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Abstract

This paper investigates the decay rates of continuous-time singular systems with unbounded delays. By introducing an auxiliary

system for the original system, the positivity and asymptotic stability conditions of the system are investigated first. Then,

μ-stability criteria, which are applied to characterize the decay rates of the systems, are proposed, and the relation between

the system matrices and μ-stability is studied. Those results include the stability of positive singular systems with bounded

time-varying delays and time-varying delays with linear growth rate as special cases. Finally, a numerical example is given to

illustrate the obtained theoretical results.
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Decay Rate Characterization for Positive Singular
Systems with Unbounded Delays

Bohao Zhu† James Lam† Yukang Cui* Jason Ying Kuen Chan‡ Ka-Wai Kwok†

Abstract

This paper investigates the decay rates of continuous-time singular systems with unbounded delays.
By introducing an auxiliary system for the original system, the positivity and asymptotic stability condi-
tions of the system are investigated first. Then, µ-stability criteria, which are applied to characterize the
decay rates of the systems, are proposed, and the relation between the system matrices and µ-stability
is studied. Those results include the stability of positive singular systems with bounded time-varying
delays and time-varying delays with linear growth rate as special cases. Finally, a numerical example is
given to illustrate the obtained theoretical results.
Keywords: Decay rates, positive systems, singular systems, stability, time-delay systems.

1 Introduction

In recent decades, singular systems [10] also known as implicit systems, descriptor systems, or gener-
alized state-space systems have drawn considerable attention due to their strong practical background in
electrical systems, economic systems, aerospace systems, chemical systems and robotic systems [13]. In
view of the intrinsic nonnegativity of the states of some singular systems, like the current of electricity
nodes, number of molecules and concentration of chemical component, those systems can be regarded as
positive singular systems. Some monographs on the behavioral analysis of positive systems are available
in [18, 29, 32, 33]. Many analytical approaches developed for positive systems [3, 11, 21, 34] have been
applied to stability analysis [1, 8, 9, 20], input-output gain analysis [7], and state-feedback control [26] for
positive singular systems.
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As a consequence of the special properties for positive time-delay systems [2, 4, 22], positive singular
systems with time-delay becomes a hot topic in recent years [14, 17, 24, 27, 31]. In [24], the exponential
stability for the positive singular systems with fixed delays is investigated. Based on the Lyapunov function
with exponential terms, a sufficient exponential stability criterion in terms of algebraic matrix inequalities
is obtained. In [9], the asymptotic stability of systems with bounded time-varying delay is addressed. By
analyzing the relation between the states of the initial systems and the systems with constant delay, a suffi-
cient asymptotic stability condition is established. Under strictly positive initial conditions, the asymptotic
stability condition turns into a necessary and sufficient one. In [17], the ℓ1 stability of switched positive
singular with time-varying delay is investigated. By combining the average dwell time scheme and co-
positive Lyapunov function, a delay-dependent stability condition can be established. Although extensive
research efforts have been focused on stability condition of positive singular systems with time-delay, the
existing results are still deficient: (1) Constraints on time delays. For positive singular systems with time-
delays, the Lyapunov-Krasovskii method and comparison methods are commonly applied. On one hand,
the Lyapunov-Krasovskii functional [17, 25] requires the derivative of the unbounded delay to be less than
unity. On the other hand, the comparison methods [9] require the time delay have a given upper bound.
Those methods require the bound of the time delay or the bound of the derivative of the delay and fails to
analyze unbounded time-delay systems with less constraints on delays; (2) Few results on characterization
of decay rate. When analyzing the positivity and stability condition of a singular system, an auxiliary sys-
tem is always introduced first. For the auxiliary system, the state of the original system is divided into two
states, and the two states are characterized by differential and difference equations, respectively. How to
unify the convergent speed of the original system and the auxiliary system and obtain the decay rate of the
original system remains a challenging problem.

Back to positive systems, both bounded and unbounded delays of different kind of positive systems have
been characterized [12, 23, 28]. Specifically, for positive systems with unbounded delays, the asymptotic
stability is not affected by the time-varying delays, while the decay rates of the states depend on the value
of the delays. Motivated by the above work, we endeavour to present a condition to analyze the stability
and decay rate of positive singular systems with unbounded delay. In this paper, an auxiliary system for
the original positive singular systems is given first. By constructing a Lyapunov function for the auxiliary
system, an asymptotic stability condition for a positive singular system with unbounded delay is derived.
Then, a monotonically nondecreasing function is introduced to characterize the µ-stability for the positive
singular system. When the product of a nondecreasing function and the norm of the state is bounded, we
can characterize the decay rate of the system via the given function. The main contributions of this paper
are given as follows:

• Asymptotic stability: We show that the asymptotic stability condition of the given auxiliary system
is equivalent to the original positive singular system. The asymptotic stability of positive singular
systems with unbounded delay is only affected by the system matrices, but not the rate of change and
magnitude of the delay.

• Decay rate characterization: By introducing a monotonically nondecreasing function µ(t), the
decay rate of a positive singular system can be characterized. The results also show that the µ-stability
can be applied to characterize the decay rate of positive singular systems with bounded time-varying
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delay and time-varying delay with linear growth rate with respect to time.

The rest of the paper is organized as follows. Problem formulation and the positivity condition of singular
systems with unbounded time-delay are given in Section 2. The decay rate characterization of the system
is investigated in Section 3. Based on the characterization, some positive singular systems with special
time-delay, including bounded time-delay and time-varying delay with linear growth rate are given in this
section. In Section 4, an example is given to illustrate the effectiveness of the obtained results. Section 5
concludes the paper.

