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Abstract

In this paper, an uncertain disturbance rejection control problem for the affine system in the presence of asymmetric input

constraints is addressed using an event-triggered control method. The disturbance rejection control is converted to an H [?]

optimal control problem, and a Zero-sum game-based method is proposed to solve this H [?] optimal control problem. To

deal with the input constraints, a new cost function is proposed. The event-triggered controller is updated only when the

triggering condition is satisfied, which can reduce the computational complexity.In order to obtain a controller that minimizes

the performance index function in the worst-case disturbance, we use a critic-only network to solve the Hamilton-Jacobi-

Isaacs(HJI) equation, and the critic network weight is tuned through a gradient descent method with the historical state data.

The stability of the closed-loop system and the uniform ultimate boundedness of the critic network parameters are proved by

the Lyapunov method. Two numerical examples are provided to verify the effectiveness of the proposed methods.
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Summary

In this paper, an uncertain disturbance rejection control problem for the affine system
in the presence of asymmetric input constraints is addressed using an event-triggered
control method. The disturbance rejection control is converted to an 𝐻∞ optimal
control problem, and a Zero-sum game-based method is proposed to solve this 𝐻∞

optimal control problem. To deal with the input constraints, a new cost function is
proposed. The event-triggered controller is updated only when the triggering condi-
tion is satisfied, which can reduce the computational complexity.In order to obtain
a controller that minimizes the performance index function in the worst-case dis-
turbance, we use a critic-only network to solve the Hamilton-Jacobi-Isaacs(HJI)
equation, and the critic network weight is tuned through a gradient descent method
with the historical state data. The stability of the closed-loop system and the uniform
ultimate boundedness of the critic network parameters are proved by the Lyapunov
method. Two numerical examples are provided to verify the effectiveness of the pro-
posed methods.

KEYWORDS:
Adaptive dynamic programming, event-triggered, input constraints, optimal control, neural networks.

1 INTRODUCTION

Disturbance widely exists in almost all the industrial systems and has negative effects on the control performance. Hence, the
disturbance rejection is almost the primary concern for all the control systems, which has attracted much attention in recent
years1. This issue has been well studied for linear system, and many methods or strategies, such as PID2,3, DOB4,5, ADRC6,7,8,9

et. al., have been proposed to deal with the disturbances. In addition to the complex external disturbances, the safety and phys-
ical restriction of the actuators, regarded as input constraints, are also commonly encountered for control system design. The
existence of the input constraints limits the capability of the system, which makes it difficult for disturbance rejection, especially
for the nonlinear system. Moreover, the disturbance form has a significant effect for the controller design. For the classical con-
trol strategies with fixed structure such as DOB10,11, ADRC12,13 et. al., only the deterministic disturbance with known form can
be rejected in most cases. It is still an open problem for the rejection of the disturbances with complex form in the presence of
input constraints, and much more works are needed to be done to solve this problem.

Optimal control is a main branch of modern control theory, focusing on the basic conditions and comprehensive methods
to optimize the performance specification of the control systems. We focus on the optimal control for disturbance rejection in
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this paper. In the framework of optimal control, the controller is designed by solving an optimization problem. The adaptive
dynamic programming (ADP), whose idea is to use approximate functional structures (such as neural networks (NNs)14, fuzzy
models15,16,17, polynomials18,19, etc.) to estimate the optimal value of the objective function, is one of the main optimization
methods for optimal control. It serves as an effective way to achieve the optimal performance in a general case, and has been
widely applied to controller design in recent years. Among the ADP-based optimal control, robust ADP is one of the typical
methods for the disturbance rejection in the presence of input constraints20. In21, an optimal control algorithm was proposed
for the bounded robust controller design for finite-time-horizon nonlinear system. The algorithm was constructed by using the
least squares method, while the closed-loop stability analysis was not fully discussed. In22, a novel strategy was proposed to
design the robust controller for a class of continuous-time nonlinear systems with uncertainties based on the online policy
iteration algorithm. In23, the robust optimal control of continuous-time affine nonlinear systems with matched uncertainties was
investigated by using a data-driven integral policy iteration approach. However, these methods were proposed for the matched
disturbances. In general, the methods for matching disturbances are not always suitable for the mismatched disturbances. In
fact, the model uncertainty can be described by the mismatched disturbance. In24, the stability analysis and fuzzy control of a
class of discrete time fuzzy systems with implicit semi-Markov stochastic uncertainty are studied. The practical application are
performed in25, which researched the composite re-fined anti-disturbance rejection control problem of a two degree of freedom
robot arm system modeled by a semi-Markov jump system with multiple disturbances. Therefore, it is of importance to study
the control design in the presence of mismatched disturbance.

For the optimal control in the presence of input constraints, the commonly used strategy is to design a non-quadratic objec-
tive function, instead of the traditional quadratic index, where the control inputs are guaranteed to have certain bounds. The
symmetric input constraints are the most commonly considered constraints in the literature, and a lot of methods are proposed
to deal with such constraints. In fact, there exists many nonlinear plants subject to asymmetric input constraints, which presents
challenges in deriving optimal control laws in this case, and only a few works focused on the control asymmetric input con-
straints.Yang and Zhao26 proposed an optimal control scheme for continuous-time nonlinear systems with asymmetric input
constraints, where the objective function with variable upper and lower bounds of integration were used to deal with the asym-
metric input constraints. In27, Yang and Wei proposed an event-triggered ADP subject to asymmetric input constraints. In28,
Kong proposed a switching function to tackle the asymmetric input constraints problem, but it was difficult to find such a switch-
ing function owing to the complexity of nonlinear system. All these results were proposed for the set-point tracking control, the
disturbance rejection performance in the presence of asymmetric input constraints has not been well considered in literature.

Motivated by the limitations of the existing works, we focus on the control of the nonlinear system for disturbance rejection in
the presence of input constraints. The mismatched disturbance and the asymmetric input constraint are considered here. A non-
quadratic objective function for the input constraints problem is proposed. Different from the objective functions with variable
upper and lower bounds of integration used in other works, a new objective function is proposed to deal with the asymmetric
input constraints. In order to solve the problem of external disturbance in ADP, a Zero-sum game is proposed to establish
the optimization problem, and the problem is converted to find the Nash equilibrium point by solving the Hamilton-Jacobi-
Isaacs (HJI) equation. As a result, the optimal control law is obtained under the worst disturbance. To reduce the computational
complexity, we use the event-triggered mechanism to determine the control update time.

The main contributions of this paper are summarized as follows:

1) In the ADP framework, a new objective function is proposed in this paper to deal with the asymmetric input constraints.

2) Considering the mismatched disturbance rejection, the control problem is transformed into a Zero-sum game problem,
and the optimal control law in the presence of mismatched disturbance is obtained for the affine system by solving the HJI
equation.

3) The event-triggered mechanism and a critic-only NN structure are used, then an event-triggered condition is developed
which can not only ensure the stability of the system, but also ensure the convergence of neural network parameters.

