
P
os
te
d
on

9
J
an

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
67
32
95
36
.6
32
09
37
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

ReInstancer: An Automatic Refactoring Approach for Instancerof

Pattern Matching

Yang Zhang1 and AR TI CLE1

1Hebei University of Science and Technology

January 9, 2023

Abstract

The extit{instanceof} pattern matching is periodically previewed in the latest published JDK by removing the redundant

casting and optimizing its usage in different scenarios, which improves the code quality and readability. However, the existing

integrated development environment (IDE) does not provide sufficient support for refactoring of extit{instanceof} pattern

matching in all situations. This paper first identifies several cases that cannot be handled by existing IDEs, and then proposes

a novel approach called extit{ReInstancer} to refactor extit{instanceof} pattern matching automatically. extit{ReInstancer}
conducts visitor pattern analysis for extit{if} statement blocks with extit{instanceof}. For the extit{instanceof} expression,

a pattern variable is obtained after removing the redundant type casting by pattern analysis. For multi-branch statements,

extit{ReInstancer} employs class hierarchy analysis and control flow analysis to infer the relationship of instance type in each

branch and then optimize these branches. Finally, the multi-branch statements are converted into switch statements or switch

expressions. extit{ReInstancer} is evaluated with 20 real-world applications. The experimental results demonstrate a total of

3558 extit{instanceof} expressions and 228 multi-branch statements applying the refactoring, and each application takes an

average of 10.8s. extit{ReInstancer} not only reduces the redundant type casting but also improves the code quality.

1

OR I G I N A L A RT I C L E
Jou rna l Se c t i on

ReInstancer: An Automatic Refactoring Approachfor Instancerof Pattern Matching
Yang Zhang1,2* | Shuai Hong1
1School of Information Science and
Engineering, Hebei University of Science
and Technology, Shijiazhuang, Hebei
050018, China
2Hebei Technology Innovation Center of
Intelligent IoT, Shijiazhuang, Hebei 050018,
China
Correspondence
Yang Zhang, School of Information Science
and Engineering, Hebei University of
Science and Technology, Shijiazhuang,
Hebei 050018, China
Email: zhangyang@hebust.edu.cn
Present address
*School of Information Science and
Engineering, Hebei University of Science
and Technology, Shijiazhuang, Hebei
050018, China
Funding information
This work was supported in part by the
Scientific Research Foundation of Hebei
Educational Department under Grant
ZD2019093.

The instanceof pattern matching is periodically previewed
in the latest published JDK by removing the redundant cast-
ing and optimizing its usage in different scenarios, which
improves the code quality and readability. However, the ex-
isting integrated development environment (IDE) does not
provide sufficient support for refactoring of instanceof pat-
ternmatching in all situations. This paper first identifies sev-
eral cases that cannot be handled by existing IDEs, and then
proposes a novel approach called ReInstancer to refactor in-
stanceof pattern matching automatically. ReInstancer con-
ducts visitor pattern analysis for if statement blocks with
instanceof. For the instanceof expression, a pattern variable
is obtained after removing the redundant type casting by
pattern analysis. For multi-branch statements, ReInstancer
employs class hierarchy analysis and control flow analysis
to infer the relationship of instance type in each branch
and then optimize these branches. Finally, themulti-branch
statements are converted into switch statements or switch
expressions. ReInstancer is evaluated with 20 real-world
applications. The experimental results demonstrate a total
of 3558 instanceof expressions and 228multi-branch state-
ments applying the refactoring, and each application takes
an average of 10.8s. ReInstancer not only reduces the re-

Abbreviations: ReInstancer: An Automatic Refactoring Approach for Instancerof Pattern Matching

1

2 Yang Zhang and Shuai Hong

dundant type casting but also improves the code quality.
K E YWORD S
Automatic refactoring, Pattern matching, instanceof, Program
analysis

1 | INTRODUCTION
Pattern matching is the act of checking a given sequence of taken for the presence of constituents of some pattern. It
is generally accepted in a variety of programming languages (such as Haskell and ML), text-oriented languages (such
as SNOBOL4 and AWK), and object-oriented languages(such as Scala, Java, and C#). Pattern matching uses include
outputting the locations of a pattern within a token sequence, outputting some component of the matched pattern,
and substituting the matching pattern with some other character sequence. It could provide a convenient way to
deconstruct data structures and could enhance language consistency.

Gavin et al.[1] explored the possibility of supporting pattern matching for instanceof. The instanceof is an operator
provided by Java programming languages to determine the instance type of an object variable, and it is normally used
pair with type casting. However, the multi-branch statement with instanceof requires extensive use of type casting
to access object variables or methods, significantly affecting the program’s readability and leading to errors. With
the release of JDK 14, the first preview of instanceof pattern matching was proposed, which avoids redundant type
castings by extracting pattern variables. Extracting pattern variables in real-world applications can remove many
type castings. This feature is previewed again in JDK 15 and has become a standard feature since JDK16. Since
JDK17, another preview feature of converting multi-branch statements together with pattern matching into switch
statements or switch expressions is introduced to make the code of pattern matching clean and reliable.

Both academia and industry proposed various techniques for pattern matching and refactoring in the past few
years. In the academic community, Wang et al.[2] proposed an approach to program refactoring based on a right-
invertible language Rinv. They approach refactoring pattern matching smoothly and incrementally. Liu et al. [3]
proposed the JMatch language. The JMatch language extends Java with iterable abstract pattern matching, mak-
ing iteration abstractions convenient. Cantatore [4] designed an algorithm to compare a pattern matching string
containing wildcards. However, existing technique is a preliminary exploration of pattern matching to optimize pro-
gramming languages, and there lacks of prototype implementation. Zhang et al.[5] [6][7][8] [9] [10] presented several
concurrency-related refactoring tools to improve lock patterns and detect code smell patterns. In the software in-
dustry, refactoring plugins for pattern matching are integrated into the modern integrated development environment
(IDE) like Visual Studio and IntelliJ IDEA.

