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1 Introduction

Recently, some researchers have focused on the generalization of integral transformations in the con-
text of W-fractional operators and fractional calculus, as seen in various studies such as Magar et
al. [38], Hamoud [37], and Sousa Oliveira et al. [39]. The Hilfer-Prabhakar fractional derivative
operator has been widely used by many scholars to model physical phenomena because of its spe-
cial properties, particularly when combined with various integral transforms, including those from
Fourier, Elzaki, Laplace, and others. These integral transform techniques are crucial as they provide a
quick solution for a range of mathematical models and initial value problems that arise in differential
equations. Ghadle et al. proposed a novel Sumudu-type integral transform in their study [40], which
was then used to solve certain applications involving conformable derivative. Sousa and Oliviera
presented the W-Hilfer fractional derivative in [39] as a unique fractional derivative in the context of
the W-fractional operator. Magar et al. in [38] introduced a number of novel concepts of fractional
derivatives in the context of W-fractional operators, such as ”W-Prabhakar integral”, ”W-Prabhakar



derivative”, and ”W-Hilfer-Prabhakar fractional derivatives”, and generalized integral transforms like
“Laplace” and ”Sumudu” to it.

Saadeh et al. [18] proposed a new integral transform named the Formable integral transform in
their study in 2021. The main objective of the authors [18] was to use this transform to solve ordinary
and partial differential equations. The Formable integral transform has stronger connections with
Laplace, Sumudu, Elzaki and other transformations.

Recently, Sachin et al. [1] proposed a new integral transform called the W-Shehu transform, which
is a generalization of the Shehu integral transform that incorporates the advantages of the W-function.
They used this transform to solve various Cauchy type fractional differential equations involving the
W-Hilfer-Prabhakar fractional derivative and its regularized form.

The main objective of this study is to introduce a new generalization of the Formable transform
known as the W-Formable transform and to study its properties based on W-functions, such as the V-
Riemann-Liouville, ¥-Caputo, W-Hilfer, W-Prabhakar integral, derivative, and its regularized version
in terms of the W-Mittag-Leffler function. The study will then use the W-Formable transform to
solve various Cauchy-type problems involving the W-Hilfer-Prabhakar fractional derivative and its
regularized form, including the generalised fractional free electron laser equation and the space-time
fractional advection-dispersion equation.

2 Definitions and preliminaries

Definition 2.1. let £ be an integrable function defined in [a,b] and o € R such that —o0 < a <
b<oon=o9+1and ¥ € AC'a,b] be non decreasing function such that V'(t) # 0 for all
t € la,bl], consequently, the following are a few definitions of V fractional integral and derivatives
[1,3,17,37,41-44,46].

e the V-Reimann Liouville fractional integral of a function (1) is defined as

1 o ,
T3E() = 1y [ (U0~ ) Vg )ar 0
I'(e) Jo
e the U-Reimann Liouville fractional derivative of a function £(t) is defined as
Dttt = (o L) g everyar @
0 W (t)ydt)
e the U-Caputo fractional derivative of a function £(t) is defined as
1 d\"
C e, ¥ — -o¥ -
D860 =5 (i) €0 ®)
e the U Hilfer derivative of a function {(t) is
1 d\" . a_na-
0,0, ¥ _ qn—o¥ il (1—-0)(1—p),¥
D3 =T340 (i) 100 @

e the V-Prabhakar fractional integral and derivative of £(t) are defined as follows:

(Z) s E)() :/0 (T(t) =0 (r)" By (U (t) — U(r))?)E(r)dr

= (e pmtu)(t)