The rest of this article is organized as follows. In Section 2, we introduce the performance index function under input constraints,
and the event-triggered mechanism is addressed. In Section 3, we transform the disturbance rejection control problem into a
Zero-sum game problem, and the HJI equation and the event-trigger condition are developed. In Section 4, we use a critic-only
NN to solve the HJI equation, and the NN’s weights are tuned by the gradient descent method. Section 5 gives the simulation
studies of this paper, and Section 6 draws the final conclusions.
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2 PROBLEM STATEMENT

In this paper, a nonlinear continuous-time system with external disturbance is considered, which is given by,

𝑥̇(𝑡) = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝑘(𝑥)𝑑 (1)

where 𝑥 ∈ 𝑅𝑛 is the 𝑛-dimensional measurable state variable, 𝑓 (𝑥) ∈ 𝑅𝑛, 𝑔(𝑥) ∈ 𝑅𝑛×𝑚 and 𝑘(𝑥) ∈ 𝑅𝑛×𝑝 denote the drift
dynamics, the input dynamics and the disturbance dynamics of the system, respectively. 𝑢 ∈ 𝑅𝑚 is the 𝑚-dimensional input
variable, denoted by Π𝑢 = {𝑢|𝑢 ∈ 𝑅𝑚, 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥}, where 𝑢𝑚𝑖𝑛 is the lower bound and 𝑢𝑚𝑎𝑥 is the upper bound. The
disturbance 𝑑 is bounded as ||𝑑|| ≤ 𝑑𝑚,where 𝑑𝑚 is the upper bound of the uncertain term. We make the following assumptions
for the system22,29.

Assumption1: System (1) is controllable.
Assumption2: 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝑘(𝑥)𝑑 is Lipschitz continuous on Ω ∈ 𝑅𝑛 and satisfies the following conditions,
(1) 𝑓 (0) = 0 and ||𝑓 (𝑥)|| ≤ 𝐿𝑓 ||𝑥||, where 𝐿𝑓 is a Lipschitz constant and 𝐿𝑓 > 0.
(2) ||𝑔(𝑥)|| ≤ 𝑔𝑀 and the constant 𝑔𝑀 > 0.
Assumption3: The state variable 𝑥 = 0 is an equilibrium of the system.
Under the time-triggered mechanism, the controller is periodically updated at a fixed sampling interval, and the system state

is periodically transmitted to the controller. This update method leads to a high computational cost and a high transmission cost.
In order to avoid such a problem, an event-triggered ADP control is used here. In the event-triggered mechanism, we define a
monotonically increasing time series {𝑡𝑗}∞𝑗=0 , where 𝑡𝑗 < 𝑡𝑗+1 for 𝑗 = 0, 1, ...,∞, which is called as the trigger moment. The
control law updates only at these non-periodic sampling instants, which are determined by the event triggering conditions. The
event-triggered error and condition are defined as,

𝑒𝑗(𝑡) = 𝑥̂𝑗 − 𝑥(𝑡), (2)
𝑒𝑗(𝑡) ≤ 𝑒𝑇 (3)

where 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], 𝑗 = 0, 1, ...∞ and 𝑒𝑇 is defined as the triggering threshold. At a sampling time, if the event-triggered error
𝑒𝑗(𝑡) is greater than the trigger threshold 𝑒𝑇 , the current moment is marked as the triggering moment, and the state 𝑥(𝑡) at the
current moment is marked as a new triggering state 𝑥̂𝑗 ( 𝑥̂𝑗 = 𝑥(𝑡𝑗)), which is transmitted to the controller to update the control
law. If the trigger condition is not violated, the control law does not update, and the system updates with the last input stored in
the zero-order holder(𝑍𝑂𝐻)30. Therefore, the control input for the event-triggered control can be expressed as,

𝑢(𝑥(𝑡)) = 𝜇(𝑥̂𝑗). (4)
Under the event-triggered condition, the system (1) can be rewritten as,

𝑥̇(𝑡) = 𝑓 (𝑥) + 𝑔(𝑥)𝜇(𝑥(𝑡) + 𝑒𝑗(𝑡)) + 𝑘(𝑥)𝑑(𝑥) (5)
The primary control objective in this paper is to find an event-triggered control input to minimize the following objective

function,

𝑉 (𝑥) =

∞

∫
𝑡

𝑟(𝑥, 𝜇, 𝑑)𝑑𝜏 =

∞

∫
𝑡

𝑥𝑇𝑄𝑥 +𝑊 (𝜇) − 𝛾2||𝑑||2𝑑𝜏 (6)

where 𝑄 is a symmetric positive definite matrix, ||𝑑||2 = 𝑑𝑇 𝑑, 𝛾 is a prescribed positive constant, and 𝑊 (𝜇) is defined as,

𝑊 (𝜇) = 2
𝑚
∑

𝑖=1

𝜇𝑖

∫
0

𝜑−1(𝑧𝑖∕𝑈̄ )𝑈̄𝑑𝑧𝑖 (7)

where 𝑈̄ = (𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)∕2. Considering that the input is limited, for symmetric input constraints, we always choose the
hyperbolic tangent function 𝜑(⋅) = 𝑡𝑎𝑛ℎ(⋅), where the upper and lower bound norms are equivalent. For asymmetric input
constraints, we choose a new function 𝜑(⋅) = 𝑒𝑥−𝑒−𝑥

(1∕𝑢𝑚𝑖𝑛)𝑒𝑥−(1∕𝑢𝑚𝑎𝑥)𝑒−𝑥
. Using an asymmetric function to deal with asymmetric input

constraints, so as to avoid the problem that the input cannot return to zero caused by adding a fixed value to the input when using
a symmetric function. Note that, when 𝑢𝑚𝑎𝑥 = 0, let 𝑢𝑚𝑎𝑥 = 𝜉; similarly when 𝑢𝑚𝑖𝑛 = 0, let 𝑢𝑚𝑖𝑛 = 𝜉, where 𝜉 is an arbitrarily
small number, and specify that 𝑢𝑚𝑎𝑥 > 0, 𝑢𝑚𝑖𝑛 < 0.

Based on the assumptions above, the objective of this paper is to find an event-triggered control law to stabilize system (5)
and to minimize the performance index (6). The ADP-based method to solve this problem is proposed in the following context.
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3 EVENT-TRIGGERED OPTIMAL CONTROL

3.1 Event-Triggered Control and the ETC-HJI equation
In this section, the optimal control problem is converted to a two-player Zero-sum game problem. By solving the HJI equation,
we can obtain the saddle point (𝑢∗, 𝑑∗), where 𝑢∗ is the optimal control law and 𝑑∗ is the worst-case disturbance31.

