 95.49 98.24 98.98 99.98 99.98 1

FAWPNet 99.50 99.90 99.94 99.98 1 1

in Figure 3. The key frequencies of the first sample are mainly located
in the low-frequency region (see the red block in the left part of Figure
3 (a)). Differently, the key frequencies of the second sample are mainly
located in the mid-high frequency region (see the red block in the left
part of Figure 3 (b)).

The distributions of the selected frequency bands corresponding to
two samples are presented in the right part of Figure 3. It can be observed
that, the selected frequency bands of the first sample (see the right half
part of Figure 3 (a)) are mostly distributed in the low-frequency region,
which is consistent with the spectrum distribution in the left part of Fig-
ure 3 (a). Moreover, similar phenomenons can also be observed from
the second sample in Figure 3 (b). Through this toy example, we demon-
strate that the adaptive frequency selection strategy can effectively select
the key frequency bands of different sensors.

(a) The spectrum of the first signal sample and the distribution of
selected frequency bands.

(b) The spectrum of the second signal sample and the distribution of
selected frequency bands.

Fig 3 The spectrums of these two samples and the distributions of the
selected frequency bands of two samples.

Conclusion: In this letter, we propose a frequency adaptive wavelet
pyramid network for noisy multi-sensor fault diagnosis. First, the sig-
nals of different sensors are decomposed into multiple frequency bands
through DWT, with designed frequency selection strategy to adaptively
prune seriously polluted frequencies of each sensor. Then, the self-
attention mechanism is applied to fuse different sensors on top of the
preserved key frequency bands. Finally, the wavelet fusion pyramid
repeats the fusion process at multiple decomposition levels. Experimen-
tal results on two multi-sensor based fault diagnosis datasets demon-
strate the superior anti-noise performance of our method.
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