Although many works have been done on pattern matching, we are not aware of any existing research related to
instanceof pattern matching. The instanceof expression is frequently used in large software applications. According
to our statistics, more than 1100 instanceof expressions exist in the FOP application after searching more than 200
KSLOC. If such a large amount instanceof is refactored manually, it not only requires programmers to review the
pattern type and extract the pattern variable but also needs a well understanding of the relationship for multi-branch
statements. Existing IDEs enable developers to perform pattern matching refactoring by hand. The disadvantage
of these IDEs is that the user has to manually select the code that conforms to the pattern matching refactoring by
clicking on a pop-up window. When a developer is unfamiliar with some pattern, they would have to look up the
documentation, release notes, or Q&A forums to understand how to select the code that conforms to the pattern

Yang Zhang and Shuai Hong 3

matching refactoring. Furthermore, current IDEs do not provide sufficient refactoring support for pattern matching
in multi-branch statements, especially in checking the relationships between multiple patterns and refactoring for
switch expressions.

In this paper, we introduce an approach, named ReInstancer, that could remove redundant type castings by pat-
tern variables and convert multi-branch statements with instanceof into switch statements or expressions. Firstly,
ReInstancer gets the blocks of statements with instanceof and multi-branch statements by visitor pattern and per-
forms pattern matching analysis to extract pattern variables. Secondly, ReInstancer utilizes program analysis tech-
niques such as class hierarchy analysis and control flow analysis to perform pattern analysis. Finally, the code is
refactored according to the analysis results. ReInstancer is evaluated on 20 real-world applications, with a total of
3558 instanceof expressions applying to refactor and converting 228 multi-branch statements to switch statements
or switch expressions. We find that the average of 2.75% reduces the average cyclomatic complexity of the appli-
cations after refactoring, which demonstrates the effectiveness of ReInstancer in optimizing instanceof expressions
and multi-branch statements. We also demonstrate the utility of ReInstancer by developing a plugin for Eclipse that
provides assistance to developers in performing the refactoring.

In summary, the paper makes the following contributions.

• ReInstancer analyzes the redundant type casting in the statement block and extracts the required pattern variables.
• We design an analysis algorithm for getting special patterns of multi-branch statements.
• ReInstancer is evaluated on several Java benchmarks and applications, demonstrating the effectiveness of ReIn-

stancer.
• We empirically evaluated out ReInstancer to demonstrate its applicability, effectiveness, trustworthiness, and util-

ity and make our tool publicly available.

This paper extends and refines a previously presented conference paper[11]. Specifically, we extend our algorithm
to analyze special patterns formulti-branch statements. Furthermore, we increased the application used for evaluation
to verify the generality of ReInstancer. Finally, we made a large number of changes related to the presentation of the
paper and included more detailed descriptions of the algorithm, evaluation, and related work.

The rest of this paper is organized as follows. Section 2 presents three motivating examples. Section 3 presents
our refactoring framework and pattern analysis algorithm. Section 4 shows the experimental evaluation of the refac-
toring. The related works of literature are examined in Section 5, and conclusions are drawn in Section 6.

2 | MOTIVATION
This section presents three motivating examples to demonstrate the rationale. These examples illustrate a variety of
potential problems that are not well solved by prevalent IDEs in pattern matching refactoring.

Figure 1 presents a method error() to illustrate the problem of a multi-branch statement with a branch dominated
by a branch before it. This method determines the instance type of o using a multi-branch statement that checks
the type CharSequence followed by the type String. When we pass an object of type StringBuffer, the first branch will
always be executed since the StringBuffer class implements the CharSequnece interface, which introduces dead code
when we try to refactor in existing IDEs (e.g. IntelliJ IDEA and Eclipse), which do not report any error. When the
problems like this occur in programs, it may lead to a lack of functionality.

Figure 2 presents method convertToDefaultType() of class BinaryType selected form HSQLDB[12] benchmark. This

4 Yang Zhang and Shuai Hong

F IGURE 1 The dominated branch

method first determines whether a is null, and then determines the instance type of a and executes the statement
in the branch. Figure 2(a) presents the original method, which first determines the object a is null or not (lines2-4).
Then a multi-branch statement is used to determine the instance type of object a. When a is byte[], Float, or BigInteger
type, the statements in its branch are executed (lines 5-10). Otherwise, Object a is returned (lines 11-13). Figure 2 (b)
shows an improved source code, which merges a null test into a switch expression and inserts each branch after the
case tag. However, the pattern variables are connected to the arrow symbols similar to the lambda expression[13],
and the branches can be optimized similarly to make the code uniform and clean. When we conduct refactoring in
modern IDEs, such as IntelliJ IDEA and Eclipse, it does not seem that such refactoring is supported.

F IGURE 2 Converting multi-branch statement into switch expression and integrating null test

Figure 3 presents the method GroundType() of class GroundType selected from CoRed-block project [14]. Figure
3(a) presents a multi-branch statement to determine the instance type of the object type. When the type is of type
color, it is required to utilize the brighter() method invoked by the pattern variable co to determine whether it is
character r. The more deep level of judgment is guarded by the pattern variable co (lines 2-9) and leads to lower code
readability. Figure 3(b) demonstrates an improved result that merges two conditional statements into one by using a
switch expression. It is easy to infer the source code in Figure 3(b) is cleaner than that in Figure 3(a). However, current
IDEs do not provide sufficient support for such refactoring.

3 | REFACTORING FOR INSTANCEOF PATTERN MATCHING
In this section, we first present an overview of refactoring for ReInstancer. Then, we show the Refactor Prober, the
Pattern Matching Analysis, and the algorithms for different patterns. Finally, the refactoring algorithm is introduced.

Yang Zhang and Shuai Hong 5

F IGURE 3 Converting multi-branch statement into switch expression with guarded pattern variable

3.1 | Overview
This section presents ReInstancer, a refactoring approach that helps developers identify, localize, and optimize in-
stanceof and multi-branch statements. Figure 4 gives an overview of the approach. The approach consists of four
parts. First, ReInstancer takes the Java source program as input and parses the program to generate an abstract syntax
tree (AST) and traverses the AST by the visitor pattern analysis to locate all if statement blocks that take instanceof as
judgment conditions. Second, it checks the statement blocks for type castings matching instanceof by pattern match-
ing analysis and gets the pattern variables. Third, it gets the execution pattern of multi-branch statements with in-
stanceof by pattern analysis and eliminates the effect of particular patterns. Finally, based on these results, ReInstancer
removes redundant type casting in the program and converts the multi-branch statement into switch statements or
expressions.

