A perspective study on Malware detection and protection, A review

Diptiban Ghillani' and Diptiben H Gillani!

L Affiliation not available

September 13, 2022

Abstract

Android has become the most popular smartphone operating system. This rapidly increasing adoption of Android has resulted
in significant increase in the number of malwares when compared with previous years. There exist lots of antimalware programs
which are designed to effectively protect the users’ sensitive data in mobile systems from such attacks. In this paper, our
contribution is twofold. Firstly, we have analyzed the Android malwares and their penetration techniques used for attacking
the systems and antivirus programs that act against malwares to protect Android systems. We categorize many of the most
recent antimalware techniques on the basis of their detection methods. We aim to provide an easy and concise view of the
malware detection and protection mechanisms and deduce their benefits and limitations. Secondly, we have forecast Android
market trends for the year up to 2018 and provide a unique hybrid security solution and take into account both the static and

dynamic analysis an android application.

A perspective study on Malware detection and protection, A review

Diptiben H. Gillani

Abstract—Android has become the most popular smartphone operating system. This rapidly increasing
adoption of Android has resulted in significant increase in the number of malwares when compared with
previous years. There exist lots of antimalware programs which are designed to effectively protect the users’
sensitive data in mobile systems from such attacks. In this paper, our contribution is twofold. Firstly, we
have analyzed the Android malwares and their penetration techniques used for attacking the systems and
antivirus programs that act against malwares to protect Android systems. We categorize many of the most
recent antimalware techniques on the basis of their detection methods. We aim to provide an easy and
concise view of the malware detection and protection mechanisms and deduce their benefits and limitations.
Secondly, we have forecast Android market trends for the year up to 2018 and provide a unique hybrid

security solution and take into account both the static and dynamic analysis an android application.

Keywords: Android; Permissions; Signature

INTRODUCTION

Since 2008, the rate of smartphone adoption has increased tremendously. Smartphones provide different
connectivity options such as Wi-Fi, GSM, GPS, CDMA and Bluetooth etc. which make them a ubiquitous
device. Google says, 1.3 million Android devices are being activated each day [1]. Android operating
system left its competitors far behind by capturing more than 78% of total market share in 2013 [2]. Gartner
report 2013 of smartphone sales shows that there is 42.3% increase in sales of smartphones in comparison
with 2012. According to International data corporation IDC, Android OS dominates with 82.8% of total
market shares in 2Q 2015 [3]. Figure 1 shows the market shares of Android operating system on yearly
basis. It could be observed that Android has become the most widely used operating system over the years.
Android platform offers sophisticated functionalities at very low cost and has become the most popular
operating system for handheld devices. Apart from the Android popularity, it has become the main target for
attackers and malware developers. The official Android market hosts millions of applications that are being
downloaded by the users in a large number everyday [4]. Android offers an open market model where no
any application is verified by any security expert and this makes Android an easy target for developers to

A. Static Approach

Static approach is a way to check functionalities and maliciousness of an application by disassembling
and analyzing its source code, without executing the application. It is useful for finding malicious behaviors

that may not operate until the particular condition occurs.

