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1 Introduction
Recently, some researchers have focused on the generalization of integral transformations in the con-
text of Ψ-fractional operators and fractional calculus, as seen in various studies such as Magar et
al. [38], Hamoud [37], and Sousa Oliveira et al. [39]. The Hilfer-Prabhakar fractional derivative
operator has been widely used by many scholars to model physical phenomena because of its spe-
cial properties, particularly when combined with various integral transforms, including those from
Fourier, Elzaki, Laplace, and others. These integral transform techniques are crucial as they provide a
quick solution for a range of mathematical models and initial value problems that arise in differential
equations. Ghadle et al. proposed a novel Sumudu-type integral transform in their study [40], which
was then used to solve certain applications involving conformable derivative. Sousa and Oliviera
presented the Ψ-Hilfer fractional derivative in [39] as a unique fractional derivative in the context of
the Ψ-fractional operator. Magar et al. in [38] introduced a number of novel concepts of fractional
derivatives in the context of Ψ-fractional operators, such as ”Ψ-Prabhakar integral”, ”Ψ-Prabhakar
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derivative”, and ”Ψ-Hilfer-Prabhakar fractional derivatives”, and generalized integral transforms like
”Laplace” and ”Sumudu” to it.

Saadeh et al. [18] proposed a new integral transform named the Formable integral transform in
their study in 2021. The main objective of the authors [18] was to use this transform to solve ordinary
and partial differential equations. The Formable integral transform has stronger connections with
Laplace, Sumudu, Elzaki and other transformations.

Recently, Sachin et al. [1] proposed a new integral transform called the Ψ-Shehu transform, which
is a generalization of the Shehu integral transform that incorporates the advantages of the Ψ-function.
They used this transform to solve various Cauchy type fractional differential equations involving the
Ψ-Hilfer-Prabhakar fractional derivative and its regularized form.

The main objective of this study is to introduce a new generalization of the Formable transform
known as the Ψ-Formable transform and to study its properties based on Ψ-functions, such as the Ψ-
Riemann-Liouville, Ψ-Caputo, Ψ-Hilfer, Ψ-Prabhakar integral, derivative, and its regularized version
in terms of the Ψ-Mittag-Leffler function. The study will then use the Ψ-Formable transform to
solve various Cauchy-type problems involving the Ψ-Hilfer-Prabhakar fractional derivative and its
regularized form, including the generalised fractional free electron laser equation and the space-time
fractional advection-dispersion equation.

2 Definitions and preliminaries
Definition 2.1. let ξ be an integrable function defined in [a, b] and ϱ ∈ R+ such that −∞ ≤ a <
b ≤ ∞, n = ϱ + 1 and Ψ ∈ AC1[a, b] be non decreasing function such that Ψ′(t) ̸= 0 for all
t ∈ [a, b], consequently, the following are a few definitions of Ψ fractional integral and derivatives
[1, 3, 17, 37, 41–44, 46].
• the Ψ-Reimann Liouville fractional integral of a function ξ(t) is defined as

Iϱ,Ψ
0 ξ(t) =

1

Γ(ϱ)

∫ ∞

0

(Ψ(t)−Ψ(r))ϱ−1Ψ′(r)ξ(r)dr (1)

• the Ψ-Reimann Liouville fractional derivative of a function ξ(t) is defined as

Dϱ,Ψ
0 ξ(t) =

(
1

Ψ′(t)

d

dt

)n

In−ϱ,Ψ
0 ξ(r)dr (2)

• the Ψ-Caputo fractional derivative of a function ξ(t) is defined as

CDϱ,Ψ
0 ξ(t) = In−ϱ,Ψ

0

(
1

Ψ′(t)

d

dt

)n

ξ(r)dr (3)

• the Ψ Hilfer derivative of a function ξ(t) is

Dϱ,ρ,Ψ
0 ξ(t) = In−ϱ,Ψ

0 ξ(t)

(
1

Ψ′(t)

d

dt

)n

I
(1−ϱ)(1−ρ),Ψ
0 ξ(t) (4)

• the Ψ-Prabhakar fractional integral and derivative of ξ(t) are defined as follows:

(Iγ,Ψ
ϱ,ρ,ϖ,0+ξ)(t) =

∫ t

0

(Ψ(t)−Ψ(r))ρ−1Eγ
ϱ,ρ(ϖ(Ψ(t)−Ψ(r))ϱ)ξ(r)dr

= (eγϱ,ρ,ϖ∗Ψ)(t)
(5)
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where ∗Ψ denote the convolution operator for ϱ, ρ, γ ∈ (C), Re(ϱ), Re(ρ) > 0

Dγ,Ψ
ϱ,ρ,ϖ,0+ξ(t) =

(
1

Ψ′(t)

d

dt

)n

I−γ,Ψ
ϱ,n−ρ,ϖ,0+ξ(t) (6)

• the Ψ-regularised Prabhakar fractional derivative of ξ(t) is

CDγ,Ψ
ϱ,ρ,ϖ,0+ξ(t) = I−γ,Ψ

ϱ,n−ρ,ϖ,0+

(
1

Ψ′(t)

d

dt

)n

ξ(t) (7)

• the Ψ-Hilfer Prabhakar fractional derivative of ξ(t) is

Dγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ(t) =

(
I−γν,Ψ
ϱ,ν(n−ρ),ϖ,0+

(
1

Ψ′(t)

d

dt

)n

(I−γ(1−ν),Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+ξ)

)
(t) (8)

• the regularised version of Ψ-Hilfer Prabhakar fractional derivative of ξ(t) is

CDγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ(t) =

(
I−γν,Ψ
ϱ,ν(n−ρ),ϖ,0+I

−γ(1−ν),Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+

(
1

Ψ′(t)

d

dt

)n

ξ

)
(t)

= I−γ,Ψ
ϱ,n−ρ,ϖ,0+

(
1

Ψ′(t)

d

dt

)n

ξ(t)

(9)

Definition 2.2. [4] For ϱ, ρ, γ ∈ C, three parameter Mittage-Leffler function of Prabhakar is

Eγ
ϱ,ρ(s) =

∞∑
m=0

(γ)m
Γ(ϱm+ ρ)

(s)m

m!
(10)

where (γ)m is the Pochhammer symbol

(s)0 = 1, (s)n = s(s+ 1)(s+ 2)−−−−−−−−(s+m− 1), m ∈ N

Definition 2.3. [1]: Let ξ(t) be a real valued function defined from [0,∞) to R and Ψ is the non
decreasing function such that Ψ(0) = 0, then the Ψ-Shehu transform of the function ξ(t) is denoted
by SΨ[ξ(t)] and defined by

SΨ[ξ(t)] = VΨ(X, v) =

∫ ∞

0

ξ(t)e(
−XΨ(t)

v )Ψ′(t)dt, (11)

Definition 2.4. [18]: The Formable integral transform denoted by B(X, v) for the function ξ(t),
which is given as:

F [ξ(t)] = B(X, v) = X

∫ ∞

0

ξ(vt)exp(−Xt)dt

=
X

v

∫ ∞

0

exp

(
−Xt
v

)
ξ(t)dt,X ∈ (λ1, λ2),

(12)

over the set of functions

Z =

{
ξ(t) : ∃ N, 0 < λ1, λ2, 0 < k, |ξ(t)| ≤ N e

(
t
λj

)
, if t ∈ (−1)j × [0,∞)

}
,

The integral transform (12) exists for all ξ(t) > k.
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• Formable-Sumudu duality [18]: Let G(v) be the Sumudu transform of ξ(t) then

B(1, v) = G(v) (13)

• Formable-Shehu duality [18]: Let V(X, v) be the Shehu transform of ξ(t) then

B(X, v) = X

v
V(X, v) (14)

Definition 2.5. [1]: Suppose SHΨ(X, v) is the Ψ-Shehu transform of ξ(t), then the Ψ-Shehu trans-
form of nth derivative ξ(n)(t) is denoted by SHΨn(X, v) and

SHΨn(X, v) = SHΨ[ξ
(n)(t)]