F IGURE 4 Overview of the ReInstancer framework

6 Yang Zhang and Shuai Hong

3.2 | Refactor Prober
Refactor Prober is to locate the if statement block with instanceof as judgment condition and the casting within it.
Firstly, ReInstancer parses the source program to generate an AST. Secondly, it utilizes the visitor pattern analysis
to get all statement blocks with instanceof as judgment condition. If the statement block has multiple branches, it
is divided into multi-branch statements. Then the visitor pattern is utilized again to get the casting of the statement
block. Based on the instanceof patternmatching feature, the casting is divided into explicit and implicit casting. Explicit
casting is using the direct and specific pattern variable in the source code to request conversion or specify a member
from an overloaded class. In implicit casting, the data type is converted automatically.

We will now describe some basic definitions.
Definition 1. (INSTACNCES JUDGMENT) Given a class object is obj, exists a type T. If the instance type of obj is T, then
define obj:=T.

Definition 2. (EXPLICIT CASTING AND PATTERN VARIABLE) After the instance judgment, the pattern variable v is defined
using T for type casting. T v=(T)obj, calling it an explicit casting and using the ec representation, where v is the pattern
variable in the explicit casting. According to pattern matching for instanceof binds instance judgment to a pattern variable
v obj:=T v.

Definition 3. (THE INSTANCES JUDGMENT) After the instance judgment, type casting utilizing the form of (T)obj is called
implicit casting ic.

Definition 4. (MULTI-BRANCH STATEMENTS SET) In an program P, given a set MB, collect all multi-branch statements
with instanceof, MB={mb1, mb2...mbn }. For [mbi ∈ MB (1 ≤ i ≤ n) , mbi={bi1, bi2,...bi k }, denotes that mbi contains k
branches, and for [bi j ∈ mbi (1 ≤ i ≤ k) , bi j denotes branch j in mbi . Since the code in P is finite, MB is a finite set.

3.3 | Pattern Matching Analysis
Pattern matching analysis is a lightweight way of analyzing whether an instance judgment matches a type casting,
like expressions and statement blocks. For Java, the relevant components can be gotten on the AST. If obj:=T and an
explicit casting are present in the statement block, the pattern variable v is inserted after the type T, and the explicit
casting is removed to achieve judgment and type casting simply. However, during our collection of programs, we find
that when obj:=T and the type of obj are compatible with T, implicit castings are used to access member variables or
methods of obj. If the statement block has multiple implicit castings, redundant implicit castings can be extracted by
adaptive pattern variables.

Specifically, after parsing the AST to get if statement block with instanceof as judgment condition and the casting
within it, the casting can be divided into implicit casting and implicit casting according to the type of the AST node. If
the casting is explicit and the object obj and type T is consistent with the object and type on both sides of instanceof,
the pattern variable can be obtained at its AST node. When the statement block contains one or more implicit castings
consistentwith the object obj and type T of instanceof, an adaptive pattern variable can be created in the AST to extract
multiple redundant implicit castings.

3.3.1 | Pattern Analysis
Pattern analysis is to get the special patterns of multi-branch statements with instanceof by class hierarchy analysis
and control flow analysis. The class hierarchy analysis is used to analyze the branches that are dominated in the multi-

Yang Zhang and Shuai Hong 7

branch statement. The control flow analysis is used to analyze the branches, which can be optimized to judge the
depth and have a uniform execution pattern in the multi-branch statement.

3.3.2 | Domination pattern analysis
The domination pattern is the dominated branch in the multi-branch statement with instanceof. In the multi-branch
statement, each branch is used for instance judgment, and when the instance type judged by a branch is the parent
class or interface of its subsequent branch, the subsequent branch will be dominated, and the dominated branch will
not be executed.

To solve the above problem, the domination pattern analysis utilizes class hierarchy analysis to get the class
hierarchy relationship in the source program and build a class hierarchy tree. Then it checks whether the instance type
judged by the branch belongs to the class hierarchy tree and finally detects the dependency relationship between
instance types of multiple branches. ReInstancer utilizes the static analysis tool WALA[15] to get the relationship
between classes and classes or between interfaces and classes in the source program and uses the Java reflection
mechanism to get the class hierarchy in the Java class library. ReInstancer defined the class hierarchy tree.
Definition 5. (CLASS HIERARCHY TREE) Let CHT be a class hierarchy tree. The tree CHT has one root node. Each node
t ∈ CHT , has a parent p ∈ CHT (except for the root). Each node t ∈ CHT , has a list of children. Since all Java inherits
from the Object class, the Object class is the root node. Each node t represents the type of class or interface, and the list of
children of t store the type of subclasses or implementation classes of t.

We present the algorithm for the Domination Pattern Analysis in detail. Algorithm 1 gives a pseudocode descrip-
tion of the analysis. Given a multi-branch statement mb to be analyzed and the class hierarchy tree cht of the source
program, we initialize an empty set T to record the instanceof instance type t j . The branch instructions are obtained
by traversing the branch bi j of the multi-branch statementmb. For each branch instanceof instruction, utilize getType()
to get the instance type (lines 2-5). Finally, iterate through the subsequent branches of bi j and get the instance type
of the instanceof instruction that is added to the set T (lines 6-9). If t j is a type in the class hierarchy tree or the Java
class library, and a subclass type or implementation type of t j exists in T, the branch that is dominated is located (lines
13-14). If this is not the case, the analysis is aborted.

3.3.3 | Guard pattern analysis
The Guard pattern is the branch in the multi-branch statement with instanceof that has a deep judgment guarded by a
pattern variable. Guard pattern enables other judgments on objects together with pattern matching, which effectively
reduces judgment depth and internal call depth.

The Guard pattern analysis gets the control flow instructions in the branch through the intermediate representa-
tion (IR) of WALA[15] and optimizes the branch based on the control flow information in the instructions. We define
the precondition c to specify the types of instructions that need to be satisfied for the guard pattern analysis. For
instruction, we use cb to denote the conditional branch instruction, cc to denote the check cast instruction, is to de-
note the instanceof instruction, v to denote the pattern variable. The getUse() is used to get the value pointed to by
instruction. The getDef() is used to get the Def value of the instruction.
Definition 6. (PRECONDITION c) [bi j ∈ mbi (1 ≤ i ≤ k) , the set of branch instructions of bi j is S={i j 1, i j 2,...i j n }, c={bc,
i s ,...cc}. If S ∈ c, t=type(cc), getUse(is)=getDef(cb). c includes three types of instructions bc, is, and cc. The c is a subset of
S. The type of the instance judged by is is identical to the type of cc, and is is connected to the cb.