Notation: Rn denotes the n-dimensional real vector space, Rm×n denotes the set of all m× n real ma-
trices, N = {0,1, . . .}, C(−∞,0] denotes the set of continuous function defined on (−∞,0], AT denotes
the transpose of matrix A, v[i] denotes the i-th element of vector v, A[i, j] denotes the i-th row, j-th column
element of matrix A. Furthermore, some basic notations for positive system are recalled [3]. v ⪰ (≻)0
or v ∈ Rn

0,+
(
Rn
+

)
means a real vector v is a nonnegative (positive) vector whose entries are all nonnega-

tive (positive). A ⪰ (≻)0 or A ∈ Rm×n
0,+

(
Rm×n
+

)
means a real matrix A ∈ Rm×n is a nonnegative (positive)

matrix. For two nonnegative (positive) matrices A and B ∈ Rm×n
0,+

(
Rm×n
+

)
, A ⪰ (≻)B means A−B is a

nonnegative (positive) matrix. Mn×n denotes the set of n× n Metzler matrices whose off-diagonal entries
are nonnegative.

2 Problem Formulation

A singular system with time-varying delays is given as follows:

Eẋ(t) = Ax(t)+Adx(t −d(t)),

x(s) = φ(s), s ≤ 0,
(1)

where x(t) ∈Rnx is the state vector, A and Ad ∈Rnx×nx are real matrices. The matrix E ∈Rnx×nx is assumed
to be singular, that is, rank(E) = r < nx. φ(·) ∈ C(−∞,0] is the initial condition. According to Theorem
5.1 of [1], the initial condition φ(·) should to be admissible to guarantee the uniqueness of the solution x(t).
In what follows, we will require φ(·) to be an admissible initial condition. The time delay d(t) could be
unbounded and satisfies Assumption 1.

Assumption 1. The assumptions for the continuous time delay d(t) are given as follows:
(i) d(t)≥ d > 0 for all t ∈ R0,+;
(ii) limt→∞ (t −d(t)) = ∞.

Some basic definitions and useful lemmas for positive singular systems in [8,9], which will be employed
for deriving the main results, are given as follows.

Definition 1. (Positivity) System (1) is said to be positive if any admissible initial condition satisfies φ(s)⪰
0, s < 0, and unbounded delay d(t) satisfies Assumption 1, one has x(t)⪰ 0 for all t ≥ 0.

Definition 2. (Asymptotic Stability) System (1) is said to be asymptotically stable if for any ε > 0, a scalar
δ (ε) exists such that for any admissible initial condition φ(t), t ≤ 0, satisfying supt∈(−∞,0] ∥φ(t)∥

∞
≤ δ (ε),

the vector x(t) satisfies ∥x(t)∥ ≤ ε , for all t ≥ 0. Furthermore, when t → ∞, x(t)→ 0.

3



Definition 3. (µ-Stability) Suppose that µ : R0,+ → R+ is a nondecreasing function satisfying µ(t)→ ∞,
when t → ∞. System (1) is said to be µ-stable if there exists a constant M > 0 such that for any admissible
initial condition φ(·)⪰ 0, the state x(t) satisfies ∥x(t)∥

∞
≤ M

µ(t) , for all t ∈ R0,+.

Definition 4. (Regular and Impulse-free)
(i) The pair (E,A) is said to be regular if there exists a scalar s ∈R such that det(sE −A) is not identically
zero.
(ii) The pair (E,A) is said to be impulse-free if there exists a scalar s ∈ R such that deg{det(sE −A)} =

rank(E).

Definition 5. (Drazin Inverse) For any matrix E ∈ Rn×n, a unique matrix ED, called the Drazin inverse
of matrix E, always exists satisfying EED = EDE, EDEED = ED, EDEv+1 = Ev, where v is the smallest
nonnegative integer such that rank(Ev) = rank(Ev+1), called the index of E, and is denoted by v = ind(E).

In the following, some properties of the Drazin inverse are recalled.

Lemma 1. [5] Let the pair (E,A) be regular and scalar β ∈ R such that matrix βE −A is nonsingular.
Then the matrices Ê ≜ (βE −A)−1E and Â ≜ (βE −A)−1A commute.

Lemma 2. [15] Suppose EA = AE. Then EAD = ADE, EDA = A/ED, EDAD = ADED.

Suppose the pair (E,A) is regular and impulse-free. Define x1(t) ≜ Mx(t), x2 ≜ (I −M)x(t) with M =

ÊDÊ. According to the result in [9], the auxiliary system for the singular system (1) are given as follows:

ẋ1(t) = A1x1(t)+Ad1 [x1(t −d(t))+ x2(t −d(t))] ,

x2(t) = Ad2 [x1(t −d(t))+ x2(t −d(t))] ,
(2)

where A1 ≜ ÊDÂ, Ad1 ≜ ÊDÂd , Ad2 ≜ (M − I)ÂDÂd , Â ≜ (βE −A)−1A, Âd ≜ (βE −A)−1Ad , Ê ≜ (βE −
A)−1E with β satisfying matrix βE −A is nonsingular.

Remark 1. [9] Based on Definition 5 and Lemma 2, several properties are given below:
(i) M2 = M;
(ii) MA1 = A1M = A1, MAd1 = Ad1;
(iii) Mx1(t) = x1(t), Mx2(t) = 0.