®)



where xy denote the convolution operator for o, p,v € (C), Re(p), Re(p) > 0

Dy or&(t) = (%@%) A () (©6)
e the U-regularised Prabhakar fractional derivative of {(t) is
D0 € =T o (%@%) (1) @
e the V-Hilfer Prabhakar fractional derivative of {(t) is
Dyt = (L0 o (i) Gl oty © ®
o, ov(n—p U'(t) dt 0

e the regularised version of V-Hilfer Prabhakar fractional derivative of £(t) is

o 1 d\"
C4vY,p,v,¥ —’YV\IJ v(1—v),¥
Do+ &t) = ( o0+ Lo.(1—v) (n—p) .0+ <—\p/(t) @) 5) (t)

n )
1 d
— _’Y?\I}
~2 e (F) S0
Definition 2.2. [4] For o, p,y € C, three parameter Mittage-Leffler function of Prabhakar is
— Dm )"
E7 ( 10
z:o I'(om + p) m! (10)
where (), is the Pochhammer symbol
(8)0:17(S)n28(8+1)(5+2) ________ (S+m—1)7 m e N

Definition 2.3. [1]: Let {(t) be a real valued function defined from [0,00) to R and ¥ is the non
decreasing function such that V(0) = 0, then the V-Shehu transform of the function £(t) is denoted
by Sy[£(t)] and defined by

X\I/(t)

SelE()] = Va(X,0) = / £() ' (t)dt, (11)

Definition 2.4. [18]: The Formable integral transform denoted by B(X,v) for the function £(t),
which is given as:

FlE@)] =B(X,v) =X h E(vt)exp(—Xt)dt
’ (12)

— %/0 exp (_TXt) §(t)dt, X € (M1, Aa),

over the set of functions
Z = {f(t) D AN, 0< A, A, 0 < Ky |€(E)] < Ne(TJ),ift € (—1) x [O,oo)},

The integral transform (12) exists for all {(t) > k.



¢ Formable-Sumudu duality [18]: Let G(v) be the Sumudu transform of £(¢) then
B(1,v) = G(v) (13)
e Formable-Shehu duality [18]: Let V(X v) be the Shehu transform of £(¢) then
B(X,v) %wx, v) (14)

Definition 2.5. [1]: Suppose SHy (X, v) is the V-Shehu transform of £(t), then the V-Shehu trans-
form of n'" derivative €™ (t) is denoted by SHy, (X, v) and

SH\IIn(X7 U) = SH\I/ [g(n) (t)]

X n n—1 X n—(k+1) 1 d k (15)
- (3) s - (3) (ggs) €0nzo
k=0

Definition 2.6. [19]: The V-convolution of § and x defined over [0, T is

UL (t)=t
(€ %0 x) = / QU (W (E) — W)X () (r)dr (16)

where & and x are the piecewise continuous functions over [0, T

Definition 2.7. [45]: Let a function f from [0,00) to R of V-exponential order ¢, if 3 a positive
constant N such that¥V t > T, then
[€(t)] < Nt (17)

Definition 2.8. [19]: For 0 < 9 < 1 and w € C such that Re(p) > 0, Re(p) > 0), Re(y) > 0. The
Shehu transform of Mittage-Leffler function t*~'E] (wt?) is given by

_ X\’ v\ 2\ Y
SH [t E7 (wt9)] (X, v) = (?) (1-=(5)) (18)
Lemma 2.1. Let 0 < ¢ < 1 and w € C such that Re(o) > 0, Re(p) > 0), Re(y) > 0. The
Formable transform of Mittage-Leffler type function tp_lE; p(wtg), is given by

F [t B (wt9)] (X,v) = (E)H (1 @ (%)Q) 7 (19)

(%

Proof. Using equation (18) and the duality of Formable-Shahu transform (14) we got the desired

result
v v

Flrt @) (o = (5) (1-=(3))



3 Main Results:

Definition 3.1. ler U be a non negative rising function with the property that V(0) = 0, defined from
[0,00) to R and let & be a real valued function. The exponential order V-Formable transform of £
thus denoted by Fy £ (t)] is defined as

X [~ X
Ful] = Ba(x.0) = 2 [T (- T w0) srwya 20)
0
Remark: If we take the function V() = ¢, we obtain the Formable transform, which was studied
in the publication [18].