For the time-triggered case, the value function is defined as Eq. (6). Assume the optimal objective function is given by,

𝑉 ∗(𝑥) = min
𝑢

max
𝑑

∞

∫
𝑡

𝑥𝑇𝑄𝑥 +𝑊 (𝑢) − 𝛾2||𝑑||2𝑑𝜏 (8)

Take the derivative of 𝑉 (𝑥) with respected to 𝑡 on the left and right sides of Eq. (6) and obtain
∇𝑉 𝑇 (𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝑘(𝑥)𝑑) + 𝑥𝑇𝑄𝑥 +𝑊 (𝑢) − 𝛾2||𝑑||2 = 0 (9)

where ∇𝑉 = 𝜕𝑉 ∕𝜕𝑥 ∈ 𝑅𝑛, 𝑉 (0) = 0.
The Hamiltonian function is defined as,

𝐻(𝑥,∇𝑉 ∗, 𝑢, 𝑑) = ∇𝑉 ∗𝑇 (𝑓 + 𝑔𝑢 + 𝑘𝑑) + 𝑥𝑇𝑄𝑥 +𝑊 (𝑢) − 𝛾2||𝑑||2 (10)
The HJI equation can be written as,

max
𝑑

min
𝑢

𝐻(𝑥,∇𝑉 ∗, 𝑢, 𝑑) = 0 (11)

The saddle point (𝑢∗, 𝑑∗) exists for the Zero-sum game, when the following condition holds32,
min
𝑢

max
𝑑

𝐻(𝑥,∇𝑉 , 𝑢, 𝑑) = max
𝑑

min
𝑢

𝐻(𝑥,∇𝑉 , 𝑢, 𝑑) (12)
The optimal policy and disturbance law corresponding to the solution of the HJI equation Eq.(11) are as follow,

𝑢∗(𝑥) = argmin
𝑢

𝐻(𝑥,∇𝑉 ∗, 𝑢, 𝑑) (13)
𝑑∗(𝑥) = argmax

𝑑
𝐻(𝑥,∇𝑉 ∗, 𝑢, 𝑑) (14)

By solving these two optimization problem, the optimal control law and the worst-case disturbance can be expressed as follow,
respectively,

𝑢∗(𝑥) = 𝑈̄𝜑(− 1
2𝑈̄

𝑔(𝑥)𝑇∇𝑉 ∗(𝑥)) (15)

𝑑∗(𝑥) = 1
2𝛾2

𝑘𝑇∇𝑉 ∗(𝑥) (16)

where 𝜑(⋅) = 𝑒𝑥−𝑒−𝑥

(1∕𝑢𝑚𝑖𝑛)𝑒𝑥−(1∕𝑢𝑚𝑎𝑥)𝑒−𝑥
, and the HJI equation is rewritten as,

0 = 𝐻(𝑥,∇𝑉 ∗, 𝑢∗, 𝑑∗)

= 𝑈̄∇𝑉 ∗𝑇 (𝑥)𝑔(𝑥)𝜑(− 1
2𝑈̄

𝑔(𝑥)𝑇∇𝑉 ∗(𝑥))

+ 𝑥𝑇𝑄𝑥 + ∇𝑉 ∗𝑇𝑓 +𝑊 (𝑈̄𝜑(− 1
2𝑈̄

𝑔(𝑥)𝑇∇𝑉 ∗(𝑥)))

+ 1
4𝛾2

∇𝑉 (𝑥)∗𝑇𝑘(𝑥)𝑘(𝑥)𝑇∇𝑉 ∗(𝑥)

(17)

Up to this point, we have established a time-triggered HJI equation. Based on this, we can obtain the event-triggered HJI
equation.

In the event-triggered case, the control law is updated at the sampling state 𝑥̂𝑗 . Then, Eq. (15) can be rewritten as,

𝜇∗(𝑥̂𝑗) = 𝑈̄𝜑(− 1
2𝑈̄

𝑔(𝑥̂𝑗)𝑇∇𝑉 ∗(𝑥̂𝑗)) (18)

Substituting the event-triggered control law with asymmetric control constraints into Eq. (17), we can obtain,
0 = 1

4𝛾2
∇𝑉 (𝑥)∗𝑇𝑘(𝑥)𝑘(𝑥)𝑇∇𝑉 ∗(𝑥)

𝑈̄∇𝑉 ∗𝑇 𝑔(𝑥)𝜑(− 1
2𝑈̄

𝑔(𝑥̂𝑗)𝑇∇𝑉 ∗(𝑥̂𝑗))

+ 𝑥𝑇𝑄𝑥 + ∇𝑉 ∗𝑇𝑓 (𝑥) +𝑊 (𝑈̄𝜑(− 1
2𝑈̄

𝑔(𝑥̂𝑗)𝑇∇𝑉 ∗(𝑥̂𝑗)))

(19)

For this HJI equation, we have the following assumption and theorem,
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Assumption 433,34: Assume that 𝑢∗(𝑥) satisfies the Lipschitz condition, and there exists a Lipschitz constant 𝐿𝑢∗ such that the
control law and the triggering error satisfy the inequality,

||𝑢∗(𝑥) − 𝜇∗(𝑥̂𝑗)|| ≤ 𝐿𝑢∗ ||𝑥 − 𝑥̂𝑗|| = 𝐿𝑢∗ ||𝑒𝑗|| (20)
Theorem1: The state of system (1) is uniform ultimate boundedness (UUB), if the following event-triggered condition holds,
∀𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), 𝑗 = 0, 1, ...,∞,

||𝑒𝑗(𝑡)|| ≤
(1 − 2𝜃)𝑥𝑇𝑄𝑥 − 𝛾2 ⋅ ||𝑑∗

||

2

𝐿2
𝑢∗

(21)

where 𝜃 is a small positive parameter and 𝑑∗(𝑥) is given by Eq. (16).

Proof: We choose 𝑉 ∗(𝑥), the solution of HJI equation, as the Lyapunov function. Based on the expression obtained from the
previous derivation of the control law and the disturbance law, the derivation of 𝑉 (𝑥) with respected to 𝑡, 𝑉̇ ∗(𝑥) is given by,

𝑉̇ ∗(𝑥) = (𝜕𝑉
∗

𝜕𝑥
)𝑇 (𝑓 (𝑥) + 𝑔(𝑥)𝜇∗(𝑥̂𝑗) + 𝑘(𝑥)𝑑∗(𝑥))

= (𝜕𝑉
∗

𝜕𝑥
)𝑇 (𝑓 (𝑥) + 𝑔(𝑥)𝑢∗(𝑥))

+ (𝜕𝑉
∗

𝜕𝑥
)𝑇 𝑔(𝑥)(𝜇∗(𝑥̂𝑗) − 𝑢∗(𝑥)) + (𝜕𝑉

∗

𝜕𝑥
)𝑇𝑘(𝑥)𝑑∗(𝑥)

(22)

Based on the Eqs.(15) and (16), we can obtain the following equations,
𝑔𝑇 𝜕𝑉

∗

𝜕𝑥
= −2𝑈̄𝜑−𝑇 (

𝑢∗(𝑥)
𝑈̄

) (23)

𝑘𝑇 𝜕𝑉
∗

𝜕𝑥
= 2𝛾2𝑑∗(𝑥) (24)