Lemma 3. [6] Let F ∈ Rp×n, A ∈ Rn×n, B ∈ Rn×q. Consider the linear system ż(t) = Az(t)+Bω(t). For
t ′ ∈ R+, condition: ∀z(0), Fz(0)⪰ 0, ∀ω(t)⪰ 0 ⇒ Fz(t)⪰ 0, t ∈ [0, t ′] holds if and only if there exists a
Metzler matrix H ∈ Rp×p and a matrix K ∈ Rn×q, K ⪰ 0, such that FA = HF, FB = K.

The positivity conditions of the system (1) and the auxiliary system (2) are first investigated.

Lemma 4. (Positivity) Suppose that the pair (E,A) is regular and impulse-free. The following statements
are equivalent:
(i) System (1) is positive.
(ii) System (2) is positive.
(iii) Ad1 ⪰ 0, Ad2 ⪰ 0 and there exists a Metzler matrix H ∈ Rnx×nx such that A1 = HM.
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Proof. (iii)→(ii): According to system (2), x1(t) and x2(t) are given as follows:

x1(t) = eA1tx1(0)+
∫ t

0
Ad1eA1(t−τ)x(τ −d(τ))dτ, (3)

x2(t) = Ad2x(t −d(t)). (4)

Since x1(t) = Mx(t), equation (3) can be denoted as follows:

x1(t) = M
(

eA1tx(0)+
∫ t

0
Ad1eA1(t−τ)x(τ −d(τ))dτ

)
.

A new system for z(t) is given as follows:

ż(t) = A1z(t)+Ad1x(t −d(t)), (5)

where z(t) satisfies x1(t) = Mz(t). Since function t − d(t) is continuous and −d(t) ≤ −d for all t ∈ R0,+,
we can always find a scalar t∗ ∈ (0,d) such that t − d(t) < 0 for all t ∈ [0, t∗]. When t ∈ [0, t∗], equation
x(t −d(t)) = φ(t −d(t)) holds. Based on Remark 1 and condition (iii) of Lemma 4, MAd1 = Ad1 ⪰ 0 holds
and there exists a Metzler matrix H such that MA1 = HM holds. According to Lemma 3, for the given
t∗ ∈ R+ and nonnegative initial condition φ(t −d(t)), inequality x1(t) = Mz(t)⪰ 0 holds for all t ∈ [0, t∗].
Based on (4), when Ad1 ⪰ 0 and Ad2 ⪰ 0, we have x2(t) ⪰ 0 for all t ∈ [0, t∗]. Since t − d(t) < t∗ when
t ∈ [t∗,2t∗], and x1(t) ⪰ 0 and x2(t) ⪰ 0 hold for all t ∈ [0, t∗], we have x1(t) ⪰ 0 and x2(t) ⪰ 0 for all
t ∈ [0,2t∗]. By the principle of mathematical induction, we have x1(t) ⪰ 0 and x2(t) ⪰ 0 for all t ∈ R0,+,
and system (2) is positive.
(ii)→ (i): Since x(t) = x1(t)+ x2(t), when system (2) is positive, x(t)⪰ 0 for all t ∈ R0,+.
(i)→(iii): Theorem 1 of [9] indicates that the condition (iii) of Lemma 4 is a necessary and sufficient
positivity condition of a positive singular system with bounded time-varying delay. Therefore, (i)→(iii) is
proved. □

3 Decay Rate Characterization

In order to characterize the decay rate, the asymptotic stability of the system is investigated first in this
section. Then we move to the analysis of decay rate of the systems. Finally, several special cases: positive
singular systems with bounded time-varying delays and time-varying delays with linear growth rate are
investigated and the decay rates of those systems are characterized.

3.1 µ-Stability Condition

We first propose a lemma that reveals the equivalent relation of asymptotic stability between system (1)
and system (2).

Lemma 5. System (1) is asymptotically stable if and only if system (2) is asymptotically stable.

Therefore, in order to obtain the µ-stability condition of system (1), the stability of system (2) is ana-
lyzed. Some useful lemmas, which will be used to derive the theorem, are recalled first.

5



Lemma 6. [3] For a Metzler matrix Q ∈Mn×n, the following statements are equivalent:
(i) Q is a Hurwitz matrix;
(ii) Q is invertible and Q−1 ⪯ 0;
(iii) There exists a vector p ∈ Rn

+ such that Qp ≺ 0.

Lemma 7. For a Metzler matrix Q ∈Mn×n and two vectors q1 ∈ R+ and q2 ∈ R+ satisfying

(q1)[i] ≤ (q2)[i] , i = 1,2, . . . ,n, (6)

(q1)[ j] = (q2)[ j] , j ∈ {1,2, . . . ,n} , (7)

it follows that inequality (Qq1)[ j] ≤ (Qq2)[ j].

Proof. One can find (Qq1)[ j] = ∑
n
i′=1 Q[ j,i′] (q1)[i′]. Since Q is a Metzler matrix, Q[ j,i′] ≥ 0 for all i′ ̸= j and

i′ ∈ {1,2, . . . ,n}. When inequality (6) and equation (7) hold, Q[ j, j] (q1)[ j] = Q[ j, j] (q2)[ j] holds, and we have

(Qq1)[ j] =
n

∑
i′=1

Q[ j,i′] (q1)[i′] ≤
n

∑
i′=1

Q[ j,i′] (q2)[i′] = (Qq2)[ j] .