=

(
X

v

)n

SHΨ(X, v)−
n−1∑
k=0

(
X

v

)n−(k+1)(
1

Ψ′(t)

d

dt

)k

ξ(0), n ≥ 0
(15)

Definition 2.6. [19]: The Ψ-convolution of ξ and χ defined over [0, T ] is

(ξ ∗Ψ χ) =
∫ Ψ−1Ψ(t)=t

0

ξ(Ψ−1(Ψ(t)−Ψ(r)))χ(r)Ψ′(r)dr (16)

where ξ and χ are the piecewise continuous functions over [0, T ]

Definition 2.7. [45]: Let a function f from [0,∞) to R of Ψ-exponential order c, if ∃ a positive
constant N such that ∀ t > T , then

|ξ(t)| ≤ NecΨ(t) (17)

Definition 2.8. [19]: For 0 < ϱ < 1 and ϖ ∈ C such that Re(ϱ) > 0, Re(ρ) > 0), Re(γ) > 0. The
Shehu transform of Mittage-Leffler function tρ−1Eγ

ϱ,ρ(ϖt
ϱ) is given by

SH
[
tρ−1Eγ

ϱ,ρ(ϖt
ϱ)
]
(X, v) =

(
X

v

)−ρ (
1−ϖ

( v
X

)ϱ)−γ

(18)

Lemma 2.1. Let 0 < ϱ < 1 and ϖ ∈ C such that Re(ϱ) > 0, Re(ρ) > 0), Re(γ) > 0. The
Formable transform of Mittage-Leffler type function tρ−1Eγ

ϱ,ρ(ϖt
ϱ), is given by

F
[
tρ−1Eγ

ϱ,ρ(ϖt
ϱ)
]
(X, v) =

(
X

v

)1−ρ (
1−ϖ

( v
X

)ϱ)−γ

, (19)

Proof. Using equation (18) and the duality of Formable-Shahu transform (14) we got the desired
result

F
[
tρ−1Eγ

ϱ,ρ(ϖt
ϱ)
]
(X, v) =

( v
X

)ρ−1 (
1−ϖ

( v
X

)ϱ)−γ
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3 Main Results:
Definition 3.1. let Ψ be a non negative rising function with the property that Ψ(0) = 0, defined from
[0,∞) to R and let ξ be a real valued function. The exponential order Ψ-Formable transform of ξ
thus denoted by FΨ[ξ(t)] is defined as

FΨ[ξ(t)] = BΨ(X, v) =
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
ξ(t)Ψ′(t)dt (20)

Remark: If we take the function Ψ(t) = t, we obtain the Formable transform, which was studied
in the publication [18].

Theorem 3.1. Suppose ξ(t) be a piecewise continuous function in evry interval ρ ≥ t ≥ 0 of Ψ-
exponential order, then the Ψ-Formable transform of ξ(t) exist for 0 < c < t.

Proof. Using the Ψ-Formable transform definition and equation (17) for any non negative number c,
we obtain

|FΨξ(t)| =
∣∣∣X
v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
ξ(t)Ψ′(t)dt

∣∣∣
≤ X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
|ξ(t)|Ψ′(t)dt

≤ N
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
ecΨ(t)Ψ′(t)dt

= N
X

v

∫ ∞

0

exp

(
−X − vc

v
Ψ(t)

)
Ψ′(t)dt

=
X

v

[
−v

X − vc
(0− 1)

]
=

XN

X − vc

Property 1: Suppose a and b are non-zero arbitrary constants in R and the functions aξ(t) and
bχ(t) are in Z then aξ(t) + bχ(t) ∈ Z , such that

FΨ[aξ(t) + bχ(t)] = aFΨ[ξ(t)] + bFΨ[χ(t)] (21)

Proof. Using the Ψ-Formable transform definition (20), we obtain

FΨ[aξ(t) + bχ(t)]

=
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
(aξ(t) + bχ(t))Ψ′(t)dt

=
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
(aξ(t))Ψ′(t)dt+

X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
(bχ(t))Ψ′(t)dt

= a
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
ξ(t)Ψ′(t)dt+ b

X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
χ(t)Ψ′(t)dt

= aFΨ[ξ(t)] + bFΨ[χ(t)]