1) Signature Based Approach

Signature based malware detection methods are commonly used by commercial antimalware products.
This method extracts the semantic patterns and creates a unique signature. A program is classified as a
malware if its signature matches with existing malware families™ signatures. The major drawback of
signature based detection is that it can be easily circumvented by code obfuscation because it can only
identify the existing malwares and fails against the unseen variants of malwares. It needs immediate update
of malware variants as they are detected. Faruki et al. [26] proposed AndroSimilar, a robust statistical
signature method to detect the unknown variants of existing malwares that are usually generated by using
repackaging and code obfuscation techniques. It generates the variable length signature for the application
under test and compares it with the signatures in AndroSimilar malware database and identify the app as
malware and benign on the basis of similarity percentage. Authors tested the AndroSimilar against 1260
apps among which 6779 apps were Google Play apps and 545 apps were from third party app store. They
also used code obfuscation techniques such as method renaming, string encryption, control flow obfuscation
and junk method insertion techniques to change the signature of the code and tested the effectiveness of
AndroSimilar against 426 samples. The solution detected more than 60% samples correctly. AndroSimilar
compares the signatures of the applications in order to distinct between the malwares and benign apps but it
has limited signature database as compared to the other antivirus solutions. So any unseen malwares will
remain undetected. Also the similarity percentage creates the false positives as it may classify the clean apps
as malicious on the basis of percentage. DroidAnalytics [27] is a signature based analytic system which
extract and analyze the apps at op-code level. It not only generates the signature but also associate the
malware with existing malwares after identifying the malicious content. It generates 3 level signatures. First
it generates signature at method level by API call tracing then combining all the signatures of methods in a
class it generates the class level signatures and at third level it generates the application signature by
combining the signatures of the classes in the application. Authors have used DroidAnalytics to detect 2,494
malware samples from 102 malware families and 342 repackaged malwares from other six malware
families. The limitations of this method includes, it classifies the apps as malware on the basis of classes
mostly used by malware families but during experiment they found some signatures that are used by both
the legitimate apps and malwares. Also the similarity score used for detection of repackaged malwares do

not provide 100% solution or it may also provide false positive, classify the legitimate app as malware.

[1Limitation of Signature Based Detection: Although signature based detection is very efficient for
known malwares but it cannot detect the unknown malware types. Also because of limited signature

database most of the malwares remain undetected.

2) Permission Based Analysis:

In Android system, permissions requested by the app plays a vital role in governing the access rights. By
default, apps have no permission to access the user” data and effect the system security. During installation,
user must allow the app to access all the resources requested by the app. Developers must mention the
permissions requested for the resources in the AndroidManifest.xml file. But all declared permissions are
not necessarily the required permissions for that specific application Ref. [28] has shown that most of the
time developers have declared the permissions that are not actually required by the application which makes
it difficult to detect the malicious behavior of application. Antimalware analyzes the Android Manifest.xml
file where all the permissions for the resources required by the app are mentioned. Stowaway [28] exposes
the permission over privilege problem in Android where an app requests more permissions than it actually
uses. Stowaway performs static analysis to determine the API calls invoked by the application and then it
maps the permissions required by the API calls. They found that one third applications are over privileged
among 940 Android application samples. It cannot resolve the API calls invoked by applications with the
use of java reflections. In [29], authors have proposed a light weight malware detection mechanism which
only analyze the manifest file and extract the information such as permissions, intent filters (action,
category and priority), process hame and number of redefined permissions to detect the malicious behavior
of an application. After extracting such information, they compare it with the keyword list provide in the
proposed method and then calculate the malignancy score. They used Weka [30] which is a data mining tool
for calculation of threshold value. At last they compare the malignancy score with threshold value and
classify the app as malware if malignancy score exceeds threshold value. They have used 365 samples to test
the efficiency of proposed solution and the solution provides 90% accurate detection. It is cost saving
mechanism as it only includes the analysis of manifest file and can be implemented in other detection
architectures easily to detect malwares efficiently. Also it can detect even those malwares that remain
undetected by signature based detection method. This proposed solution is limited to manifest file
information. Also it cannot detect the adware samples. C. Y. Haung et al. [31] proposed a method for better
detection of permission based malware detection which includes the analysis of both requested and required
permissions as most of the time malware authors declare more permissions in the manifest file than they
actually require for the application. Also it analyses the easy to retrieve features and then labels the
application as benign or malware. Three different labeling types are used for this purpose which includes site
based labeling; scanner based labeling and mixed labeling. In site based labeling it labels the app as benign
if it is downloaded from Google official app market and if it is downloaded from some malicious source

then the app is labeled as malicious. In the second labeling scheme, if the antivirus scanner declares the app

as benign the app is label as benign and same for the malware case. In the mixed labeling the app is labeled
on the basis of both site based and scanner based labels. After labeling all the samples are divided into three
datasets and requested permissions of these datasets are analyzed by the machine learning algorithms such as
Naive Bayes, AdaBoost, Support Vector Machine and Decision Tree [32]. On the basis of results generated
by these classifiers we can evaluate the performance of permission based detection method. in [31] authors
have performed experiment on data set of 124,769 benign and 480 malicious apps