8 Yang Zhang and Shuai Hong

Algorithm 1: Domination pattern Analysis
input :MultiBranchBlock mb ,ClassHierarchyTree cht

output :True or False
1 T ←− ∅;
2 foreach bi j in mbi do
3 foreach I nst r uct i on i in bi j do
4 if i is a instanceof statement then
5 t j ← GetT ype (i) ;
6 foreach bi s in mb do
7 foreach i ′ in i nst r uct i ons of bi s do
8 if i ′ is instanceof statement then
9 T ←− GetT ype (i ′) ;

10 end
11 end
12 end
13 if t j ∈ cht and subt ype of t j ∈ T then
14 return true;
15 end
16 end
17 end
18 end
19 return false;

Algorithm 2 presents a pseudocode of the Guard pattern analysis. Given a multi-branch statement mbi to be
analyzed, ReInstancer first traverses each branch bi j of mbi and then gets the set of branch instructions S of bi j (line
1). When precondition c holds, the instance type is identical to the casting type. If the subsequent instruction i is in
a conditional branch, the instruction type of i is a invoke method or access field. ReInstancer uses the variable ni to
record the value invoked or accessed in the instruction cc and the variable nv to record the pattern variable v in the
instruction i. When the value of ni is equal to the value of nv (lines 3-7), then the deep judgment within the branch is
guarded by v.

3.3.4 | Switch pattern analysis
The switch pattern is a multi-branch statement with instanceof that has a uniform code pattern in each branch, and the
last branch is an else block. For example, each branch execution pattern is a method invocation, a variable assignment,
or a return statement to get a return value.

The switch pattern analysis first utilizes AST to get the type of statements within the branch and then utilizes
control flow analysis to get the dependency of instructions in the branch to obtain the inter-branch execution pattern.
We define the switch pattern precondition sc to specify the code structure that matches the switch expression.
Definition 7. (PRECONDITION sc) For [bi j ∈ mbi (1 ≤ i ≤ k) , bi j ⊆ ec ∥ ic, bi k ≡ else block. The sc defines each
branch of the multi-branch statement containing the explicit casting ec or an implicit casting ic, and the last branch is an
else statement block to ensure the integrity of the multi-branch statement.

Algorithm 3 gives a pseudocode description of the switch pattern analysis. Given a multi-branch statement mb
to be analyzed. ReInstancer first initializes two empty sets bfi and bsi for recording instructions (lines 1-2) and then

Yang Zhang and Shuai Hong 9

Algorithm 2: Guard pattern Analysis
input :MultiBranchBlock mb

output :True or False
1 foreach bi j in mbi do
2 foreach I nst r uct i on i in bi j do
3 if c and i in conditionBranch and i is method invoke or Access Field then
4 n i ←− getRef (cc) ;
5 nv ←− getDef (i) ;
6 if n i ==nv then
7 return true;
8 end
9 end

10 end
11 end
12 return false;

gets the branch instruction set S for bi j (lines 3-4). If the precondition sc holds, the last and penultimate instructions
of the branch are added to the sets bfi and bsi (lines 5-7). After that, the types of instructions in bfi and bsi need to be
defined for analyzing the execution patterns.
Definition 8. (RI PATTERN)Multi-branch statement [bi j ∈ mbi (1 ≤ i ≤ k) , the set of branch instructions S={i j 1, i j 2,...i j n },
the set of collection instructions is RI={i1n , i2n ,...i j n }.[i j n (1 ≤ i ≤ k) , the instruction type is return instruction.

Definition 9. (GI PATTERN)Multi-branch statement [bi j ∈ mbi (1 ≤ i ≤ k) , the set of branch instructions S={i j 1, i j 2,...i j n },
the set of collection instructions is GI={i1n , i2n ,...i j n }.[i j n (1 ≤ i ≤ k) , the instruction type is goto instruction.

Definition 10. (II PATTERN)Multi-branch statement [bi j ∈ mbi (1 ≤ i ≤ k) , the set of branch instructions S={i j 1,
i j 2,...i j (n−1) i j n }, the set of collection instructions is GI={i1(n−1) , i2(n−1) ,...i j (n−1) }.[i j (n−1) (1 ≤ i ≤ k) , the instruction
type is invoke instruction.

The RI, GI, and II patterns are important guidelines for verifying that branches have uniform execution patterns
between branches. When bfi is GI and bsi is II. ReInstancer first acquires the member and type dependency in the
first element of bsi using the variables m and t (lines 12-14). Secondly, getMemeberReference() and getTypeReference()
are used to get the member dependency and type dependency in bfi. If the dependency in bfi is identical to m and t,
then a uniform execution pattern exists (lines 15-16). Finally, if bfi is RI, it can be determined that a uniform execution
pattern exists because the type of its method only limits the type of the return value (lines 17-19).

3.4 | Refactoring Algorithm
This section introduces the refactoring algorithm of ReInstancer. Algorithm 4 gives a pseudocode description main
procedure of the refactoring.

ReInstancer first gives the setMB of multi-branch statements with instanceof and the set InSet of instanceof state-
ments based on the result of the Refactor Prober. Redundant castings are removed based on patternmatching analysis
(lines 2-3). For explicit castings, ReInstancer can take the pattern variable from the AST node of the cast statement
and bind it to T after it (lines 4-6). A redundant castings statement would be removed. Secondly, ReInstancer traverses
each multi-branch statementmbi and gets the pattern analysis result by patternAnalysis() (line 9). For implicit castings,

10 Yang Zhang and Shuai Hong

Algorithm 3: Switch pattern Analysis
input :MultiBranchBlock mb

output :True or False
1 bf i ←− ∅;
2 bsi ←− ∅;
3 foreach bi j in mb do
4 foreach i in i nst r uct i ons S of bi j do
5 if sc then
6 bf i ← in ;
7 bsi ← in−1 ;
8 end
9 if bf i is GI and bsi is I I then
10 m ←− getM ember Ref er ence (bsi [0]) ;
11 t ←− getT ypeRef er ence (bsi [0]) ;
12 if getM ember Ref er ence (bsi) == m and getT ypeRef er ence (bsi) == t then
13 return true;
14 end
15 else if bf i is RI then
16 return true;
17 else
18 return false;
19 end
20 end
21 end

ReInstancer can detect all implicit castings associated with pattern types on the AST and extract the implicit castings to
create adaptive pattern variables. Finally, ifmbi is the domination pattern, information about the dominated branch is
given to avoid dead code (lines 10-11). Ifmbi is the Guard pattern, a new switch statement is created on the AST node
to insert the pattern variable into the case, connect the logical symbols to the branch in the chain merge sequence[13]
and replacembi with the new switch statement on the AST node (lines 13-16). Ifmbi is a switch pattern, a new switch
expression is created to insert the branch into the case and replace mbi on the AST node (lines 18-20).

