The characterization of toll-like receptor repertoire in Pinna nobilis after mass mortality events suggests adaptive introgression.

Stéphane Coupé¹, Ioannis Giantsis², Maite Vázquez Luis³, Fabio Scarpa⁴, Mathieu Foulquié¹, Jean-Marc Prévot⁵, Athanasios Lattos², Marco Casu⁴, Basile Michaelidis², Daria Sanna⁴, Jose rafael Garcia March⁶, JOSE TENA-MEDIALDEA⁶, Nardo Vicente⁷, and Robert Bunet⁸

¹Mediterranean Institute of Oceanography
²University of Western Macedonia
³Instituto Español de Oceanografía Centre Oceanogràfic de les Balears
⁴University of Sassari
⁵Université de Toulon - Campus de La Garde
⁶Universidad Catolica de Valencia San Vicente Martir
⁷IMBE
⁸Institut Océanographique Paul Ricard

July 20, 2023

The characterization of toll-like receptor repertoire in *Pinna nobilis* after mass mortality events suggests adaptive introgression.

Stéphane Coupé¹, Ioannis A. Giantsis², Maite Vázquez Luis³, Fabio Scarpa⁴, Mathieu Foulquié^{1,5}, Jean-Marc Prévot⁶, Marco Casu⁷, Athanasios Lattos², Basile Michaelidis², Daria Sanna⁴, José Rafa García-March⁸, José Tena-Medialdea⁸, Nardo Vicente⁹ & Robert Bunet⁵.

1. Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Marseille, France.

2. Faculty of Agricultural Sciences, University of Western Macedonia, Hellas.

3. Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Baleares. Muelle de poniente s/n, 07015. Palma de Mallorca, Spain.

4. Fabio Scarpa, Daria Sanna: University of Sassari, Department of Biomedical Sciences, 07100 Sassari (Italy).

5. Institut océanographique Paul Ricard, Ile des Embiez, Var, France.

6. Département informatique, Université de Toulon, Var, France.

7. University of Sassari, Department of Veterinary Medicine, 07100 Sassari (Italy).

8. IMEDMAR-UCV, Institute of Environment and Marine Science Research, Universidad Católica de Valencia SVM, Calpe, Alicante, Spain.

9. Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), Aix-Marseille Université, CNRS, IRD, Avignon Université, France.

*To whom correspondence should be addressed. Email: stephane.coupe@univ-tln.fr

Abstract

The fan mussel *Pinna nobilis* is currently on the brink of extinction due to a multifactorial disease mainly caused to the highly pathogenic parasite *Haplosporidium pinnae*, meaning that the selection pressure outweighs the adaptive potential of the species. Hopefully, rare individuals have been observed somehow resistant to the parasite, stretching the need to identify the traits underlying this better fitness. Among the candidate to explore at first intention are fast evolving immune genes, of which Toll-like receptor (TLR). In this study, we examined the genetic diversity at 14 TLR loci across *Pinna nobilis*, *Pinna rudis* and *Pinna nobilis* x *Pinna rudis* hybrid genomes, collected at four physically distant regions, that were found to be either resistant or sensitive to the parasite *H. pinnae*. We report a high genetic diversity, mainly observed at cell surface TLRs compared to that of endosomal TLRs. However, the endosomal TLR-7 exhibited unexpected level of diversity and haplotype phylogeny. The lack of population structure, associated with a high genetic diversity and elevated dN/dS ratio were interpreted as balancing selection, though both directional and purifying selection were detected. Interestingly, roughly 40% of the *P. nobilis* identified as resistant to *H. pinnae* were introgressed with *P. rudis* TLR. Specifically, they all carried a TLR-7 of *P. rudis* origin, whereas sensitive *P. nobilis* were not introgressed, at least at TLR loci. Small contributions of TLR-6 and TLR-4 single nucleotide

polymorphisms to the clustering of resistant and susceptible individuals could be detected, but their specific role in resistance remains highly speculative. This study provides new information on the diversity of TLR genes within the *P. nobilis* species after MME and additional insights into adaptation to *H. pinnae* that should contribute to the conservation of this Mediterranean endemic species.