Substituting the above expressions into Eq. (22), we can obtain,
𝑉̇ ∗(𝑥) = −𝑊 (𝑢∗) − 𝑥𝑇𝑄𝑥 − 2𝑈̄𝜑−1(𝑢

∗

𝑈̄
)

(𝜇∗(𝑥̂𝑗) − 𝑢∗(𝑥)) + 1
4𝛾2

(∇𝑉 ∗(𝑥))𝑇𝑘(𝑥)𝑘𝑇 (𝑥)∇𝑉 ∗(𝑥)

= −𝑊 (𝑢∗) − 𝑥𝑇𝑄𝑥 + 2𝑈̄𝜑−1(𝑢
∗

𝑈̄
)(𝑢∗(𝑥) − 𝜇∗(𝑥̂𝑗))

+ 𝛾2||𝑑∗(𝑥)||2

(25)

The above formula can be simplified as,
𝑉̇ ∗(𝑥) ≤ −𝑥𝑇𝑄𝑥 −𝑊 (𝑢∗) + 𝛾2||𝑑∗(𝑥)||2+

||𝑢∗(𝑥) − 𝜇∗(𝑥̂𝑗)||2 + ||𝑈̄𝜑−𝑇 (𝑢
∗

𝑈̄
)||2

(26)

According to the assumption 4 we can obtain,
𝑉̇ ∗(𝑥) ≤ −𝑥𝑇𝑄𝑥 −𝑊 (𝑢∗) + 𝛾2||𝑑∗(𝑥)||2+

𝐿2
𝑢∗ ||𝑒𝑗(𝑡)||

2 + ||𝑈̄𝜑−𝑇 (𝑢
∗

𝑈̄
)||2

(27)

Note that, 𝑊 (𝑢∗) can be rewritten as,

𝑊 (𝑢∗) = 2
𝑚
∑

𝑖=1

𝑢∗𝑖

∫
0

𝜑−1(
𝑧𝑖
𝑈̄
)𝑈̄𝑑𝑧𝑖 (28)

Let 𝜏𝑖 = 𝜑−1( 𝑧𝑖
𝑈̄
), and 𝑧𝑖 = 𝑈̄𝜑(𝜏𝑖) then

𝑊 (𝑢∗) = 2𝑈̄
𝑚
∑

𝑖=1

𝜑−1(
𝑢∗𝑖
𝑈̄
)

∫
0

𝜏𝑖𝑑(𝑈̄𝜑(𝜏𝑖))

= 2𝑈̄ 2
𝑚
∑

𝑖=1

𝜑−1(
𝑢∗𝑖
𝑈̄
)

∫
0

𝜏𝑖
𝜕𝜑(𝜏𝑖)
𝜕𝜏𝑖

𝑑𝜏𝑖

(29)
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The derivative of function 𝜑(𝜏𝑖) in the Eq.(29) with respect to 𝜏𝑖 as follows,

𝜕𝜑(𝜏𝑖)
𝜕𝜏𝑖

=
2

𝑢𝑚𝑖𝑛
− 2

𝑢𝑚𝑎𝑥

( 𝑒𝑥

𝑢𝑚𝑖𝑛
− 𝑒−𝑥

𝑢𝑚𝑎𝑥
)2

= 1 − (
( 𝑒𝜏𝑖
𝑢𝑚𝑖𝑛

− 𝑒−𝜏𝑖
𝑢𝑚𝑎𝑥

)2 − ( 2
𝑢𝑚𝑖𝑛

− 2
𝑢𝑚𝑎𝑥

)

( 𝑒𝜏𝑖
𝑢𝑚𝑖𝑛

− 𝑒𝜏𝑖
𝑢𝑚𝑎𝑥

)2
)

(30)

Let

𝑝 =
( 𝑒𝜏𝑖
𝑢𝑚𝑖𝑛

− 𝑒−𝜏𝑖
𝑢𝑚𝑎𝑥

)2 − ( 2
𝑢𝑚𝑖𝑛

− 2
𝑢𝑚𝑎𝑥

)

( 𝑒𝜏𝑖
𝑢𝑚𝑖𝑛

− 𝑒𝜏𝑖
𝑢𝑚𝑎𝑥

)2
(31)

Mentioned that 𝑢𝑚𝑎𝑥 > 0, 𝑢𝑚𝑖𝑛 < 0 before, so 𝑝 < 𝜁 is a bounded positive number, and 𝜁 is the maximum of 𝑝.
Then Eq.(29)can be further simplified as follows,

𝑊 (𝑢∗) = 2𝑈̄ 2
𝑚
∑

𝑖=1

𝜑−1(
𝑢∗𝑖
𝑈̄
)

∫
0

𝜏𝑖(1 − 𝑝)𝑑𝜏𝑖

= 𝑈̄ 2
𝑚
∑

𝑖=1
(𝜑−1(

𝑢∗𝑖
𝑈̄
))2 − 2𝑈̄ 2

𝑚
∑

𝑖=1

𝜑−1(
𝑢∗𝑖
𝑈̄
)

∫
0

𝜏𝑖𝑝𝑑𝜏𝑖

(32)

Note that
𝑚
∑

𝑖=1
(𝜑−1(

𝑢∗𝑖
𝑈̄
))2 = 𝜑−𝑇 (𝑢

∗

𝑈̄
)𝜑−1(𝑢

∗

𝑈̄
) (33)

Simplify the second term of the above equation by the mean value theorems for definite integrals as follow,

2𝑈̄ 2
𝑚
∑

𝑖=1

𝜑−1(
𝑢∗𝑖
𝑈̄
)

∫
0

𝜏𝑖𝑝𝑑𝜏𝑖

=2𝑈̄ 2
𝑚
∑

𝑖=1
𝜑−1(

𝑢∗𝑖
𝑈̄
)𝜛𝑖𝑝

≤2𝑈̄ 2
𝑚
∑

𝑖=1
(𝜑−1(

𝑢∗𝑖
𝑈̄
))2𝑝

≤1
2
(∇𝑉 ∗)𝑇 𝑔(𝑥)𝑔𝑇 (𝑥)∇𝑉 ∗𝜁

≤1
2
𝜌21𝑔

2
𝑀𝜁

(34)

where 𝜛𝑖 is in the range of [0, 𝜑−1( 𝑢
∗
𝑖

𝑈̄
)], and ||∇𝑉 ∗

|| ≤ 𝜌1, where 𝜌1 is a positive constant and 𝜁 is a positive parameter. Based
on the above derivation and Eq.(21), we can obtain,