(22)
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Property 2:Suppose ξ(t) = Ψ(t)ρ−1, then the Ψ-Formable transform of Ψ(t)ρ−1 is provided by

FΨ[ξ(t)] =
( v
X

)ρ−1

Γ(ρ) (23)

Proof. By using the Ψ-Formable transform definition (20), we obtain

FΨ[ξ(t)] = F [Ψ(t)ρ−1]

=
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
Ψ(t)ρ−1Ψ′(t)dt

=
X

v

v

X
(ρ− 1)

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
Ψ(t)ρ−2Ψ′(t)dt

=
v

X
(ρ− 1)(ρ− 2)

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
Ψ(t)ρ−3Ψ′(t)dt

=
( v
X

)2
(ρ− 1)(ρ− 2)(ρ− 3)

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
Ψ(t)ρ−4Ψ′(t)dt

...

=
( v
X

)ρ−1

(ρ− 1)!

=
( v
X

)ρ−1

Γ(ρ)

Property 3: Suppose ξ(t) = exp(ρΨ(t)), then the Ψ- Formable transform of exp(ρΨ(t)), pro-
vided by

FΨ[ξ(t)] =
X

X − ρv
(24)

Proof. By using the Ψ-Formable transform definition (20), we obtain

FΨ[ξ(t)] = FΨ[exp(ρΨ(t))]

=
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
exp(ρΨ(t))Ψ′(t)dt

=
X

v

∫ ∞

0

exp

(
−X − ρv

v
Ψ(t)

)
Ψ′(t)dt

=
X

v

v

X − ρv

=
X

X − ρv

Property 4: Suppose ξ(t) = Ψ(t)exp(ρΨ(t)), then the Ψ-Formable transform of Ψ(t)exp(ρΨ(t)),
provided by

FΨ[ξ(t)] =
Xv

(X − ρv)2
(25)
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Proof. By using the Ψ-Formable transform definition (11), we obtain

FΨ[ξ(t)] = FΨ[Ψ(t)exp(ρΨ(t))]

=
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
(Ψ(t)exp(ρΨ(t)))Ψ′(t)dt

=
X

v

∫ ∞

0

Ψ(t)exp

(
−X − ρv

v
Ψ(t)

)
Ψ′(t)dt

=
X

v

[
−v

X − ρv
Ψ(t)exp

(
−X − ρv

v
Ψ(t)

)]∞
0

− X

v

[
−v2

(X − ρv)2
exp

(
−X − ρv

v
Ψ(t)

)]∞
0

=
X

v

[
v2

(X − ρv)2
exp

(
−X − ρv

v
Ψ(t)

)]∞
0

=
X

v

v2

(X − ρv)2

=
Xv

(X − ρv)2

Property 5: Suppose ξ(t) = Sin(λΨ(t)), then the Ψ-Formable transform of Sin(λΨ(t)), pro-
vided by

FΨ[ξ(t)] =
Xvλ

X2 + λ2v2
(26)

Proof. By using the Ψ-Formable transform definition (11), we obtain

FΨ[ξ(t)] = FΨ[Sin(λΨ(t))]

=
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
Sin(λΨ(t))Ψ′(t)dt

=
X

v

e−
X
v
Ψ(t)(

X
v

)2
+ λ2

[
−X
v
Sin(λΨ(t))− λCos(λΨ(t))

]∞
0

=
Xv2

v(X2 + λ2v2)
(0 + λ)

=
Xvλ

X2 + λ2v2

Property 6: Suppose ξ(t) = Cos(λΨ(t)), then the Ψ-Formable transform of Cos(λΨ(t)),
provided by

FΨ[ξ(t)] =
X2

X2 + λ2v2
(27)
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Proof. By using the Ψ-Formable transform definition (11), we obtain

FΨ[ξ(t)] = FΨ[Cos(λΨ(t))]

=
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
Cos(λΨ(t))Ψ′(t)dt

=
X

v

e−
X
v
Ψ(t)(

X
v

)2
+ λ2

[
−X
v
Cos(λΨ(t)) + λSin(λΨ(t))