This completes the proof. □

Then Theorem 1 characterizing the asymptotic stability condition of system (1) is given below.

Theorem 1. (Asymptotic Stability) Suppose that the pair (E,A) is regular and impulse-free. System (1) is
asymptotically stable with any admissible initial condition φ(·)⪰ 0 if there exists a Metzler matrix H such
that A1 = HM and Π is Hurwitz where

Π =

[
H +Ad1 Ad1

Ad2 Ad2 − Inx

]
. (8)

Proof. According to Lemma 5, the asymptotic stability condition of system (1) is the same as the one of
system (2). In what follows, we will show that system (2) is asymptotically stable if there exists a Metzler
matrix H such that A1 = HM and Π is Hurwitz. Based on (iii) of Lemma 6, when Π is Hurwitz, there exists

a positive vector v̄ =
[
vT

1 vT
2

]T
∈ R2nx

+ such that Πv̄ ≺ 0. This strict inequality indicates that there exist
scalars ε ∈ (0,1) and γ ∈ (0,1) such that[

H +Ad1 Ad1

Ad2 Ad2 − Inx

][
v1

v2

]
≺−ε

[
v1

v2

]
, (9)[

γH +Ad1 Ad1

Ad2 Ad2 − Inx

][
v1

v2

]
≺−(1− γ)

[
v1

v2

]
. (10)

A vector function V̄ (x̄(t)) =
[
V̄1
(
x̄[1](t)

)
,V̄2
(
x̄[2](t)

)
, . . . , V̄2nx

(
x̄[2nx](t)

)]T is constructed, where x̄(t) =[
xT

1 (t) xT
2 (t)

]T
, and V̄i

(
x̄[i](t)

)
satisfies V̄i(x̄[i](t)) ≜

x̄[i](t)
v̄[i]

, for all i ∈ {1,2, . . . ,2nx}. By mathematical
induction, we will prove that, for any given scalar m ∈ N, one can always find a time tm ∈ R0,+ such that
V̄i
(
x̄[i](t)

)
≤ γm ∥ϕ∥c, where

ϕ(t) =

[
Mφ(t)

(Inx −M)φ(t)

]
. (11)
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and ∥ϕ∥c = supt∈(−∞,0]
[
maxi∈{1,2,...,2nx}

(
ϕ[i](t)/v̄[i]

)]
, holds for all t ≥ tm and i ∈ {1,2, . . . ,2nx}.

Basis Step: Prove that V̄i(x̄[i](t)) ≤ ∥ϕ∥c holds for all t ≥ t0 = 0 and i ∈ {1,2, . . . ,2nx}. The statement is
proved by contradiction, and the proof can be divided into two cases.
Case 1: Assume that there exist a scalar j ∈ {1,2, . . . ,nx} and a time 0 ≤ τ < t such that V̄j(x̄[ j](t))> ∥ϕ∥c.
Then one can find an index j ∈ {1,2, . . . ,nx} and a scalar τ ≥ 0 such that

x̄[i](t)
v̄[i]

≤ ∥ϕ∥c , i = 1,2, . . . ,2nx, ∀t ∈ [0,τ] , (12)

x̄[ j](τ)
v̄[ j]

= ∥ϕ∥c , (13)

d(x̄[ j](t))
dt

∣∣∣
t=τ

≥ 0. (14)

According to system (2) and statement (iii) of Remark 1, the left-hand side of (14) gives

d(x̄[ j](t))
dt

∣∣∣
t=τ

= {Hx1(τ)+Ad1 [x1(τ −d(τ))+ x2(τ −d(τ))]}[ j] .

Inequality (12) shows that x1(t) ⪯ ∥ϕ∥c v1 and x2(t) ⪯ ∥ϕ∥c v2 for all t ∈ [0,τ]. According to Lemma 7,
when τ −d(τ)≤ τ and matrix Ad1 is nonnegative matrix, we have

d(x̄[ j](t))
dt

∣∣∣
t=τ

≤ ∥ϕ∥c [(H +Ad1)v1 +Ad1v2][ j] . (15)

Based on inequality (9), inequality (15) gives d(x̄[ j](t))
dt

∣∣∣
t=τ

< 0, for all j ∈ {1,2, . . . ,nx}. It contradicts with

the assumption. Thus,
x̄[ j](t)

v̄[ j]
≤ ∥ϕ∥c holds for all j ∈ {1,2, . . . ,nx} and t ∈ R0,+.

Case 2: Assume that there exist a scalar j ∈ {nx + 1,nx + 2, . . . ,2nx} and a time 0 ≤ τ < t such that
V̄j(x̄[ j](t))> ∥ϕ∥c. Then, there exist an index j ∈ {nx +1,nx +2, . . . ,2nx} and scalars τ ≥ 0 and ξ > 0 such
that

x̄[i](t)
v̄[i]

≤ ∥ϕ∥c , i = 1,2, . . . ,2nx, ∀t ∈ [0,τ] , (16)

x̄[ j](τ)
v̄[ j]

= ∥ϕ∥c , (17)

x̄[ j](t)
v̄[ j]

> ∥ϕ∥c , ∀t ∈ (τ,τ +ξ ) . (18)

Inequality (16) indicates that x1(t)⪯ ∥ϕ∥c v1 and x2(t)⪯ ∥ϕ∥c v2 for all t ∈ [0,τ]. Since τ −d(τ)≤ τ holds
and matrix Ad2 is nonnegative, when t = τ , we have

x̄[ j](τ) = [Ad2x1(τ −d(τ))+Ad2x2(τ −d(τ))][ j−nx]

≤ ∥ϕ∥c (Ad2v1 +Ad2v2)[ j−nx]
. (19)

Inequality (9) implies that Ad2v1+Ad2v2 ≺ v2. Combining with inequality (19), we have x̄[ j](τ)< ∥ϕ∥c v̄[ j],

which contradicts with (17). Therefore,
x̄[ j](t)

v̄[ j]
≤ ∥ϕ∥c holds for all j ∈ {nx +1,nx +2, . . . ,nx} and t ∈R0,+.