𝑉̇ ∗(𝑥) ≤ −𝑥𝑇𝑄𝑥 + 1
2
𝜌21𝑔

2
𝑀𝜁 + 𝛾2||𝑑∗(𝑥)||2 + 𝐿2

𝑢∗ ||𝑒𝑗(𝑡)||
2

≤ −2𝜃 λ
−
(𝑄)||𝑥||2 − (1 − 2𝜃) λ

−
(𝑄)||𝑥||2 + 1

2
𝜌21𝑔

2
𝑀𝜁

+ 𝐿2
𝑢∗ ||𝑒𝑗(𝑡)||

2 + 𝛾2||𝑑∗(𝑥)||2

≤ −2𝜃 λ
−
(𝑄)||𝑥||2 + 1

2
𝜌21𝑔

2
𝑀𝜁

(35)

where λ
−
(𝑄) is the minimum eigenvalue of 𝑄, and 𝜃 is a small positive constant. Therefore, the system state is UUB, if the state

𝑥 is outside of set Ω𝑥,

Ω𝑥 = {𝑥 ∶ ||𝑥|| ≤ 1
2

√

√

√

√

𝜌21𝑔
2
𝑀𝜁

𝜃 λ
−
(𝑄)

} (36)

This shows that 𝑉 ∗(𝑥) is one of the Lyapunov function of system (1). Under the control policy 𝑢∗(𝑥), the system is UUB, and
the state is out of range Ω𝑥.
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Remark1: According to Eq.(32) ,we know that −(1 − 2𝜃) λ
−
(𝑄)||𝑥||2 +𝐿2

𝑢∗ ||𝑒𝑗(𝑡)||
2 + 𝛾2||𝑑∗(𝑥)||2 < 0 , then it is known that

(1 − 2𝜃) λ
−
(𝑄)||𝑥||2 > 𝛾2||𝑑∗(𝑥)||2 . Therefore, the right side of Eq.(22) is a positive number.

3.2 Zeno Behavior analysis
For control schemes with event triggering, we need to consider the minimal inter sample trigger time 𝜏𝑚𝑖𝑛 to avoid the infinite
triggering behavior in the system. We have the following theorem for Zeno behavior for the proposed method.

Theorem 2: Given the system (5) and the event-triggered condition (21), the Zeno behavior will not happen when the minimal
inter sample trigger time 𝜏𝑚𝑖𝑛 has the lower bound,

𝜏𝑚𝑖𝑛 ≥
1
𝐾
𝑙𝑛(1 + Γ𝑗,𝑚𝑖𝑛) > 0 (37)

where 𝐾 is a positive constant, Γ𝑗,𝑚𝑖𝑛 = min
𝑗∈𝑁

(||𝑒𝑗+1𝑇 ||∕(||𝑥̂𝑗||+𝜒)) > 0, 𝑒𝑗+1𝑇 = ||𝑒𝑇 (𝑡−𝑗+1)|| = lim
𝜄→0

𝑒𝑗(𝑡𝑗+1−𝜄), with 𝜄 ∈ (0, 𝑡𝑗+1−𝑡𝑗)
and 𝜒 is a small positive constant.

Proof: The derivative of event-triggered error is shown as
𝑒̇𝑗(𝑡) = ̇̂𝑥𝑗 − 𝑥̇(𝑡) = −𝑥̇(𝑡) (38)

Suppose the assumptions 2 and 3 are satisfied, the following conclusion is obtained as,
||𝑥̇|| = ||𝑓 (𝑥) + 𝑔(𝑥)𝜇(𝑥̂𝑗) + 𝑘(𝑥)𝑑(𝑥)|| ≤ 𝐾||𝑥|| +𝐾𝜒 (39)

and then we have,
||𝑒̇𝑗(𝑡)|| ≤ 𝐾||𝑒𝑗(𝑡)|| +𝐾(||𝑥̂𝑗|| + 𝜒) (40)

||𝑒𝑗(𝑡)|| ≤

𝑡

∫
𝑡𝑗

𝑒𝐾(𝑡−𝑠)𝐾(||𝑥̂|| + 𝜒)𝑑𝑠 = (||𝑥̂|| + 𝜒)(𝑒𝐾(𝑡−𝑡𝑗 ) − 1) (41)

Based on the known condition ||𝑒𝑗(𝑡−𝑗+1)|| = 𝑒𝑗+1𝑇 , we can obtain the lower bound on 𝑗𝑡ℎ inter sample time, which can be
expressed as,

𝜏𝑗 = 𝑡𝑗+1 − 𝑡𝑗 ≥
1
𝐾
𝑙𝑛(1 + ||𝑒𝑗+1𝑇 ||∕(||𝑥̂𝑗|| + 𝜒)) (42)

Then we can obtain that 𝜏𝑚𝑖𝑛 = min
𝑗
{𝜏𝑗} ≥ 1

𝐾
𝑙𝑛(1 + Γ𝑗,𝑚𝑖𝑛), where Γ𝑗,𝑚𝑖𝑛 = min

𝑗∈𝑁
(||𝑒𝑗+1𝑇 ||∕(||𝑥̂𝑗|| + 𝜒)) > 0 and the lower

bound of 𝜏𝑚𝑖𝑛 is a positive constant.

4 NEURAL NETWORK FOR ONLINE POLICY ITERATION ALGORITHM

4.1 Solving the event-triggered HJI equation via Single Critic Network
As we all know, neural network has the ability of universal approximation, we can fit the optimal value function with the neural
network as,

𝑉 ∗(𝑥) = 𝑊 𝑇
𝑐 ℎ(𝑥) + 𝜖(𝑥) (43)

where 𝑊𝑐 is the ideal weight, which is usually unavailable, ℎ(𝑥) is the activation function vector, and 𝜖(𝑥) is the error of the NN
approximation.

Then we can obtain,
∇𝑉 ∗(𝑥) = ∇ℎ(𝑥)𝑇𝑊𝑐 + ∇𝜖(𝑥) (44)

where ∇ℎ(𝑥) = 𝜕ℎ(𝑥)∕𝜕𝑥, 𝜕ℎ(0) = 0
Substituting Eq. (44) into Eq. (18),

𝜇∗(𝑥̂𝑗) = 𝑈̄𝜑(− 1
2𝑈̄

𝑔(𝑥̂𝑗)𝑇∇ℎ(𝑥̂𝑗)𝑇𝑊𝑐) + 𝜀𝜇1∗ (45)

where 𝜀𝜇1∗ = − 1
2
𝑔(𝑥̂𝑗)𝑇∇𝜖(𝑥̂𝑗)𝜑

′ . The estimated value of the optimal neural network is used, and the value function can be
written as ,

𝑉 (𝑥) = 𝑊̂ 𝑇
𝑐 ℎ(𝑥) (46)

The estimated control input can be expressed as,
𝜇̂(𝑥̂𝑗) = 𝑈̄𝜑(− 1

2𝑈̄
𝑔(𝑥̂𝑗)𝑇∇ℎ(𝑥̂𝑗)𝑇 𝑊̂𝑐) (47)
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and the disturbance law can be expressed as,
𝑑(𝑥) = 1

2𝛾2
𝑘𝑇∇ℎ(𝑥)𝑇 𝑊̂𝑐 (48)

According to the control law and disturbance law, the estimated HJI equation can be expressed as,
𝐻(𝑥,∇𝑉 (𝑥), 𝜇̂(𝑥̂𝑗), 𝑑(𝑥)) = 𝑟(𝑥, 𝜇̂(𝑥̂𝑗), 𝑑(𝑥)) + 𝑊̂ 𝑇

𝑐 𝜚 (49)
where 𝑟(𝑥, 𝜇̂(𝑥̂𝑗), 𝑑(𝑥)) = 𝑥𝑇𝑄𝑥 +𝑊 (𝜇̂(𝑥̂𝑗)) − 𝛾2||𝑑(𝑥)||2 , 𝜚 = ∇ℎ(𝑥)(𝑓 (𝑥) + 𝑔(𝑥)𝜇̂(𝑥̂𝑗) + 𝑘(𝑥)𝑑(𝑥)).