]∞
0

=
Xv2

v(X2 + λ2v2)

X

v

=
X2

X2 + λ2v2

Lemma 3.2. Soppose the Ψ-Formable transform of ξ(t) and χ(t) are M(X, v) and N(X, v) respec-
tive, then the Ψ-Formable convolution of (ξ ∗Ψ χ), provided by

FΨ[(ξ ∗Ψ χ)] =
v

X
M(X, v)N(X, v) (28)

Proof. By using the Ψ-Formable transform definition (11) and equation (16), we obtain

FΨ[(ξ ∗Ψ χ)]

=
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)
(ξ ∗Ψ χ)Ψ′(t)dt

=
X

v

∫ ∞

0

exp

(
−X
v
Ψ(t)

)(∫ t

0

ξ(Ψ−1(Ψ(t)−Ψ(r)))χ(r)Ψ′(r)dr

)
Ψ′(t)dt

FΨ[(ξ ∗Ψ χ)] =
X

v

∫ ∞

0

exp

(
−XΨ(t)−Ψ(t) + Ψ(t)

v

)
×
(∫ ∞

0

ξ(Ψ−1(Ψ(t)−Ψ(r)))Ψ′(r)dr

)
χ(r)Ψ′(t)dt

by reversing the integration order and replacing the formula above, we obtain

FΨ[(ξ ∗Ψ χ)] =
X

v

∫ ∞

0

e
−X
v

Ψ(t)χ(r)Ψ′(r)dr

∫ ∞

0

e
−X
v

Ψ(η)Ψ′(η)ξ(η)dη

=
X

v

v

X
FΨ[χ(t)]×

v

X
FΨ[ξ(t)]

=
v

X
N(x, v)M(X, v)

Lemma 3.3. Suppose BΨ(X, v) is the Ψ-Formable transform of ξ(t), then the Ψ-Formable transform
of nth derivative ξ(n)(t) is denoted by BΨn(X, v) and

FΨn(X, v) = FΨ[ξ
(n)(t)] =

(
X

v

)n

BΨ(X, v)−
n−1∑
k=0

(
X

v

)n−k

ξ(k)(0), n ≥ 0 (29)
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or equivalently,

FΨn(X, v) = FΨ[ξ
(n)(t)] =

( v
X

)−n

BΨ(X, v)−
n−1∑
k=0

( v
X

)k−n

ξ(k)(0) (30)

Proof. Using equation (15) and the duality of Formable-Shahu transform (14) we got the desired
result

FΨn(X, v) = FΨ[ξ
(n)(t)] =

( v
X

)−n

BΨ(X, v)−
n−1∑
k=0

( v
X

)k−n

ξ(k)(0)

Definition 3.2. Ψ-Formable integral transform on Ψ-Riemann Liouville fractional integral defined
by

FΨ[(Iϱ,Ψ
0 ξ(t))] =

( v
X

)ϱ
FΨ[ξ(t)] (31)

Proof. By using the definition of Ψ-Formable transform on Ψ-Reimann Liouville fractional integral
(1) and equations (28), (23), we obtain

FΨ

[
(Iϱ,Ψ

0 ξ(t))
]
= FΨ

[
1

Γ(ϱ)
(Ψ(t))ϱ−1 ∗Ψ ξ(t)

]
=

1

Γ(ϱ)

v

X
FΨ[Ψ(t)ϱ−1]FΨ[xi(t)]

=
1

Γ(ϱ)

v

X

( v
X

)ϱ−1

Γ(ϱ)FΨ[ξ(t)]

=
( v
X

)ϱ
FΨ[ξ(t)]

Definition 3.3. Ψ-Formable integral transform on Ψ-Riemann Liouville fractional derivative defined
by

FΨ[(Dϱ,Ψ
0 ξ(t))] =

( v
X

)−ϱ

FΨ[ξ(t)]−
n−1∑
k=0

( v
X

)k−n

(In−ϱ−k
0 ξ)(t)|t=0 (32)

Proof. By using the definition of Ψ-Formable transform on Ψ-Reimann Liouville fractional derivative
(2) and equations (29), (31), we obtain