Inductive Hypothesis: Let m be an arbitrary integer satisfying m ≥ 0. Assume that there exists a scalar
tm such that V̄i

(
x̄[i](t)

)
≤ γm ∥ϕ∥c holds for all t ≥ tm and i ∈ {1,2, . . . ,2nx}.
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Inductive Step: Prove that there exists a scalar tm+1 ≥ tm such that V̄i
(
x̄[i](t)

)
≤ γm+1 ∥ϕ∥c holds for all

t ≥ tm+1 and i ∈ {1,2, . . . ,2nx}. This proof can be divided into two cases.
Case 1: Prove that there exists a scalar t ′m+1 such that V̄i

(
x̄[i](t)

)
≤ γm+1 ∥ϕ∥c holds for all t ≥ t ′m+1 and

i ∈ {nx +1,nx +2, . . . ,2nx}. Statement (ii) of Assumption 1 implies that, for a given time tm, we can always
find a time t ′m+1 such that t ′m+1 −d

(
t ′m+1

)
≥ tm. According to (10), when t ≥ t ′m+1, we have

V̄i
(
x̄[i](t)

)
=

[Ad2x1(t −d(t))+Ad2x2(t −d(t))][i−nx]

(v2)[i−nx]

≤ γ
m ∥ϕ∥c

[Ad2 (v1 + v2)][i−nx]

(v2)[i−nx]

< γ
m+1 ∥ϕ∥c ,

for all i∈{nx+1, . . . ,2nx}. When t ≥ t ′m+1, V̄i(x̄[i](t))≤ γm+1 ∥ϕ∥c holds for all i∈ {nx +1,nx +2, . . . ,2nx}.
Case 2: Prove that there exists a scalar tm+1 ≥ t ′m+1 such that V̄i

(
x̄[i](t)

)
≤ γm+1 ∥ϕ∥c holds for all t ≥ tm+1

and i ∈ {1,2, . . . ,nx}. For a time t ≥ t ′m+1, we assume that V̄imax

(
x̄[imax](t)

)
= maxi∈{1,2,...,nx} V̄i

(
x̄[i](t)

)
,

where imax ∈ {1,2, . . . ,nx}. In what follows, we will first prove that there exists a time interval [τa,τb],
where τb > τa ≥ t ′m+1, such that

V̄imax

(
x̄[imax](t)

)
≤ γ

m+1 ∥ϕ∥c ,∀t ∈ [τa,τb] . (20)

When t = t ′m+1, the value of V̄imax

(
x̄[imax](t)

)
is discussed. If V̄imax

(
x̄[imax](t

′
m+1)

)
< γm+1 ∥ϕ∥c, the time

interval [τa,τb] satisfying condition (20) always exists due to the continuity of function V̄imax

(
x̄[imax](t)

)
. If

V̄imax

(
x̄[imax](t

′
m+1)

)
≥ γm+1 ∥ϕ∥c, we have

˙̄Vimax

(
x̄[imax](t)

)
=

{Hx1(t)+Ad1 [x1(t −d(t))+ x2(t −d(t))]}[imax]

v̄[imax]
.

According to Lemma 7, when t ≥ t ′m+1, we have

˙̄Vimax

(
x̄[imax](t)

)
≤

[Hx1(t)+ γm ∥ϕ∥c Ad1 (v1 + v2)][imax]

v̄[imax]

≤

[
V̄imax

(
x̄[imax](t)

)
Hv1 + γm ∥ϕ∥c Ad1 (v1 + v2)

]
[imax]

v̄[imax]
. (21)

Since Hv1 ≺ 0, V̄imax

(
x̄[imax](t)

)
Hv1 ⪯ γm+1 ∥ϕ∥c Hv1 holds, and the left-hand side of (21) satisfies

˙̄Vimax

(
x̄[imax](t)

)
≤ γ

m ∥ϕ∥c

[γHv1 +Ad1 (v1 + v2)][imax]

v̄[imax]
<−(1− γ)γm ∥ϕ∥c . (22)

Therefore, we can find a scalar τa such that V̄imax(x̄[imax](τa)) = γm+1 ∥ϕ∥c, and ˙̄Vimax

(
x̄[imax](τa)

)
< 0, where

τa satisfies

t ′m+1 ≤ τa ≤
γm ∥ϕ∥c (1− γ)

γm ∥ϕ∥c (1− γ)
+ t ′m+1 = t ′m+1 +1. (23)

Due to the continuity of function V̄imax

(
x̄[imax](t)

)
, we can find a time interval [τa,τb] such that inequality

(20) holds.
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Then, we will prove that if there exists a time interval [τa,τb] such that inequality (20) holds, inequality