Define the error between 𝐻(𝑥,∇𝑉 ∗, 𝑢∗, 𝑑∗) and 𝐻(𝑥,∇𝑉 (𝑥), 𝜇̂(𝑥̂𝑗), 𝑑(𝑥)) as 𝜀𝐻𝐽𝐼 , namely,
𝜀𝐻𝐽𝐼 = 𝑟(𝑥, 𝜇̂((̂𝑥𝑗), 𝑑(𝑥)) + 𝑊̂ 𝑇

𝑐 𝜚 (50)
Because of the use of event-triggered method, the error at time 𝑡𝑘 can be expressed as,

𝜀𝐻𝐽𝐼 (𝑡𝑘) = 𝑟(𝑡𝑘) + 𝑊̂ 𝑇
𝑐 𝜚𝑘 (51)

where 𝑟(𝑡𝑘) = 𝑥𝑇 (𝑡𝑘)𝑄𝑥(𝑡𝑘) + 𝑊 (𝜇̂(𝑥̂𝑗)) − 𝛾2||𝑑(𝑥)||2 and 𝜚𝑘 = ∇ℎ(𝑥(𝑡𝑘))(𝑓 (𝑥(𝑡𝑘)) + 𝑔(𝑥(𝑡𝑘))𝜇̂(𝑥̂𝑗) + 𝑘(𝑥(𝑡𝑘))𝑑(𝑥)) , where
𝑡𝑘 ∈ [𝑡𝑗 , 𝑡𝑗+1) , (𝑘 ∈ {1, ..., 𝑝}). Let 𝑟𝑎𝑛𝑘([𝜚1, ..., 𝜚𝑝]) = 𝑛𝑐 , (𝑝 > 𝑛𝑐), where 𝑛𝑐 is the number of neurons in the critic network,
and 𝑝 is a large number of historical state data.

In order to achieve lim
𝑛𝑐→∞

𝑊̂𝑐 = 𝑊𝑐 , our goal is to make 𝜀𝐻𝐽𝐼 → 0. Define 𝐸 = (1∕2)𝜀𝑇𝐻𝐽𝐼𝜀𝐻𝐽𝐼∕(1 + 𝜚𝑇 𝜚)2 and 𝐸𝑘 =
∑𝑝

𝑘=1(1∕2)𝜀
𝑇
𝐻𝐽𝐼 (𝑡𝑘)𝜀𝐻𝐽𝐼 (𝑡𝑘)∕(1 + 𝜚𝑇𝑘 𝜚𝑘)

2 , the gradient is given by,
̇̂𝑊𝑐 = −𝑙𝑐 ⋅

𝜕𝐸
𝜕𝑊̂𝑐

− 𝑙𝑐 ⋅
𝜕𝐸𝑘

𝜕𝑊̂𝑐

= −
𝑙𝑐

(1 + 𝜚𝑇 𝜚)2
𝜀𝐻𝐽𝐼 ⋅ 𝜚

−
𝑝
∑

𝑘=1

𝑙𝑐
(1 + 𝜚𝑇𝑘 𝜚𝑘)2

𝜀𝐻𝐽𝐼 (𝑡𝑘) ⋅ 𝜚𝑘

(52)

where 𝑙𝑐 is the learning rate. Define 𝑊̃𝑐 as the weight estimation error, namely 𝑊̃𝑐 = 𝑊𝑐−𝑊̂𝑐 . Through the above derivation, we
known that 𝜀𝐻𝐽𝐼 = −𝑊̃𝑐𝜚−∇𝜖(𝑥)(𝑓 (𝑥)+𝑔(𝑥)𝜇(𝑥̂𝑗)+𝑘(𝑥)𝑑(𝑥)) and 𝜀𝐻𝐽𝐼 (𝑡𝑘) = −𝑊̃𝑐𝜚𝑘−∇𝜖(𝑥(𝑡𝑘))(𝑓 (𝑥(𝑡𝑘))+𝑔(𝑥(𝑡𝑘))𝜇(𝑥̂𝑗)+
𝑘(𝑥(𝑡𝑘))𝑑(𝑥)), then we can obtain,

̇̃𝑊𝑐 = −𝑙𝑐(
𝜚2

(1 + 𝜚𝑇 𝜚)2
−

𝑝
∑

𝑘=1

𝜚2𝑘
(1 + 𝜚𝑇𝑘 𝜚𝑘)2

)𝑊̃𝑐

−𝑙𝑐(
𝜚

(1 + 𝜚𝑇 𝜚)2
𝜀𝑎 +

𝑝
∑

𝑘=1

𝜚𝑘
(1 + 𝜚𝑇𝑘 𝜚𝑘)2

𝜀𝑏(𝑡𝑘))
(53)

where 𝜀𝑎 = ∇𝜖(𝑥)(𝑓 (𝑥) + 𝑔(𝑥)𝜇(𝑥̂𝑗) + 𝑘(𝑥)𝑑(𝑥)) and 𝜀𝑏(𝑡𝑘) = ∇𝜖(𝑥(𝑡𝑘))(𝑓 (𝑥(𝑡𝑘)) + 𝑔(𝑥(𝑡𝑘))𝜇(𝑥̂𝑗) + 𝑘(𝑥(𝑡𝑘))𝑑(𝑥))

4.2 Stability Analysis
Therem 3: According to the designed controller (47) and the critic neural network update formula (52), the closed-loop system
is stable and the critic network parameters is UUB under the event-triggered mechanism (21).
Proof:The Lyapunov function is designed as,

𝐿(𝑡) = 𝑉 ∗(𝑥)
⏟⏟⏟
𝐿1(𝑡)

+ 𝑉 ∗(𝑥̂𝑗)
⏟⏟⏟
𝐿2(𝑡)

+ 1
2𝛾

𝑊̃ 𝑇
𝑐 𝑊̃𝑐

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐿3(𝑡)

(54)

Case 1: The event-triggered condition is not violated. In this case, we have 𝐿̇2(𝑡) = 0 and
𝐿̇1 = (𝜕𝑉

∗

𝜕𝑥
)𝑇 (𝑓 (𝑥) + 𝑔(𝑥)𝜇̂(𝑥̂𝑗) + 𝑘(𝑥)𝑑(𝑥))