FΨ[(Dϱ,Ψ
0 ξ(t))] = FΨ

[(
1

Ψ′(t)

d

dt

)n

In−ϱ,Ψ
0 ξ(t)dt

]
=
( v
X

)−n

FΨ(In−ϱ,Ψ
0 ξ)(t)−

n−1∑
k=0

( v
X

)k−n
(

1

Ψ′(t)

d

dt

)k

(In−ϱ,Ψ
0 ξ)(0)

=
( v
X

)−n ( v
X

)n−ϱ

FΨ[ξ(t)]−
n−1∑
k=0

( v
X

)k−n

Dk,Ψ
0 (In−ϱ,Ψ

0 ξ)(0)

=
( v
X

)−ϱ

FΨ[ξ(t)]−
n−1∑
k=0

( v
X

)k−n

(In−ϱ−k,Ψ
0 ξ)(0)
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Definition 3.4. Ψ-Formable transform on Ψ-Cputo fractional derivative defined by

FΨ[(
CDϱ,Ψ

0 ξ(t))] =
( v
X

)−ϱ

FΨ[ξ(t)]−
n−1∑
k=0

( v
X

)k−n

(Dk,Ψ
0 ξ)(t)|t=0 (33)

Proof. By using the definition of Ψ-Formable transform on Ψ-Caputo fractional derivative (3) and
equations (31), (29), we get

FΨ[(
CDϱ,Ψ

0 ξ(t))] = FΨ

[
In−ϱ,Ψ
0

(
1

Ψ′(t)

d

dt

)n

ξ(t)dt

]
=
( v
X

)n−ϱ

FΨ

[(
1

Ψ′(t)

d

dt

)n

ξ(t)dt

]
=
( v
X

)n−ϱ
[( v
X

)−n

FΨ[ξ(t)]

]
−

n−1∑
k=0

( v
X

)k−n

(Dk,Ψξ)(0)

=
( v
X

)−ϱ

FΨ[ξ(t)]−
n−1∑
k=0

( v
X

)k−n

(Dk,Ψξ)(0)

Definition 3.5. Ψ-Formable transform on Ψ-Hilfer fractional derivative defined by

FΨ[(Dρ,ν,Ψ
0 ξ(t))] =

( v
X

)−ρ

FΨ[ξ(t)]−
n−1∑
k=0

( v
X

)ν(n−ρ)+k−n

(I(1−ν)(n−ρ)−k,Ψ
0 ξ)(t)|t=0 (34)

Proof. By using the definition of Ψ-Formable transform on Ψ-Hilfer fractional derivative (4) and
equations (29), (31), we get

FΨ[(Dρ,ν,Ψ
0 ξ(t))] = FΨ

[
Iν(n−ρ),Ψ
0

(
1

Ψ′(t)

d

dt

)n

I(1−ν)(n−ρ),Ψ
0 ξ(t)

]
=
( v
X

)ν(n−ρ)

FΨ

[(
1

Ψ′(t)

d

dt

)n

I(1−ν)(n−ρ),Ψ
0 ξ(t)

]
=
( v
X

)ν(n−ρ)
[( v
X

)−n

FΨ(I(1−ν)(n−ρ),Ψ
0 ξ)(t)

]
−
( v
X

)ν(n−ρ)
n−1∑
k=0

( v
X

)k−n
(

1

Ψ′(t)

d

dt

)k

I(1−ν)(n−ρ),Ψ
0 ξ(0)

=
( v
X

)ν(n−ρ)
[( v
X

)−n ( v
X

)(1−ν)(n−ρ)

FΨξ(t)

]
−
( v
X

)ν(n−ρ)
n−1∑
k=0

( v
X

)k−n

Dk,ΨI(1−ν)(n−ρ),Ψ
0 ξ(0)

=
( v
X

)−ρ

FΨξ(t)−
n−1∑
k=0

( v
X

)ν(n−ρ)+k−n

I(1−ν)(n−ρ)−k,Ψ
0 ξ(0)
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Definition 3.6. Ψ-Formable transform on Ψ- Prabhakar fractional integral defined by