V̄imax

(
x̄[imax](t)

)
≤ γ

m+1 ∥ϕ∥c

holds for all t ∈ [τa,∞). This statement is proved by contradiction. Assume that there exist an index
j ∈ {1,2, . . . ,nx} and a time τb ≥ τa such that

x̄[i](τb)

v̄[i]
≤ γ

m+1 ∥ϕ∥c , i = 1,2, . . . ,nx, ∀t ∈ [τa,τb] , (24)

x̄[ j](τb)

v̄[ j]
= γ

m+1 ∥ϕ∥c , (25)

d(x̄[ j](t))
dt

∣∣∣
t=τb

≥ 0. (26)

Then the derivative of x̄[ j](t) satisfies

˙̄x[ j](τb)≤ γ
m ∥ϕ∥c (γHv1 +Ad1v1 +Ad1v2)[ j] < 0. (27)

Inequality (27) contradicts with inequality (26). Therefore, inequality V̄imax

(
x̄[imax](t)

)
≤ γm+1 ∥ϕ∥c holds

for all t ∈ [τa,∞). Let tm+1 = τa, Case 2 is proved.
Therefore, for a scalar m ∈N, we can always find a scalar tm ∈R0,+ such that V̄i

(
x̄[i](t)

)
≤ γm ∥ϕ∥c holds

for all t ≥ tm and i ∈ {1,2, . . . ,2nx}. When m → ∞, V̄i
(
x̄[i](t)

)
→ 0, and Theorem 1 is proved. □

Remark 2. If strictly positive initial conditions x1(t) ≻ 0 and x2(t) ≻ 0 are given, the asymptotic stability
condition becomes a necessary and sufficient one. The proof can be found in Theorem 3 of [9].

Theorem 2. (µ-stability) Suppose that the pair (E,A) is regular and impulse-free, and there exist a Metzler

matrix H such that A1 = HM and a positive vector v̄ =
[
vT

1 vT
2

]T
∈ R2nx

+ such that[
H +Ad1 Ad1

Ad2 Ad2 − Inx

][
v1

v2

]
≺ 0. (28)

If there exists a function µ : R0,+ → R+ such that the following conditions hold:
(i) µ(t)> 0 for all t ≥ 0;
(ii) µ(t) is a nondecreasing function;
(iii) µ(t)→ ∞, when t → ∞;
(iv) for all i ∈ {1,2, . . . ,nx},

lim
t→∞

(
µ̇(t)
µ(t)

)
v1 +Hv1 + lim

t→∞
υ(t)Ad1 (v1 + v2)≺ 0, (29)

lim
t→∞

υ(t)Ad2 (v1 + v2)≺ v2, (30)

where υ(t) = µ(t)
µ(t−d(t)) . Then system (1) is µ-stable with any admissible initial condition φ(·)⪰ 0.
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Proof. Before analyzing the µ-stability of system (1), we first investigate system (2). A Lyapunov function

for x̄(t) =
[
xT

1 (t) xT
2 (t)

]T
is given as follows:

V̄ (x̄(t))≜ max
i∈{1,2,...,2nx}

(
x̄[i](t)

v̄[i]

)
, (31)

where v̄ =
[
vT

1 vT
2

]T
. According to Assumption 1, we can always find a scalar T > 0 such that T −d (T )≥

0. Conditions (29) and (30) indicate that we can always find a scalar T ′ > 0 such that

µ̇(t)
µ(t)

+
(Hv1)[i]

(v1)[i]
+

µ(t)
µ (t −d(t))

(
[Ad1 (v1 + v2)][i]

(v1)[i]

)
< 0,(

µ(t)
µ(t −d(t))

)
[Ad2 (v1 + v2)][i]

(v2)[i]
< 1,

hold for all i ∈ {1,2, . . . ,nx} and t > T ′. Since µ(t) is monotonically non-decreasing, and V̄ (x̄(t))≤ ∥ϕ∥c,
where ∥ϕ∥c = supt∈(−∞,0]

[
maxi∈{1,2,...,2nx}

(
ϕ[i](t)/v̄[i]

)]
, and ϕ(t) satisfies (11) for all t ∈ R0,+, we have

µ(t)V̄ (x̄(t))≤ M′,

for all t ∈ [0,Tmax], where Tmax = max{T,T ′} and M′ = µ (Tmax)∥ϕ∥c.
Then our goal is to prove that µ(t)V̄ (x̄(t))≤M′ for all t ∈ [Tmax,∞), when conditions (i)–(iv) of Theorem

a hold. By contradiction, we assume that there exist an index j ∈ {1,2, . . . ,2nx} and scalars t1 ≥ Tmax and
τ > 0 such that that

µ(t)
x̄[i](t)

v̄[i]
≤ M′, i = 1,2, . . . ,2nx, t ∈ [0, t1] , (32)

µ(t1)
x̄[ j](t1)

v̄[ j]
= M′, (33)

µ(t)
x̄[ j](t)

v̄[ j]
> M′, t ∈ (t1, t1 + τ) . (34)

Based on the value of index j, the proof can be divided into two cases.

Case 1: j ∈ {1,2, . . . ,nx}. Then, we have
x̄[ j](t)

v̄[ j]
=

(x1(t))[ j]
(v1)[ j]

, and inequality (34) implies d
(

µ(t)
x̄[ j](t)

v̄[ j]

)
dt

∣∣∣∣
t=t1

≥ 0.