4 | EVALUATION
This section first introduces the experimental setup and benchmarks, and then presents the research questions and
illustrates the experimental results. For the reproducibility of the evaluation, the prototype ReInstancer and all bench-
marks are available at https://uzhangyang.github.io/research/reinstancer.html

4.1 | Experimental setup and benchmarks
All experiments are conducted on a workstation with 2.4GHZ Intel Core i5 CPU and 8GB main memory. The machine
runs Windows 10 and has JDK 17.0.1, Eclipse 4.1.6 ,and WALA 1.5.6 installed.

To evaluate the usefulness of ReInstancer, we run it on 20 projects including the HSQLDB[12], Xalan[16] and
FOP[17] benchmarks and seventeen real-world applications: Abdra[18], Batik[19], Cassandra[20], Clerezza[21], Deltaspike[22],
Ganttproject[23], Hama[24], JBoss[25], Jcommon[26], Jenkins[27], Jhotdraw[28], Johnzon[29], Jsecurity[30], JGroup[31],

Yang Zhang and Shuai Hong 11

Algorithm 4: Refactoring algorithm
input :MB, InstanceofSet InSet
output :Result of the MB refactoring

1 foreach i ns in InSet do
2 if i ns includes ec then
3 get v and remove ec;
4 else if i ns include ic then
5 extract i c and create v ;
6 end
7 end
8 foreach mbi in MB do
9 Resul t ← P at t er nAnal y si s (mbi) ;

10 if Resul t is a Domination pattern then
11 Create information for the dominated branch;
12 else if Resul t is a Guard pattern then
13 Create swi t ch ;
14 Insert v into the case;
15 Merge branches to insert swi t ch;
16 Replace mbi with swi t ch;
17 else if Resul t is a Switch pattern then
18 Create swi t ch expression;
19 Insert v and branch into the case;
20 Replace mbi with swi t ch expression;
21 end

Rhino[32], Oozie[33] and Xerce[34]. HSQLDB is a relational database management system written in Java. Xalan is
the open source software library from the Apache project that can transform XML documents into HTML, text, or
other XML document types using the XSLT standard stylesheet. FOP is also part of the Apache project, reads a format-
ting object tree, and renders the resulting pages to a specific output. JGroup is a group communication tool. Jenkins
is an open source automation server. Rhino is a JavaScript engine written in Java and open source. The remaining 13
projects are randomly selected open source applications with high visibility in Github.

4.2 | Research questions
All evaluate the effectiveness of ReInstancer by answering the following questions.

RQ1 How applicable is ReInstancer? To be more specific, how many instanceof can be refactored? How many multi-
branch statements are converted into switch statements or switch expressions?

RQ2 How effective is ReInstancer in removing redundant castings by pattern matching?
RQ3 How useful is ReInstancer in improving code quality?
RQ4 How many efforts are saved when using ReInstancer?
RQ5 Are these refactoring correct?

We answer RQ1 by counting how many instanceof pattern matching and multi-branch statements are refactored
by ReInstancer. We also report the number of instanceof that failed to be refactored. RQ2 is answered by how many

12 Yang Zhang and Shuai Hong

redundant castings are removed. To measure the code quality improved by refactoring, RQ3 is evaluated by reporting
the average cyclomatic complexity before and after refactoring. We also report the number of modified SLOC. RQ4
is answered by the time spent refactoring each project. RQ5 is answered by inspecting these changes and reporting
the possible inference. These numbers approximately estimate the programmer effort that is saved when refactoring
with ReInstancer.

4.3 | Results
This section presents the experimental results.

4.3.1 | Result for RQ1
For each original project, Table 1 shows the number of instanceof and multi-branch statements as well as redundant
castings (columns 2-3). For each refactored project, we demonstrate how many instanceof and multi-branch state-
ments. We also report how many instanceof are not qualified for refactoring. Column 4 in Table 1 shows the number
of instanceof that can be refactored, while column 5 shows the number of instanceof there are not qualified for refac-
toring. The number of multi-branch statements converted to switch statements and switch expressions is shown in
columns 6 and 7. Columns 8 and 9 show the number of switch expressions in the return form and the number of
switch expressions in the invoking form.

A total of 3558 instanceof is refactored in 20 projects. For FOP, the original project contains a maximum of 1186
instanceof and 564 instanceof to be refactored, while the Ganttproject and JSecurity projects have a lower number
of instanceof pattern matching refactoring of 15 and 40. We manually checked these 4203 instanceof that are not
qualified for refactoring. We find: (1) instanceof is located in the assert statement; (2) instanceof is only used to judge
instances, and no pattern variables exist that can be extracted. The data show that 228 multi-branch statements
were refactored in 20 projects, in which 166 were converted to switch statements and 62 were converted to switch
expressions. The number of multi-branch statements refactored in Abdera, Fop, HSQLDB, Jenkins, JGroup, Rhino,
and Xalan projects is higher at 17, 37, 34, 16, 13, and 36. The programs Ganttproject, Deltaspike, Hama, Jcommon,
and Jsecurity were refactored with a lower number of multi-branch statements. For these 62 switch expressions, the
number of switch expressions in the form of return is 41, and the number of switch expressions in the form of invoke
is 21. We note that the number of instanceof and multi-branch statements are higher in projects of the database,
server, and software library types, while they are lower in other projects.

The experimental results show that some instanceof cannot extract pattern variables for refactoring due to the
limitation of casting. From the perspective of the number of instanceof and multi-branch statements refactored, ReIn-
stancer has a high level of applicability.

4.3.2 | Result for RQ2
To evaluate the effectiveness of ReInstancer in removing redundant castings by pattern matching, column 2 in Table
2 shows the redundant castings in the source project. The number of show explicit castings and implicit castings
removed after refactoring is shown in columns 3 and 4.