Theorem 3.1. Suppose &(t) be a piecewise continuous function in evry interval p > t > 0 of V-
exponential order, then the V-Formable transform of £(t) exist for 0 < ¢ < t.

Proof. Using the W-Formable transform definition and equation (17) for any non negative number c,

we obtain
Fe01 =] [ e (<2 u0)) e o

<X [T (—5\1/(7:)) £V ()t

v

< N2 / exp (_E\p( )) VO (1) dt
—NZ / exp( _“qu( )) W (t)dt

v [X—vc(o_l)]
_ XN

X —wvc

]

Property 1: Suppose a and b are non-zero arbitrary constants in R and the functions a&(t) and
bx(t) are in Z then a&(t) + bx(t) € Z, such that

Fulag(t) +bx(t)] = aFu[S(t)] + bFu[x(1)] 2D

Proof. Using the W-Formable transform definition (20), we obtain

Fulal(t) + bx(t)]

= [T (< 90)) wtlo) + o)
_ % /0 exp (—%\I/(t)) (aé(t))\l/’(t)dtJr% /0 " eap (—%\I/(t)) O ()t (22)
= aé OOO exp <—%\I/(t)> E(t)V'(t)dt + b% /OOO exrp (—%\I/(t)) X (W' (¢)dt

v

= aFyl€(t)] + bFg[x(t)]



Property 2:Suppose £(t) = WU(¢)?~!, then the ¥-Formable transform of ¥(¢)?~! is provided by

Filet] = ()" T (3)
Proof. By using the W-Formable transform definition (20), we obtain
Fale() = Fluy
= %/OOO exp (—%W(t)) ()P~ (t)dt
_ %%(,0 .y /0 e (—%\I}(t)) ()2 (H) dt
~ o= 0-2) [ e (-Tu0)) oy wom

= (5) o= 10-20-3) [ e (—%wt)) () (1) de

0

| <

]

Property 3: Suppose £(t) = exp(p¥(t)), then the ¥- Formable transform of exp(p¥(t)), pro-
vided by

X
= 24
Fole] = = (4)
Proof. By using the W-Formable transform definition (20), we obtain
Ful€(t)] = Fulexp(p¥(t))]
_ % / exp (—%\Il(t)) exp(pU ()T (1) dt
0
_ E/ exp <—X - pv\I/(t)) W (4)dt
v Jo v
X v
v X —po
X
X —p
O

Property 4: Suppose {(t) = V(t)exp(p¥(t)), then the ¥-Formable transform of W (¢)exp(p¥(t)),

provided by

FUEO] = @s)



Proof. By using the W-Formable transform definition (11), we obtain
Fuls()] = (t)exp(p¥(t))]

x / cap (=290 ) (BP0

/ emp( ;””\p(t)) '(t)dt
[
e (50,
)

=

s
<

<
o

ST

—~

<
<
e
=

,\
»
|
e
4
N—r
Do

]

Property 5: Suppose £(t) = Sin(AVU(t)), then the W-Formable transform of Sin(AW(t)), pro-
vided by

XvA
-7 2
flll[g(tﬂ X2 + 2292 ( 6)
Proof. By using the W-Formable transform definition (11), we obtain
Ful§(t)] = FulSin(AU(t))]
X [~ X
= —/ exrp (——W(t)) Sin(AU(t))W'(t)dt
v Jo v
X e v [—-X >
==°_ Sin(AU(t)) — ACos(\T (1))
CE e L :
Xv?
= oz Ot
o XwA
X2 4 A2
]

Property 6: Suppose {(t) = Cos(AVU(t)), then the W-Formable transform of Cos(AVU(t)),
provided by
X2

Fulé(t)] = X212

27)



Proof. By using the W-Formable transform definition (11), we obtain

Ful€(t)] = Fu[Cos(AU(1))]
_ %/m exp (—%\I/(t)) Cos(ANB (1)U (1)t

X e YO [-X >
== Cos(AT(t)) + ASin(AT(t))
vyl |
B Xv? £
(X2 A202) v
X2
T X2 122

]