According to system (2), the derivative of µ(t)
x̄[ j](t)

v̄[ j]
can be written as

d
(

µ(t)
x̄[ j](t)

v̄[ j]

)
dt

∣∣∣∣
t=t1

= µ̇(t1)
x̄[ j](t1)

v̄[ j]
+µ(t1)

{Hx1(t1)+Ad1 [x1(t1 −d(t1))+ x2(t1 −d(t1))]}[ j]
v̄[ j]

. (35)

Due to the nonnegativity of µ(t), µ̇(t) and matrix Ad1 and Lemma 7, we have d
(

µ(t)
x̄[ j](t)

v̄[ j]

)
dt

∣∣∣∣
t=t1

< 0, which

contradicts with the assumption.

Case 2: j ∈ {nx +1,nx +2, . . . ,2nx}. Then, we have
x̄[ j](t)

v̄[ j]
=

(x2(t))[ j−nx]
(v2)[ j−nx]

. According to system (2), the
left-hand side of equation (33) can be written as

µ(t1)
x̄[ j](t1)

v̄[ j]
= µ(t1)

[Ad2 (x1(t1 −d(t1)+ x2(t1 −d(t1)))][ j−nx]

v̄[ j]
.
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When Ad2 is nonnegative, one can find

µ(t1)
x̄[ j](t1)

v̄[ j]
≤ M′µ(t1)

µ (tt −d(t1))

[Ad2(v1 + v2)][ j−nx]

v̄[ j]
< M′.

The above inequality contradicts with assumption (33).
Therefore, for all time t ∈ R0,+, inequality µ(t)V̄ (x̄(t))≤ M′ holds. It implies that inequality

∥x̄(t)∥
∞
≤ M′

maxi∈{1,2,...,2nx} v̄[i]µ(t)

holds, for all t ∈ R0,+, and system (2) is µ-stable.
Then the µ-stability of system (1) is investigated. The Lyapunov function of x(t) is given as

V (x(t))≜ max
i∈{1,2,...,nx}

(
x[i](t)

v[i]

)
,

where v[i] = (v1)[i]+(v2)[i] for all i ∈ {1,2, . . . ,nx}. Since µ(t)V̄ (x̄(t))≤ M′, we have

µ(t)V (x(t)) = max
i∈{1,2,...,nx}

(
µ(t)x[i](t)

v[i]

)

= max
i∈{1,2,...,nx}

(
µ(t)(x1(t))[i]+µ(t)(x2(t))[i]

(v1)[i]+(v2)[i]

)
≤ M′. (36)

Let vmax = maxi∈{1,2,...,nx} v[i]. The ∞-norm of x(t) satisfies

∥x(t)∥
∞
≤ M′vmax

µ(t)

for all t ∈R0,+. When conditions (i)–(iv) hold, there always exists a constant M = M′vmax such that for any
compatible condition φ(t), vector x(t) satisfies ∥x(t)∥

∞
≤ M

µ(t) for all t ∈R0,+. This completes the proof. □

3.2 Special Cases

In this section, we will apply the obtained results on µ-stability to some special kinds of positive singular
systems with time-delay. Two special cases are taken into consideration: one is the system with bounded
time-varying delays, and the other is the system with time-varying delays subject to linear growth rate.
Case I: Bounded Time-varying Delays. When the time delay d(t) satisfies d(t)∈

(
0,d
]
, we choose µ(t)=

eλ t and analyze the λ -exponential stability of the system. According to Theorem 2, we have Corollary 1 to
characterize the λ -exponential stability of system (1).

Corollary 1. Suppose that the pair (E,A) is regular and impulse-free. For a given positive scalar λ > 0, if

there exist a Metzler matrix H satisfying A1 = HM and a vector v =
[
vT

1 vT
2

]T
such that[

H +λ Inx + eλdAd1 eλdAd1

eλdAd2 eλdAd2 − Inx

][
v1

v2

]
≺ 0, (37)

then system (1) with bounded time-delay d(t) such that 0 < d ≤ d is λ -exponentially stable with any admis-
sible initial condition φ(·)⪰ 0.
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Proof. According to inequality (37), the following two inequalities hold:

Hv1 +λv1 + eλdAd1(v1 + v2)≺ 0, (38)

eλdAd2(v1 + v2)≺ v2. (39)

Let µ(t) = eλ t , µ̇(t)
µ(t) = λ and 1 < eλd ≤ µ(t)

µ(t−d(t)) = eλd(t) ≤ eλd hold. When (38) and (39) hold, we have

Hv1 +
µ̇(t)
µ(t)

v1 +
µ(t)

µ(t −d(t))
Ad1(v1 + v2)⪯ Hv1 +

µ̇(t)
µ(t)

v1 + eλdAd1(v1 + v2)≺ 0 (40)

µ(t)
µ(t −d(t))

Ad2(v1 + v2)⪯ eλdAd2(v1 + v2)≺ v2 (41)

Based on Theorem 2, when inequalities (40) and (41) hold, we can always find a scalar M > 0 such that
∥x(t)∥

∞
≤ Me−λ t for all t ∈ R0,+, and the system (1) with bounded time-varying delays is λ -exponentially

stable. □

Case II: Time-varying Delays with Linear Growth Rate. When the time delay d(t) = αt + d, where
α ∈ [0,1) and d ∈ (0,∞), we choose µ(t) = (1+ at)b, where a,b > 0, and analyze the decay rates of the
system.