They analyzed the performance of permission based detection of malware and showed that more than 81%
of malicious apps samples can be detected by the permission based detection method. Proposed method
provides the quick filter for malware detection but the performance values generated by the classifiers are
not perfect and we cannot completely rely on those results. Sanz Borja et al. [33] presented PUMA for
detection of malicious apps by analyzing the requested permissions for application. They used permission
tags such as <uses-permission> and <uses-features> present in AndroidManifest.xml file to analyze the
malicious behavior of apps and applied different classifier algorithms on dataset of 357 benign apps and 249
malicious apps. The solution provides high detection rate but results generated have high false positives rate
also it is not adequate for efficient detection of malware it still requires information related to other features
and dynamic analysis. Shin et al. [34] used a state machine based approach and formally analyze the
permission based Android security model. They also verified that the specified system satisfy the security
property. Tang, Wei et al. [35] proposed a Security Distance Model for mitigation of Android malware.
Security Distance Model is based on the concept that not a single permission is enough for an application to
threaten the security of Android devices. For example an application requesting permission
READ_PHONE_STATE can access the phone number and IMEI but it cannot move data out of the device.
There must be a combination of permissions to affect the security model of device such as INTERNET
permission allows to concept the device with the network and will be needed to move data to some remote
server. The SD measure the dangerous level of application on the basis of permissions requested by the app.
Authors classify the combinations of permissions into four groups and assigned threat points (TP) to each
group such as TP-0, 1, 5 and 25 to Safe SD, Normal SD, Dangerous SD and Severe SD. Before the
installation of new application it calculates the threat point from the combination of permissions requested
by the application. That helps the user to get aware of more dangerous permissions while installation of app.
It can easily detect the unknown malwares with very high threat points. They found 500 threat points for the
Geinimi malware which is a very clear variation from benign apps. A limitation of this solution includes that
applications with threat points between 50 and 100 are not easy to identify as benign and malware. They
could be the benign apps with such permission combinations or malwares. Enck et al. [36] developed
KIRIN, a tool that provides light weight certification at installation time. It defines the security rules and
simply compares the requested permissions of app with its security rules and certifies the app as malware if
it fails to pass all the security rules. The installation of app is aborted if the app is attributed as malware.
Authors have tested 311 applications downloaded from official Android market and found that 5
applications failed to pass the specified rules. Proposed solution is light weight as it only analyzes the
Menifest.xml file. The limitation of KIRIN includes that it may the behavior of different malware families is

provided in subsequent sections.

A. Trojans

Trojans appear to a user as a Benign app [5]. In fact, they actually steal the users confidential
information without the users knowledge. Such apps can easily get access to the browsing history,
messages, contacts and device IMEI numbers etc. of victim®™s device and steal this information without the
consent of user. FakeNetflix [10] is an example of such malwares that provide user interface identical to
original Netflix app and collect the user*s login credentials. SMS Trojans exploit the premium services to
incur financial loss to the victim. Fakeplayer is a well-known SMS Trojan that sends messages to premium
rate numbers without user awareness
[11]. Zsone [12] and Android.foney are also the examples of such SMS Trojan apps. Malwares also capture
the user”s banking information such as account number and password. Zitmo and Spitmo Trojans are
designed to steal the users mTANs (Mobile Transaction Authentication Number) which then complete the
transactions silently [13].

B. Backdoors

Backdoors employ the root exploits to grant root privileges to the malwares and facilitate them to hide
from antiviruses. Exploid, Rageagainstthecage (RATC) and Zimperlich are the top three root exploits which
gain full- control of device [14]. DroidKungFu [15] uses root exploits, Exploid and Rageagainstthecage, in
an encrypted form. When DroidKungFu executes, it first decrypts and launches the root exploits. If the root
exploit succeed to gain control over device and root privilege, the malware become able to perform any
operation on the device even the installation of applications keeping the user unaware of this act [16].