Lemma 3.2. Soppose the V-Formable transform of £(t) and x(t) are M (X, v) and N(X,v) respec-
tive, then the V-Formable convolution of (€ xy X), provided by

v
Proof. By using the ¥-Formable transform definition (11) and equation (16), we obtain

Ful(§ *w X))
_X /oo exp (—Exy(t)) (€ *w X)W/ (t)dt

_X / exp (——qf ) ( / £( (r)))x(r)\lf’(r)d'r’) ()t

Fol(€ %o v)] = %/OWW <_X\I!(t) — () + xp(z))

(Y

. ( | e - w<r>>w<r>dr) A ()W (1)t

by reversing the integration order and replacing the formula above, we obtain

Fal(E w0 = = / VO ()W (r)dr /w ()€ (n)d
= 2 Y Falx(o) x%ﬂ[@( )
= %N(w,v)M(X, v)

]

Lemma 3.3. Suppose By (X, v) is the V-Formable transform of £(t), then the V-Formable transform
of n'" derivative £ (t) is denoted by By, (X,v) and

Fun(X,0) = F[¢(1)] = <§)n6@ X,v) i ( ) €9(0),n >0 (29)

v

8



or equivalently,

Fan(X.0) = Fal6™ ()] = (1) Ba(X.0) = () €9(0) (30)

3
—

i

Proof. Using equation (15) and the duality of Formable-Shahu transform (14) we got the desired
result

—_

3

Fan(X.0) = Fafe™ )] = (w) " BaX.0) = Y (m) " €(0)

i

O
Definition 3.2. V-Formable integral transform on V-Riemann Liouville fractional integral defined
by

Fal@ew) = (55) Fole(t) G31)

Proof. By using the definition of W-Formable transform on W-Reimann Liouville fractional integral
(1) and equations (28), (23), we obtain

Fo [(2%0)] = 7o [ 00w 0]
1

= T e 1 Fulei(t)

- % (3) TRl

— () Fulé]

]

Definition 3.3. V-Formable integral transform on V-Riemann Liouville fractional derivative defined
by
v v

FalDgeW) = () Fole(®)] - 5 (3) " @Ol (32)

Proof. By using the definition of W-Formable transform on W-Reimann Liouville fractional derivative
(2) and equations (29), (31), we obtain

Fal(DEVE()] = Fo K\Pl( - i)nISQ"Pf(t)dt}

- () "AEon -2 (x) (vga) @00
-(x) (5) ke ;( ) PO
= (5) "Fule) - (2) " @ o)



Definition 3.4. V-Formable transform on V-Cputo fractional derivative defined by

n—1

Cyo, v _ (Y - k, xp
RPN = () F n-3 (2) " 5 )0l (33)
Proof. By using the definition of W-Formable transform on W-Caputo fractional derivative (3) and
equations (31), (29), we get
1 d\"
oY () E()dt
7 (w0 dt) e

n—o
f@[

Definition 3.5. V-Formable transform on V-Hilfer fractional derivative defined by

3

Fal@p )] = (%) Fule®] - 3 (5

0

v\ V(n—p)+k—n ) (e p)—
) (@ B 34

B
Il

Proof. By using the definition of W-Formable transform on W-Hilfer fractional derivative (4) and

equations (29), (31), we get
1/ n— d " —v)(n—p),
(n—p), ( ) dt) Iél )(n—p) \Ilf(t)}

d\" (1-)(n-p)w
"5l (gra) é(0]

"(5) "R o)

aili
)"
)"
)y "“z;<;> (wma) B
)"
)"
9

Ful(DFYe(t

als &l

Sl

[ Gy e

1

s

3
|

k—n
(%) Dk, \I/I(l v)(n—p),¥ ,5(0)
n—1

—p (n—p)+k—n
Fut( (%) (U
k=0

s

=0

v

I
/—\ N N T

m



Definition 3.6. V-Formable transform on V- Prabhakar fractional integral defined by