A total of 3673 redundant castings in the 20 projects. The refactoring removed 1319 explicit castings and 2354
implicit castings. For the Fop project, refactoring removed 601 redundant castings, while the Ganttproject project
removed 15 redundant castings by refactoring. The number of castings removed for the remaining projects ranged

Yang Zhang and Shuai Hong 13

TABLE 1 Refactoring results of ReInstancer
Before Refactoring After Refactoring

Project #instanceof #MBI #RI #NRI #RSS #RSE #SER #SEI
Abdera 322 17 140 182 14 3 0 3
Batik 507 7 210 297 4 3 2 1

Cassandra 889 9 335 554 8 1 1 0
Clerezza 143 6 73 70 4 2 2 0
Deltaspike 169 3 83 86 2 1 1 0

FOP 1186 37 564 622 28 9 7 2
Ganttproject 30 1 15 15 1 0 0 0

Hama 73 2 26 47 1 1 1 0
HSQLDB 479 34 249 230 29 5 2 3
JBoss 205 8 115 90 0 8 3 5

Jcommon 130 3 110 20 3 0 0 0
Jenkins 635 16 279 356 11 5 3 2
Jhotdraw 277 10 139 138 9 1 0 1
Johnzon 118 2 66 52 2 0 0 0
Jsecurity 109 3 69 40 1 2 2 0
JGroup 346 11 129 217 10 1 1 0
Oozie 125 4 37 88 4 0 0 0
Rhino 719 13 339 380 9 4 3 1
Xalan 908 36 385 523 21 15 12 3
Xerce 391 6 195 196 5 1 1 0
Total 7761 228 3558 4203 166 62 41 21

from 27 to 395. We find that the number of implicit castings removed after refactoring is much larger than the
number of explicit castings. For this situation, we check the FOP project, which has multiple implicit castings in some
if statement block with instanceof as judgment condition and can remove the implicit castings by extracting a pattern
variable. As a result, we believe that ReInstancer can effectively remove redundant castings and improve the readability
of the code.

4.3.3 | Result for RQ3
To answer RQ3, we obtained the SLOC and the average cyclomatic complexity (ACC) from the source code of each
project. SLOCCount [35] is employed to obtain SLOC that is used to estimate the developer effort when refactoring
with ReInstancer. The value of ACC is generated by SourceMonitor [36], which determines the relative complexity of
code modules. We also report the number of modified SLOC and the rate of reduction in ACC. The reduction of SLOC
indicates the simplified code by refactoring, while ACC is used to measure the code complexity. The bigger the value
of ACC is, the worse the code quality is.

The experimental results are summarized in Table 3, which presents the number of SLOC of (column 2) and ACC
(column 5) in the original projects. Columns 3 and 6 show the number of SLOC and ACC after refactoring, while
columns 4 and 7 show the number of reduced SLOC and the ratio of reduced ACC to #BRA. The data shows that our
ReInstancer refactoring produces more succinct code. For SLOC, ReInstancer reduced the SLOC in the FOP project by
up to 833. The other projects reduced SLOC between 46 and 819. Project Johnzon has the lowest number of SLOC
reductions of all projects, possibly because of the low number of refactored instanceof and multi-branch statements.

14 Yang Zhang and Shuai Hong

TABLE 2 Redundant casting removed by ReInstancer
Before Refactoring After Refactoring

Project #RC #REC #RIC
Abdera 143 52 91
Batik 210 60 150

Cassandra 338 170 168
Clerezza 73 15 58
Deltaspike 86 33 53

FOP 601 237 364
Ganttproject 15 6 9

Hama 27 11 16
HSQLDB 271 56 215
JBoss 118 41 77

Jcommon 111 90 21
Jenkins 283 90 194
Jhotdraw 146 60 86
Johnzon 66 10 56
Jsecurity 69 16 53
JGroup 137 32 105
Oozie 38 11 27
Rhino 345 147 198
Xalan 395 125 270
Xerce 200 57 143
Total 3673 1319 2354

The average number of SLOC reductions for each project is 224. For ACC, the ReInstancer reduced ACC in the JBoss
project by 8.40%, while the Ganttproject and Johnzon projects reduced ACC by the least, possibly because there
were fewer refactored multi-branch statements. We examined the JBoss project and found that many multi-branch
statements were refactored to switch expressions, and the ACC of the statement was significantly reduced after the
refactoring. The average reduction in ACC per project was 2.75%.

We conclude from these results that ReInstancer is effective in improving code quality. When it is applied to
real-world projects, the generalization of ReInstancer is good.

4.3.4 | Result for RQ4
Measuring the developer effort in terms of a precise evaluation is truly difficult. Ideally, we would have observed
developers while they refactor and determine how much time is saved with ReInstancer. However, the refactoring
time may vary depending on the differences in familiarity with instanceof pattern matching for different developers.

To approximate estimates of the amount of work saved by ReInstancer. We count the number of instanceof and
multi-branch statements as well as the number of code changes. These figures represent that a developer would
have spent time searching for instanceof and multi-branch statements to transform the code manually. In total, all
projects have 7761 instanceof and 228 multi-branch statements that are spread across 20 projects, with an average
of 117KSLOC per project. It is labor-intensive to search in such a large Java project to find a small amount of instanceof
and multi-branch statements and to refactor them. The "#Time" columns in Table 3 report the refactoring time for
ReInstancer. The automated ReInstancer refactoring takes an average of just 10.81 seconds per project. For Cassan-
dra, the refactoring time is 66.5s because its projects are larger and the SLOC is the largest. For Jsecurity, Jcommon,
Deltaspike, Rhino, Jhotdraw, and Jhonzon, the refactoring time varies from 1.8s to 5.8s for smaller projects. The refac-
toring time of ReInstancer is mainly used on static analysis, and the refactoring costs more time for larger projects. In

Yang Zhang and Shuai Hong 15

TABLE 3 Comparison before and after refactoring
SLOC ACC #Time

Project #BRS #ARS #RSLOC #BRA #ARA %RACC/#BRA (s)
Abdera 60273 60002 271 3.9518 3.7625 4.79% 9.6
Batik 191954 191781 173 3.4752 3.3763 2.78% 10.9

Cassandra 462319 462201 128 1.8794 1.8767 0.14% 66.5
Clerezza 15090 14963 127 3.1680 3.1667 0.04% 4.7
Deltaspike 84499 84420 79 2.7800 2.7212 2.11% 3.3

FOP 208968 208135 833 2.7009 2.5983 3.80% 18.2
Ganttproject 21219 21160 59 3.1075 3.1073 0.00% 2.1