Corollary 2. Suppose that the pair (E,A) is regular and impulse-free. For a given positive scalar λ > 0, if

there exist a Metzler matrix H satisfying A1 = HM and a vector v =
[
vT

1 vT
2

]T
such that[

H +(1−α)−bAd1 (1−α)−bAd1

(1−α)−bAd2 (1−α)−bAd2 − Inx

][
v1

v2

]
≺ 0, (42)

then system (1) is µ-stable, where µ(t) = (1+ at)b and a ∈
(
0, 1

d

)
, with any admissible initial condition

φ(·)⪰ 0.

Proof. When a ∈
(
0, 1

d

)
, we have 1+ a(t − d(t)) = 1+ a((1−α)t −d) ≥ 1− ad > 0. In other words,

µ(t −d(t))> 0 for all t ∈ R0,+. According to inequality (42), the following two inequalities hold:

Hv1 +(1−α)−bAd1(v1 + v2)≺ 0, (43)

(1−α)−bAd2(v1 + v2)≺ v2. (44)

When µ(t) = (1+at)b,

lim
t→∞

µ̇(t)
µ(t)

= lim
t→∞

b
1+at

= 0

and

lim
t→∞

µ(t)
µ(t −d(t))

= lim
t→∞

(1+at)b

(1+a(t −αt −d))b = (1−α)−b

hold. Therefore, when (43) and (44) hold, we have

Hv1 + lim
t→∞

µ̇(t)
µ(t)

v1 + lim
t→∞

µ(t)
µ(t −d(t))

Ad1(v1 + v2)

= Hv1 +(1−α)−bAd1(v1 + v2)≺ 0, (45)

lim
t→∞

µ(t)
µ(t −d(t))

Ad2(v1 + v2)

= (1−α)−bAd2(v1 + v2)≺ v2. (46)
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Based on Theorem 2, system (1) is µ-stable with µ(t) = (1+at)b. □

4 Illustrative Example

Delay equations of neutral type often appear in the the practical model involving the noninstant connec-
tion [16], such as food-limited population model [19], partial element equivalent circuit (PEEC) [30]. A
neutral delay differential equation (NDDE) could be represented as follows:

ẏ(t) = Py(t)+Qy(t −d(t))+Lẏ(t −d(t)),

where y ∈Rny . By letting x(t) = [yT(t), ẏT(t)−yT(t)LT]T, the NDDE can be seen as the following singular
system:

Eẋ(t) = Ax(t)+Adx(t −d(t)), (47)

where

E =

[
Iny 0
0 0

]
, A =

[
P Iny

0 −Iny

]
, Ad =

[
0 0

Q+LP L

]
.

Let P = −0.7, Q = 0.5 and L = 0.2. One can find that, when β = 4, we have βE −A is nonsingular, and
matrices Ê and Â commute. Then matrices A1, Ad1 and Ad2 are given as follows:

A1 =

[
−0.7 0

0 0

]
, Ad1 =

[
0.36 0.2

0 0

]
, Ad2 =

[
0 0

0.36 0.2

]
.

Since matrices Ad1 and Ad2 are nonnegative matrices, and there exists a Metzler matrix

H =

[
−0.7 0.1427

0 −0.1427

]

such that A1 = HM. Therefore, system (47) is positive with admissible initial condition φ(t) = [1, 0.45]T

for all t ≤ 0. We can calculate the eigenvalues of Π is −0.9234, −0.1427, −1 and −0.2166, and the matrix
Π is Hurwitz. Therefore, by Theorem 1, system (47) is asymptotically stable. When the delay is chosen to
be d1(t) = 0.3t− ln(t+1)+2, which satisfies Assumption 1, the variation of ∥x(t)∥

∞
are given in Fig.1-(a).

It shows that, when t → ∞, the values of ∥x(t)∥
∞

converge to zero.
Then the decay rates of system (47) with different type of time delays are discussed. Delay d2(t) =

2− sin t is a bounded time-varying delay with an upper-bound d equals 3. According to (37) in Corollary
1, we can get the largest feasible value of λ = 0.081 by iteration. Fig.1-(b) characterized the variation of
ln∥x(t)∥

∞
. It shows that the curve of ln∥x(t)∥

∞
is always beneath the curve −0.081t +0.2, which indicates

that system (1) with bounded time-varying delays is λ -exponentially stable with λ = 0.081. Then, a time-
varying delay with linear growth rate d3(t) = 0.4t + 2 is given. According to (42) in Corollary 2, we can
choose α = 0.35 and b = 0.7. The curve of ln∥x(t)∥

∞
is drawn in Fig.1-(c). One can find the value of

∥x(t)∥
∞

is less than 2
(1+0.35t)0.7 for all t ≥ 0, which verifies Corollary 2.
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Figure 1: Trajectory of ∥x(t)∥
∞

with different time delays

5 Conclusion

In this paper, the asymptotic stability and decay rate characterization of a singular system with un-
bounded delays have been studied. By introducing an auxiliary system, the original singular system is
converted to a differential-difference system. It has been shown that the positivity and stability conditions
for these two systems are equivalent. Furthermore, the decay rate of the system is characterized by a non-
decreasing function µ(t). By choosing different µ(t), the decay rates of positive singular systems with
bounded time-varying delays and time-varying delays subject to linear growth have been characterized.
This work has generalized previous work on positive singular systems with bounded time-delays.
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