(% (Y

Fal@r o) = () (1-=(5)")  Fele) (35)

Proof. By using the ¥-Formable transform definition on W-Prabhakar fractional integral (5) and equa-
tion (28), we obtain

Fal(T L €(1)] = Fu [ | ) - vy et - w<t>>>@]] ()W (1)
Fa (W) EX (@(W(0)9)] x Fel (1)

<(5) (1-=(5)) " Feke)

U>p(1 = (%)) Felew)

Definition 3.7. V-Formable transform on V- Prabhakar fractional derivative defined by

Rl = (5) " (1-=(5)") Flew] - 5 (2) "Lk el GO

><|e><|e

Proof. By using the W-Formable transform definition on W-Prabhakar fractional derivative (6) and
equations (29), (35) we get

FolD e €0)(X.0)
o | () Tertheort0)] (X0

7 qul() jt )ng(t)] (X,v), where g(t) =T,7" _ &(t)

=(3) Ao -5 () 0 a0 = () 2o

- () Al gt 0] oo - ()" o0

() @7 0=@YA0-E () (s Bl
()= () B - S (3) 7 i et

O]
Definition 3.8. V-Formable transform on V-regularized Prabhakar fractional derivative defined by

ROy s = (3) (1= ()") Buxo

£() (=) e

(37)



Proof. By using the W-Formable transform definition on W-regularised Prabhakar fractional derivative(7)
and equations (35), (29), we obtain

Fu [CDgfw0+£( (X, v)
— Fy _I;Z_‘I’p,wm ( \D,l( )jt)nf(t)] (X 0)

= Fu _Zgz‘l;wmh(t) (X,v), where h(t)= (‘I/’l(t) %) &(t)

— Fy (h*e’”P . )()] (X, )

(n—

() (== () | )R- 5 () () o)

v\ P v\ — U\ 7 1 d\"*
() (=) B -2 () (0-= () (wma) «©
O
Definition 3.9. V-Formable transform on V-Hilfer Prabhakar fractional derivative defined by
p
Fal Dy ()] = (5) (1-=(%)") Bulx.0)
n—1 v(p—n)+n—k v
> (3) (== (%)) T @limor
k=0
(38)

Proof. By using the W-Formable transform definition on W-Hilfer Prabhakar fractional derivative (8)

12



and equations (29), (35), we obtain

Fu[Dy 25 €)X, v)

0,7,0T

- yv, ¥
(o

—yv, ¥
Fu [T, o bl

) t
)= (3))
)"(" ' ( (%))

U AR k—n _ 1—) T
1( V)()n p)w0+§(t)](X7 U) - (}) A Eyl( U)()n )w0+§(0+):|

d\" 1,
\I!’—t)d_) (Ig,&(iy)(zgq_lp)@,oi)) (75)] (X,v)

1
(
1 d " —y(1—v),¥
(X,v), where k(t) = \If’( )dt I@,(1_u)(n—p),w,0+5(t)

v

Fulk(®)](X,0)

(Y
5
y

ThEid

— w
—w

/‘\

(
(
)
(
X
(

(5" ( =(3)) 1) (Pw(}%)g)”(”) f\pwm]
D 0= () [S ) (e) TR )
- () (= (5)) B
(%> (n—p)+k—n 1—w (%)Q)W Dk\PIQ (vl(ly)u()n\pp o

O

Definition 3.10. V-Formable transform on regularized version of V-Hilfer Prabhakar fractional
derivative defined by

RIEDztn) - () (1-=(5)") Buxn
2 () 0= (5)) e

Proof. By using the W-Formable transform definition on W-regularized Hilfer Prabhakar fractional

(39)

13



derivative (9) and equations (29), (35), we obtain
Fal DL 0I(X,0)
= Fo | T T (\Ijl( )i)nﬁ(t)l (X,v)
= Fy :I;g"l;,w,m (%@)%yﬁ(t)} (X,v)
— Fu _Ig—gq;wmz( )] (X,v), 2(t) = (\I,,L(t)%)nﬁ(t)
() -y memecn
()7 0= () () R () o)
(

O (= () B -5 () (= () 2

-1

3

4 Applications

In this section, the applications of the W-Formable transform on W-Hilfer-Prabhakar and W-regularized
Hilfer-Prabhakar fractional derivatives are discussed for solving Cauchy type fractional differential
equations.