= (∇𝑉 ∗)𝑇 (𝑓 (𝑥) + 𝑔(𝑥)𝑢∗(𝑥))
+ (∇𝑉 ∗)𝑇 𝑔(𝑥)(𝜇̂(𝑥̂𝑗) − 𝑢∗(𝑥)) + (∇𝑉 ∗)𝑇𝑘(𝑥)𝑑(𝑥)
= −𝑥𝑇𝑄𝑥 −𝑊 (𝜇̂) − 𝛾2𝑑∗𝑇 (𝑥)𝑑∗(𝑥)−

2𝑈̄𝜑−1(𝑢
∗

𝑈̄
)𝑇 (𝜇̂(𝑥̂𝑗) − 𝑢∗(𝑥)) + 2𝛾2𝑑∗𝑇 (𝑥)𝑑(𝑥)

(55)
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Based on the Young’s inequality, we can obtain,
𝐿̇1(𝑡) ≤ −𝑥𝑇𝑄𝑥 −𝑊 (𝜇̂) − 2𝑈̄𝜑−1(𝑢

∗

𝑈̄
)𝑇 (𝜇̂(𝑥̂𝑗)

− 𝑢∗(𝑥)) + 𝛾2𝑑(𝑥)𝑇 𝑑(𝑥)
≤ −𝑥𝑇𝑄𝑥 −𝑊 (𝜇̂) + 𝛾2𝑑(𝑥)𝑇 𝑑(𝑥)

+ (𝑈̄𝜑−1(𝑢
∗

𝑈̄
)𝑇 )2 + (||𝑢∗(𝑥) − 𝜇̂(𝑥̂𝑗)||)2

≤ −𝑥𝑇𝑄𝑥 + 𝐿2
𝑢∗ ||𝑒𝑗||

2 + 𝛾2𝑑(𝑥)𝑇 𝑑(𝑥) + 1
2
𝜌21𝜌

2
2𝜁

(56)

Based on this result, if Eqs. (21) and (36) hold, 𝐿̇1(𝑡) < 0 holds.
Third part of the Eq. (54) is given by.

𝐿̇3(𝑡) = 𝑊 𝑇
𝑐

̇̃𝑊𝑐

= −𝑊 𝑇
𝑐 (

𝜚2

(1 + 𝜚𝑇 𝜚)2
−

𝑝
∑

𝑘=1

𝜚2𝑘
(1 + 𝜚𝑇𝑘 𝜚𝑘)2

)𝑊̃𝑐

−𝑊 𝑇
𝑐 (

𝜚
(1 + 𝜚𝑇 𝜚)2

𝜀𝑎 +
𝑝
∑

𝑘=1

𝜚𝑘
(1 + 𝜚𝑇𝑘 𝜚𝑘)2

𝜀𝑏(𝑡𝑘))

(57)

Let 𝜂 = 𝜚
(1+𝜚𝑇 𝜚)

, from Young’s inequality, and we can obtain,

𝜚
(1 + 𝜚𝑇 𝜚)

𝑊̃ 𝑇
𝑐 𝜂 ≤ 𝜚

2(1 + 𝜚𝑇 𝜚)
(𝑊̃ 𝑇

𝑐 𝜂𝜂𝑇 𝑊̃ 𝑇
𝑐 + 𝜀𝑇𝑎 𝜀𝑎)

≤ 1
2
(𝑊̃ 𝑇

𝑐 𝜂𝜂𝑇 𝑊̃ 𝑇
𝑐 + 𝜀𝑇𝑎 𝜀𝑎)

(58)

Then,

𝐿̇3(𝑡) ≤ −1
2
𝑊̃ 𝑇

𝑐 (𝜂𝜂𝑇 −
𝑝
∑

𝑘=1
𝜂(𝑡𝑘)𝜂𝑇 (𝑡𝑘))𝑊̃𝑐

− 1
2
(𝜀𝑇𝑎 𝜀𝑎 +

𝑝
∑

𝑘=1
𝜀𝑇𝑏 (𝑡𝑘)𝜀𝑏(𝑡𝑘))

(59)

Let 𝑍 = 𝜂𝜂𝑇 −
∑𝑝

𝑘=1 𝜂(𝑡𝑘)𝜂
𝑇 (𝑡𝑘) and presume ||𝜀𝑎|| ⋅ ||𝜀𝑏|| ≤ 𝑞, then,

𝐿̇3(𝑡) ≤ −1
2
(λ
−
(𝑍)||𝑊̃𝑐||

2 + (1 + 𝑝)𝑞2) (60)
Therefore 𝐿̇3(𝑡) ≤ 0,when the following inequality holds,

||𝑊̃𝑐||
2 > Ω𝑊̃𝑐

(61)
where Ω𝑊̃𝑐

= (1+𝑝)𝑞2)
𝜂𝜂𝑇−

∑𝑝
𝑘=1 𝜂(𝑡𝑘)𝜂

𝑇 (𝑡𝑘)
.

Case 2: Event-triggered condition is violated, 𝑡 = 𝑡𝑗+1 for 𝑗 = 1, 2, ...,∞.
Now we define the Lyapunov function as,

△𝐿(𝑡𝑗) = 𝑉 ∗(𝑥̂𝑗+1) − 𝑉 ∗(𝑥̂𝑗) + 𝑉 ∗(𝑥(𝑡𝑗+1)) − 𝑉 ∗(𝑥(𝑡−𝑗+1))

+ 1
2𝛾

𝑊̃ 𝑇
𝑐 (𝑡𝑗+1)𝑊̃𝑐(𝑡𝑗+1) −

1
2𝛾

𝑊̃ 𝑇
𝑐 (𝑡−𝑗+1)𝑊̃𝑐(𝑡−𝑗+1)

(62)

Based on the conclusion of Case 1, we can obtain that 𝐿2(𝑡) and 𝐿3(𝑡) are decreasing strictly monotonically on the interval
[𝑡𝑗 , 𝑡𝑗+1),

𝐿2(𝑡𝑗+1) < 𝐿2(𝑡𝑗+1 − 𝛿)
≤ lim

𝛿→0+
𝐿2(𝑡𝑗+1 − 𝛿)

= 𝐿2(𝑡−𝑗+1)

(63)

Similarly, we can obtain 𝐿3(𝑡𝑗+1) < 𝐿3(𝑡−𝑗+1), where 𝛿 ∈ (0, 𝑡𝑗+1 − 𝑡𝑗).
Based on the definitions of 𝐿1(𝑡), 𝐿2(𝑡) and 𝐿3(𝑡) in Case 1, we can obtain,

𝑉 ∗(𝑥(𝑡𝑗+1)) +
1
2𝛾

𝑊̃ 𝑇
𝑐 (𝑡𝑗+1)𝑊̃𝑐(𝑡𝑗+1)

≤ 𝑉 ∗(𝑥(𝑡−𝑗+1)) +
1
2𝛾

𝑊̃ 𝑇
𝑐 (𝑡−𝑗+1)𝑊̃𝑐(𝑡−𝑗+1)

(64)



10 AUTHOR ONE ET AL

and
𝑉 ∗(𝑥̂𝑗+1) ≤ 𝑉 ∗(𝑥̂𝑗) (65)

Then, we can obtain △𝐿(𝑡𝑗) < 0, and the proof is completed.