C. Worms

Such malwares create copies of it and distribute them over the network. For example, Bluetooth worms
spread malware through the Bluetooth network by sending copies of it to the paired devices.
Android.Obad.OS is the example of Bluetooth worm [1].

D. Spyware
Nickspy [11] and GPSSpy [18] are the examples of spyware apps which appear as benign app,
but it actually monitors the user™s confidential information such as messages, contacts, bank
MTANSs, location etc. for some undesirable consequences. Personal spywares can install the
malicious payload without the victim“s knowledge. It sends the users information such as text
messages, contacts etc. to the attacker who installed that software on victim*s device [6].
E. Botnets
Botnet is a network of compromised Android devices. Botmaster, a remote server, controls the
botnet through the C&C network. Geinimi [11] is one of the Android botnets.
F. Ransom wares
Ransomware prevent the user from accessing their data on device by locking the device, until
ransom amount is paid. Fake Defender.B [19] is a malware that masquerades itself as avast!, an
antivirus. It locks the victim®s device and force the user to pay ransom amount to unlock the device.
Conclusion
In this paper, the malwares and their penetrations techniques is also provided and the benefits and
limitations of these antimalware are deduced comprehensively. At the end, a concept of hybrid
antimalware is presented which will address the limitations of existing static and dynamic
approaches. In future, it is aimed to implement the proposed hybrid solution which will be a generic
antimalware that will provide better security for Android devices by firstly statically analyzing the
Android applications on local device and then it will perform dynamic analysis on a remote
antimalware server. This will consume very small amount of memory space on the device and the

battery consumption will also be low as all dynamic analysis will be performed at the remote server.

References

[1].P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile malware in the
wild,” Proc. 1st ACM Work. Secur. Priv. smartphones Mob. devices - SPSM “11, pp. 3 —
14, 2011.

[2].R. Fedler, J. Schitte, and M. Kulicke, “On the Effectiveness of Malware Protection on
Android,” p. 36, 2013.

[3].“Mind the (Security) Gaps: The 1H 2015 Mobile Threat Landscape - Security News - Trend
Micro USA.” [Online]. Available:
http://www.trendmicro.com/vinfo/us/security/news/mobile-safety/mind-the-security-gaps-
1h-2015-mobile-threat-landscape. [Accessed: 08-Dec-2015].

[4].R. Raveendranath, V. Rajamani, A. J. Babu, and S. K. Datta, “Android malware attacks and
countermeasures: Current and future directions,” 2014 Int. Conf. Control. Instrumentation,
Commun. Comput. Technol., pp. 137-143, 2014.

[5].Ughulu, J. Entrepreneurship as a Major Driver of Wealth Creation.

[6].Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and Evolution,”
2012 IEEE Symp. Secur. Priv., no. 4, pp. 95-109, 2012. “Security Alert: Zsone Trojan
found in Android Market | Lookout Blog.” [Online]. Available:
https://blog.lookout.com/blog/2011/05/11/security-alert-zsone-trojan-found-in-android-
market/. [Accessed: 15-Dec-2015].

[7].L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi, “Over-the-Air Cross-platform
Infection for Breaking mTAN-based Online Banking Authentication,” Black Hat Abu
Dhabi, pp. 1-12, 2012.

[8].Ughulu, D. (2022). The role of Artificial intelligence (Al) in Starting, automating and
scaling businesses for Entrepreneurs. ScienceOpen Preprints.

[9].Ghelani, D., & Hua, T. K. (2022). Conceptual Framework of Web 3.0 and Impact on
Marketing, Artificial Intelligence, and Blockchain. International Journal of Information and
Communication Sciences, 7(1), 10.

[10]. Ghelani, D., & Hua, T. K. A Perspective Review on Online Food Shop Management

System and Impacts on Business.

[11]. Oak, R., Du, M., Yan, D., Takawale, H., & Amit, I. (2019, November). Malware
detection on highly imbalanced data through sequence modeling. In Proceedings of the 12th

ACM Workshop on artificial intelligence and security (pp. 37-48).