Theorem 4.1. The solution for the generalized Cauchy type problem of the fractional advection dis-
persion equation

DILlE(n,t) = —wDuE (1) + 0 2 € (. 1) (40)
subjects to below constraints
L0 ) w0 é(@,0%) = g(2), @, 7, 2 €R, >0, (41)
lim &(z,t) =0, t >0, (42)
T—r 00

is provided

1 * - n)—yv
Eet) = o / R g(k) > " (iwk — 9|k} Aoertretet prOam iy (@ (B (E))dk (43)
- n=0

where 77% is the fractional generalized Laplace operator of order \, X\ € (0,2), p € (0,1), v €
[0,1] : z € R, t € R", v > 0 Fourier transform ofn% is —|k|* discussed in [31]

Proof. Applying the Fourier and W-Formable transforms on equation (40) by using the equation (38).
First we will use Fourier transform on (40)

DR E (1) = iwke™ (k,t) — Ik (k1) (44)

14



where £*(k,t) is the Fourier transform of £(x,t) with respect to variable x, now applying the V-
Formable transform on (44), we will get

(1) (= () e (1) (= ()
= wk€ (k, X,v) — 9k E (k, X, v)

where £ (k, X, v) is the U-Formable integral transform of £*(k, t) with respect to variable ¢, therefore,
we have

& (k, X, ) [(%)_p (1-=(5)) +omr - iwk} ()" = ()Y e
(

v \v(1=p)—1 2 \O\ Y N )
€ (k, X,v) (%) 1-@(3)°) " g"(k) if ( )—i“a' —wzk - o
2P (1 — = (&)%) |k —iwk % —w %
(1) (== ()7 |1+ et
f*(k: X,v) = (;;_()V(lfp)*l (1 (%)%w 9" (k) Ik — iwk

1+

) (%)_p (1-= (%)Q)W] )
o= () (- (1)) S [ ]

€k Xow) = 3 ik — O[] (2) " (1w (2))Y T )

n=0

the solution of the problem was obtained by applying the inverse of both the Fourier and W-Formable
transforms

oo

1 > —ikx) nyv n 14+n)—yv
flo.t) = 5 [ ek Y ik — oI BT (o ((0))

n=0
L]

Remark 1: If the values of w and ¥ in the equation (40) are set to 0 and % respectively, the
equation will be reduced to the one-dimensional space-time Schrodinger fractional equation, where
the values of mass and plank constant are m and h respectively.

oo

1 > v n n v
wwzg/ “ika)g Z——Wt e ey (@ ((£))dk (45)

n=

Theorem 4.2. Investigating the solution to a generalized Cauchy problem for the fractional heat

equation
2

CDYLYE(w, 1) = Nt

x,t) (46)

subject to the initial condition
§(x,0) = g(z) 47
lim &(z,t) =0
T—00

15



with p € (0,1), v[0,1]; w,z € R; N,p > 0,7 >0, is given by

1
£(x,t) = p / e kg detp”Egan (U())(—=NE*)" (48)

Proof. Applying the Fourier and W-Formable transform on equation (46) by using the equations (39),
(47), first we will apply the Fourier transform
“DLLGE (k) = —NK*E (k. 1) (49)

where £*(k, t) is the Fourier integral transform of {(z, ¢) with respect to variable z, now applying the
W-Formable integral transform on (49)