5 SIMULATION STUDIES

In this section, tow simulation examples are carried out to verify the effectiveness of the proposed methods.

5.1 Example 1
A nonlinear system is described as

𝑥̇ =
[

−𝑥1 + 𝑥2
−0.5(𝑥1 + 𝑥2) + 0.5𝑥2 sin(𝑥1)2

]

+
[

0
sin(𝑥1)

]

𝑢 +
[

0
cos(𝑥1)

]

𝑑 (66)

where 𝑥 = [𝑥1, 𝑥2]𝑇 and 𝑥0 = [1,−1]𝑇 . 𝐿𝑢∗ = 3, 𝑝 = 10, and 𝑄 is the determined matrix with the appropriate dimen-
sion. During network training, the exploration noise is added to satisfy the persistency of excitation condition as: 𝑁(𝑡) =
−1.5𝑒0.006𝑡 sin(𝑡)2 cos(𝑡)sin(−1.2𝑡)2 cos(0.5𝑡) + sin(𝑡)5 + sin(1.12𝑡)2 + cos(2.4𝑡) sin(2.4𝑡)3.
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Figure 1 (a) State in Example 1. (b) Input in Example 1. (c) 𝑊̂𝑐 in Example 1
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Figure 2 (a) Triggered error and triggered threshold in Example 1. (b) Input under 𝑑1 in Example 1. (c) Input under 𝑑1 in
Example 1
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Table 1 Integrated Absolute Error (IAE) with Different Disturbance.

Different Disturbance Proposed Method Comparison Method No Input Constraint

𝑑1 = 10𝑒−(𝑡−5) cos(𝑡 − 5) 3.0287 4.6358 5.6314
𝑑2 = 12 sin(𝑡 − 5)𝑒−0.7(𝑡−5) 2.4548 3.5553 3.4313
𝑑3 = 13 sin(𝑡 − 5) cos(𝑡 − 5)𝑒−0.7(𝑡−5) 1.9599 3.7300 4.5085

The neuron structure of the critic network is set as 2-5-1. The activation function of the critic network is selected as ℎ(𝑥) =
[𝑥21, 𝑥1𝑥2, 𝑥

2
2, 𝑥

4
1, 𝑥

4
2]

𝑇 and the initial value of the weight is chosen as 𝑊̂𝑐 = [0.4719, 0.06273, 0.8243, 0.2005, 0.31346]𝑇 .
Fig. 1(a) shows the state convergence of the proposed method under asymmetric input constraints, and compares it with the

general method under asymmetric input constraints26 and the general method without input constraints35. The control policy of
above three methods is shown in Fig. 1(b). It can be seen that the proposed method has smaller fluctuation and shorter transient
process, and the control input converges to zero within the given constraint range −1.4 ≤ |𝑢(𝑡)| ≤ 1.05. The learning process of
the function network weights is shown in Fig. 1(c). The relationship of the triggered error ||𝑒𝑗|| and the threshold 𝑒𝑇 is shown in
Fig. 2(a), which can be seen that the triggered error converges to zero. In this paper, we only verify whether the system can still
return to zero stably under asymmetric input constraints. Therefore, a disturbance 𝑑 = 10𝑒−(𝑡−5) cos(𝑡−5) is applied to the system
when 𝑡 > 5𝑠. The system states and control input are shown in Fig. 2(b) and Fig. 2(c), respectively. In Table 1, the results of this
method are compared with those of other two methods, where the different disturbances are defined as 𝑑1 = 10𝑒−(𝑡−5) cos(𝑡−5),
𝑑2 = 12 sin(𝑡− 5)𝑒−0.7(𝑡−5) and 𝑑3 = 13 sin(𝑡− 5) cos(𝑡− 5)𝑒−0.7(𝑡−5). It can be seen from the table that the proposed method has
better performance on the disturbance suppression.

5.2 Example 2
Consider the following single connected robot arm system,

{

𝑑𝜃
𝑑𝑡

= 𝜔
𝑑𝜔
𝑑𝑡

= −𝑀𝑔𝐻
𝐺

sin(𝜃) − 𝐷
𝐺
𝜔 + 1

𝐺
𝑢 + 1

𝐿
𝑑

(67)

where 𝑥1 = 𝜃 and 𝑥2 = 𝜔 denote the angle and the angular velocity of robot arm; 𝐷 = 2 is viscous friction; 𝐻 = 0.5 is
the length of the robot arm; 𝑔 = 9.8 is gravitational acceleration; 𝑀 = 1 is the mass of the payload; 𝐺 = 1 is the moment of
inertia;L=0.5; other parameters are consistent with those in Example 1.

(a) (b) (c)

Figure 3 (a) State in Example 2. (b) 𝑊̂𝑐 in Example 2. (c) Input in Example 2

In Example 2, the proposed method is also compared with the conventional method and the no input constraint method.
Fig. 3(a) shows that compared with the other two methods, the proposed method can bring the state back to equilibrium faster.
Fig. 3(b) shows the convergence process of network weights. From Fig. 3(c), it can be observed that the asymmetric input is
constrained to the range of −1 ≤ |𝑢(𝑡)| ≤ 0.3. The event-triggered error and the threshold converge to zero in Fig. 4(a). To verify
the effectiveness of the proposed methods to the disturbance, we compare the proposed method with the other two methods and
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(a) (b) (c)

Figure 4 (a) Triggered error and triggered threshold in Example 2. (b) State under 𝑑2 in Example 2. (c) Input under 𝑑1 in Example
2

find that the proposed method has better performance in dealing with 𝑑2 in Fig. 4(b). In order to illustrate the benefits of input
constraint, the method proposed in this paper is compared with the method without constraint. It can be seen from Fig. 4(c) that
compared with the input with constraint, the input without constraint will produce a relatively violent fluctuation after external
disturbance.

6 CONCLUSION

We have proposed a disturbance rejection control strategy for nonlinear system with input constrains. To deal with the uncertain
disturbance rejection, the control design is converted into a Zero-sum game problem, and an ADP-based method is proposed
to solve this Zero-sum game problem. To deal with the asymmetric input constraints, a new objective function has proposed.
We use a critic-only network to approximate the optimal performance index function, and use the event-triggered mechanism to
reduce the computational pressure. The critic network weight vector is tuned through a modified gradient descent method with
the historical state data. The stability of the closed-loop system and the UUB of the critic network parameters is proved by the
Lyapunov method. The comparison studies show the effectiveness and merits of the proposed method to deal with the uncertain
disturbance and asymmetric constraints.
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