Hama 46102 46041 61 2.6244 2.6239 0.02% 3.8
HSQLDB 175568 175081 487 4.0273 3.9729 1.35% 12.2
JBoss 82938 80607 331 3.8305 3.5088 8.40% 8.1

Jcommon 26614 26500 114 2.4292 2.4233 0.24% 2.2
Jenkins 164620 164534 86 2.4962 2.4478 1.93% 14.6
Jhotdraw 80439 80285 154 3.2522 3.2268 0.78% 4.7
Johnzon 48247 48201 46 2.4671 2.4670 0.00% 3.9
Jsecurity 16883 16808 75 2.2042 2.0879 5.28% 1.8
JGroup 122600 122485 115 2.6262 2.5503 2.89% 8.1
Oozie 192468 192404 64 2.8518 2.7600 3.21% 9.2
Rhino 63533 63236 297 4.2688 4.0816 4.34% 5.8
Xalan 141464 140645 819 5.1123 4.7730 6.63% 16.2
Xerce 139653 139483 170 3.9455 3.9186 0.68% 10.3
AVG 117273 117049 224 3.1582 3.0725 2.75% 10.81

combinationwith the data in Table 3, we find that developer needs to change 224 lines on average, and the refactoring
is spread across files.

By contrast, our tool is fully automatic. Even for the largest project with over 400KSLOC, ReInstancer can be
applied to the whole project in one minute of refactoring. These results show that ReInstancer can save a lot of
developer effort.

4.3.5 | Result for RQ5
To answer RQ5, we check whether the code after refactoring by ReInstancer still has the same behaviors as the original
code by running the test cases and manually checking. Specifically, we run the existing developer testing of all 20
projects, and the percentage of passed test cases is 100%. In addition, wemanually check all refactoring results. In the
process, we manually check 1) if the refactoring changes the behavior of the original code or not; 2)if the refactoring
removes the redundant castings; 3) if the usage of a switch statement or switch expression is correct or not; 4)if a
switch statement or switch expression is inserted to the right position.

During the inspection, we find that each instanceof and multi-branch statement with instanceof are based on
the result of the analysis(see Section 3), and almost all of them are accurate. However, we also find that a multi-
branch statement is refactored to switch statements with missing default branches. For example, method translate()
of class Stylesheet in the Xalan project contains a multi-branch statement to determine whether the instance type of
element is Tamplate,AttributeSet orOutput, but the final else statement block contains three comments, andReInstancer
refactored it optimally by omitting the last branch. We should note that this case is related to the code structure of

16 Yang Zhang and Shuai Hong

the multi-branch statement and is not related to the correctness of the program and validity of ReInstancer.
We do not find any refactorings that change multi-branch statement semantics. More precisely, all multi-branch

statements are inserted into the position where they should be. We find that ReInstancer did not miss any refactoring.
Furthermore, we also inspect the switch statement and switch expression structures and find that all of them are used
correctly. These results show that the ReInstancer refactoring is correct.

5 | RELATED WORKS
Many researchers have designed refactoring tools to modernize language structures using static analysis techniques.
In this section, we investigate refactoring tools for modernizing language structures.

After the JDK1.5 proposal, the standard java.util.concurrent library provides a number of data structures and
locking constructs. Many difficulties arise when manually transforming a program to use the locking constructs of
java.util.concurrent, motivating better tool support. The CONCURRENCER tool of Dig et al.[37] refactors code to make
use of ConcurrentHashMaps and AtomicIntegers, also provided by the j.u.c library, as well as the refactoring tool[38]
Relooper, which refactors loops to execute in parallel via the proposed ParallelArray class. Wloka et al.[39] presented
a mostly-automated refactoring to transform sequential programs to be reentrant, enabling safe parallel execution.
Brown et al.[40] proposed ParaPhrase, a refactoring tool for generating parallel programs, which increases the pro-
grammability of parallel programs. McCloskey et al.[41] presented Autolocker to automatically convert the pessimistic
atomic section into lock-based code. Autolocker retained many of the advantages of optimistic atomic sections and
reduced the most burdens of lock-based programming. Schäfer et al.[42] presented a refactoring algorithm to convert
the built-in monitor locks into ReentrantLocks and ReentrantRead-WriteLocks. JDK1.8 introduce several functional fea-
tures, such as lambda expressions, functional operations, and Stampedlock. Gyori et al. [13] presented Lambdaficator,
which refactors existing Java code to use lambda expressions and function operations to enable parallelism. Zhang et
al.[5] proposed an automated refactoring tool CLOCK to convert a synchronized lock into a StampedLock. CLOCK could
not only transform read and write locks but also refactor downgrading/upgrading and optimistic read locks. These
studies have implemented refactoring tools and automated the tools to modernize the programming language.

The Java language starts to support pattern matching after the release of JDK14. Zhang et al . [43] presented
a prototype called ReSwitcher that removes the fall-through semantics from switch statements and converts them
into switch expressions. ReSwitcher provided a preliminary demonstration of the effectiveness of refactoring switch
expressions. However, that work merely aims to solve the problem of fall-through semantics. Inspired by this work,
our work presented an algorithm to convert multi-branch statements with instanceof into switch statements or switch
expressions. Some commercial refactoring tools for pattern matching are integrated into modern IDE, like Visual
Studio and IntelliJ IDEA. These tools can either recommend refactoring opportunities for pattern matching or extract
pattern variables automatically. ReInstancer enables Java programmers to benefit from all the advantages reported in
these studies.

6 | CONCLUSION
This paper proposes a novel approach called ReInstancer to improve code simplicity and quality by pattern matching.
We first illustrate several motivating examples that improve the design and then present the analysis and algorithms of
refactoring that enable Java developers to simplify instanceof expression and multi-branch statements with instanceof
pattern matching. ReInstancer is implemented as the Eclipse plugin and evaluated with 20 real-world applications.

Yang Zhang and Shuai Hong 17

The evaluation shows that a total of 3558 instanceof expressions and 228 multi-branch statements applied the refac-
toring, and each application takes an average of 10.8s. Experimental results provide confidence that the proposed
algorithms and implementation can help the developer with refactoring and developer effort. In the future, we will ex-
tend this work by improving our approach to match more patterns and using finite automata to optimize multi-branch
statements.

Declarations
The authors declare that they have no conflict of interest.