(1) (= () e xn (1) (= (2)) e =W
where £ (k, X, v) is W-the Formable integral transform of £*(k, t) with respect to variable ¢, therefore
e x| () (1= (1)) v = (7)== () ) v,

o0 = (37 (0 -=(3)) ¢ B I (5
1

the solution of the problem was obtained by applying the inverse of both the Fourier and W-Formable

transforms
1

§lat) = o / e g detp”E”an (T(£))(=NE>)"

]

Theorem 4.3. Investigating the solution to a generalized Cauchy problem for the fractional heat

equation
2

a2t
I_ (1 l/)lll’p w’0+£(1’,t>|t:0 = g(SL’), (51)
lim &(z,t) =0,

DI (n, ) = M z,t), (50)

with p € (0,1), v[0,1]; w,z € R; M,0> 0,7 >0, is given by

lont) = oo [ gl S (-MRPE I DB @)k (52)

n=0
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Proof. Applying the Fourier and W-Formable transform on equation (50) by using equations (38),
(51), first we will apply the Fourier transform

DY (2, 1) = —MEE" (k) (53)

where £*(k,t) is the Fourier transform of £(z,t) with respect to variable x, now applying the W-
Formable integral transform on equation (53)

(2) 7 (== (L)Y €k xn - (L) (1= (L)) T e 020)
= —ME* (k, X, v)

where £ (k, X, v) is the ¥-Formable integral transform of £*(k, t) with respect to variable ¢, therefore
we have

() (1= (%)) €rx0) - (%)V(I_p)_l (1-=(5)") " o7th) = =MKE (k, X, v)

e [(§)” (== )Y o] - G (== ()Y s
_ Wg

TN Dt
(67 (== () + b
T e @) w1\ @7 a-= @
()" (1-= () 1+ oty
: () -2 (3)) "5 ) - ]
S(k’X7U) p o\ + v\ P v \2\7
)7 (== () () G-= @)

= (2 (e () S () (1= (2))

§ (k: X, v f: Mk2 ( )anrV(lp)erl <1 o <%>g>w—w—v,

n=0
the solution of the Cauchy type fractional differential equation was obtained by applying the inverse
of both the Fourier and V-Formable transforms.

1 00 —ikx - nyp(n v n+l-v
o) = 5 / e (k) 3 (MR e D ) oW (1)°) dk
-0 n=0
O
Theorem 4.4. Investigating the solution to a Cauchy problem for a fractional differential equation
Dy i€, t) = =M1 - 2)é(x,t), for |z <1 (54)
&(x,0)=1 (55)

with the constraints that
t>0,A>0,v>0,0<0<1,0<p<1,isobtained

[e.e]

Ela,t) = (Aw = N EY, 0 (—w(U(1)?) (56)

n=0
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Proof. Let &(z, X, v) be the U-Formable integral transform of &(z, t) with respect to variable ¢. Now
applying the Formable transform on equation (54) by using (39), (55), then we get

(%) (1r=(3)) texn=(5) " (+=(5)) )

= -1 —-2){(z, X,v)

e () (= (3)) 00| = (5) (= (7))

. (5)° (14 (3) -
§(o, X, v) = ;if 0 v @7<1
37 (e )Y [ it B0 ()Y
oy B () A1 —2) ]
A T e @ | @ e @)
Y A1) "
w2 |t

et =S -0 (B (= (3))

the solution of the Cauchy type fractional differential equation was obtained by applying the inverse
of the U-Formable integral transform on both sides of the above equation.

[e.9]

E(z,t) =) (A= A"t Ey, (o (V(1))

n=0

5 Conclusion

The generalised Foramable transform called as W-Formable transform was used on both the W-
Hilfer-Prabhakar fractional derivative and its regularized version. The applications of this transform
were then demonstrated by solving Cauchy type fractional differential equations using the \W-Hilfer-
Prabhakar fractional derivative and the three parameter Mittage-Leffler function. The results indicate
that the W-Formable transform is a useful tool for solving fractional differential equations.
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