Acknowledgements
The authors would like to thank the insightful comments and suggestions of those anonymous reviewers, which have
improved the presentation.

references
[1] Bierman G, JEP 420: Pattern Matching for switch (Second Preview); 2021. https://openjdk.java.net/jeps/420.
[2] Wang M, Gibbons J, Matsuda K, Hu Z. Refactoring pattern matching. Science of Computer Programming

2013;78(11):2216–2242.
[3] Liu J, Myers AC. JMatch: Iterable abstract pattern matching for Java. In: International Symposium on Practical Aspects

of Declarative Languages Springer; 2003. p. 110–127.
[4] Cantatore A, Wildcard matching algorithms; 2003. https://xoomer.virgilio.it/acantato/dev/wildcard/wildmatch.

html.
[5] Zhang Y, Dong S, Zhang X, Liu H, Zhang D. Automated refactoring for stampedlock. IEEE Access 2019;7:104900–

104911.
[6] Zhang Y, Shao S, Zhai J, Ma S. FineLock: automatically refactoring coarse-grained locks into fine-grained locks. In:

Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis; 2020. p. 565–568.
[7] Zhang Y. Refactoring-based learning for fine-grained lock in concurrent programming course. Computer Applications

in Engineering Education 2022;30(2):505–516.
[8] Zhang Y, Dong C. MARS: Detecting brain class/method code smell based on metric–attention mechanism and residual

network. Journal of Software: Evolution and Process 2021;p. e2403.
[9] Zhang Y, Yan J, Qiao L, Gao H. A novel approach of data race detection based on CNN-BiLSTM hybrid neural network.

Neural Computing and Applications 2022;p. 1–15.
[10] Zhang Y, Ge C, Hong S, Tian R, Dong C, Liu J. DeleSmell: Code smell detection based on deep learning and latent

semantic analysis. Knowledge-Based Systems 2022;255:109737.
[11] Hong S, Zhang Y, Li C, Bai Y. ReInstancer: automatically refactoring for instanceof pattern matching. In: Proceedings of

the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings; 2022. p. 183–187.
[12] Group HS, HSQLDB - 100% Java Database; 2021. http://hsqldb.org/.

18 Yang Zhang and Shuai Hong

[13] Gyori A, Franklin L, Dig D, Lahoda J. Crossing the gap from imperative to functional programming through refactoring.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering; 2013. p. 543–553.

[14] CoRed-Block, CoRed-Block; 2022. https://github.com/MurraryZhao/CoRed-Block.
[15] IBM, The t. j. watson libraries for analysis; 2021. http://wala.sourceforge.net/wiki/index.php/Main_Pag.
[16] Apache, Xalan; 2014. http://xalan.apache.org/xalan-j/.
[17] Apache, Fop; 2021. https://xmlgraphics.apache.org/fop/.
[18] Apache, Apache Abdera; 2012. http://abdera.apache.org/.
[19] Apache, The Apache™ Batik Project; 2022. https://xmlgraphics.apache.org/batik/.
[20] Apache, Cassandra; 2021. https://cassandra.apache.org/.
[21] Apache, Welcome to Apache Clerezza; 2022. https://clerezza.apache.org/.
[22] Apache, Apache DeltaSpike; 2020. https://deltaspike.apache.org/.
[23] Thomas A, Ganttproject; 2021. https://www.ganttproject.biz/.
[24] Apache, Apache Hama; 2016. https://hama.apache.org/.
[25] Apache, JBoss-Javassist; 2019. http://www.javassist.org/.
[26] Gilbert D, THE JCOMMON CLASS LIBRARY; 2017. https://github.com/jfree/jcommon.
[27] Kawaguchi K, Jenkins; 2019. https://jenkins.io/.
[28] LGPL, JHotDraw; 2019. https://sourceforge.net/projects/jhotdraw/.
[29] Apache, Apache Johnzon; 2022. https://johnzon.apache.org/.
[30] Apache, Jsecurity; 2009. https://github.com/apache/jsecurity.
[31] Ban B, JGroups; 2021. http://www.jgroups.org/.
[32] Boyd N, Rhino; 2022. https://github.com/mozilla/rhino.
[33] Apache, Apache Oozie Workflow Scheduler for Hadoop; 2021. https://oozie.apache.org/.
[34] Apache, The Apache Xerces™ Project - xerces.apache.org; 2020. http://xerces.apache.org/.
[35] GPL, SLOCCount; 2009. http://www.dwheeler.com/sloccount/.
[36] Software C, SourceMonitor; 2021. https://www.campwoodsw.com/sourcemonitor.html.
[37] Dig D, Marrero J, Ernst MD. Refactoring sequential Java code for concurrency via concurrent libraries. In: 2009 IEEE

31st International Conference on Software Engineering IEEE; 2009. p. 397–407.
[38] Dig D, Tarce M, Radoi C, Minea M, Johnson R. Relooper: refactoring for loop parallelism in Java. In: Proceedings of

the 24th ACM SIGPLAN conference companion on Object oriented programming systems languages and applications;
2009. p. 793–794.

[39] Wloka J, Sridharan M, Tip F. Refactoring for reentrancy. In: Proceedings of the 7th joint meeting of the European
software engineering conference and the ACMSIGSOFT symposium on the Foundations of Software Engineering; 2009.
p. 173–182.

Yang Zhang and Shuai Hong 19

[40] Brown C, Hammond K, Danelutto M, Kilpatrick P, Schöner H, Breddin T. Paraphrasing: Generating parallel programs
using refactoring. In: International Symposium on Formal Methods for Components and Objects Springer; 2011. p.
237–256.

[41] McCloskey B, Zhou F, Gay D, Brewer E. Autolocker: synchronization inference for atomic sections. In: Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages; 2006. p. 346–358.

[42] Schäfer M, Sridharan M, Dolby J, Tip F. Refactoring Java programs for flexible locking. In: Proceedings of the 33rd
International Conference on Software Engineering; 2011. p. 71–80.

[43] Zhang Y, Li C, Shao S. ReSwitcher: Automatically Refactoring Java Programs for Switch Expression. In: 2021 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW) IEEE; 2021. p. 399–400.

Yang Zhang received his Ph.D degree at School of Computer, Beijing Institute of Technology. Hewas
a visiting scholar at Purdue University in 2017. He is currently a professor at School of Information
Science and Engineering, Hebei University of Science and Technology. His research interests focus
on intelligent software and code refactoring.

Shuai Hongwas born is 1998. He is currently a candidate for a Master’s degree at Hebei University
of Science and Technology. He research interests focus on software refactoring and static analysis.