FΨ[(Iγ,Ψ
ϱ,ρ,ϖ,0+ξ(t))] =

( v
X

)ρ (
1−ϖ

( v
X

)ϱ)−γ

FΨ[ξ(t)] (35)

Proof. By using the Ψ-Formable transform definition on Ψ-Prabhakar fractional integral (5) and equa-
tion (28), we obtain

FΨ[(Iγ,Ψ
ϱ,ρ,ϖ,0+ξ(t))] = FΨ

[∫ x

0

(Ψ(x)−Ψ(t))ρ−1Eγ,Ψ
ϱ,ρ [ϖ(Ψ(x)−Ψ(t)))ϱ]

]
ξ(t)Ψ′(t)dt

=
v

X
.FΨ

[
Ψ(t)ρ−1Eγ,Ψ

ϱ,ρ (ϖ(Ψ(t))ϱ)
]
×FΨ[ξ(t)]

=
v

X
×
( v
X

)ρ−1 (
1−ϖ

( v
X

)ϱ)−γ

FΨ[ξ(t)]

=
( v
X

)ρ (
1−ϖ

( v
X

)ϱ)−γ

FΨ[ξ(t)],

Definition 3.7. Ψ-Formable transform on Ψ- Prabhakar fractional derivative defined by

FΨ[Dγ,Ψ
ϱ,ρ,ϖ,0+ ] =

( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
FΨ[ξ(t)]−

n−1∑
k=0

( v
X

)k−n

I−γ−k,Ψ
ϱ,n−ρ,ϖ,0+ξ(t)|t=0 (36)

Proof. By using the Ψ-Formable transform definition on Ψ-Prabhakar fractional derivative (6) and
equations (29), (35) we get

FΨ[Dγ,Ψ
ϱ,ρ,ϖ,0+ξ(t)](X, v)

= FΨ

[(
1

Ψ′(t)

d

dt

)n

I−γ,Ψ
ϱ,n−ρ,ϖ,0+ξ(t)

]
(X, v)

= FΨ

[(
1

Ψ′(t)

d

dt

)n

g(t)

]
(X, v), where g(t) = I−γ,Ψ

ϱ,n−ρ,ϖ,0+ξ(t)

=

(
X

v

)n

FΨ[g(t)](X, v)−
n−1∑
k=0

(
X

v

)n−k

g(k)(0), g(k)(0) =

(
1

Ψ′(t)

d

dt

)k

I−γ,Ψ
ϱ,n−ρ,ϖ,0+ξ(0)

=

(
X

v

)n

FΨ

[
(ξ ∗ eγ,Ψϱ,(n−ρ),ϖ)(t)

]
(X, v)−

n−1∑
k=0

(
X

v

)n−k

g(k)(0)

=

(
X

v

)n ( v
X

)n−ρ (
1−ϖ

( v
X

)ϱ)γ
FΨ[ξ(t)]−

n−1∑
k=0

(
X

v

)n−k (
1

Ψ′(t)

d

dt

)k

I−γ,Ψ
ϱ,n−ρ,ϖ,0+ξ(t)

∣∣
t=0

=
( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
BΨ(X, v)−

n−1∑
k=0

( v
X

)k−n [
Dγ,Ψ

ϱ,k−n+ρ,ϖ,0+ξ(t)
]
t=0

Definition 3.8. Ψ-Formable transform on Ψ-regularized Prabhakar fractional derivative defined by

FΨ[
CDγ,Ψ

ϱ,ρ,ϖ,0+ξ(t)] =

(
X

v

)ρ (
1−ϖ

( v
X

)ϱ)γ
BΨ(X, v)

−
n−1∑
k=0

(
X

v

)ρ−k (
1−ϖ

( v
X

)ϱ)γ
Dk,Ψξ(t)|t=0

(37)
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Proof. By using the Ψ-Formable transform definition on Ψ-regularised Prabhakar fractional derivative(7)
and equations (35), (29), we obtain

FΨ[
CDγ,Ψ

ϱ,ρ,ϖ,0+ξ(t)](X, v)

= FΨ

[
I−γ,Ψ
ϱ,n−ρ,ϖ,0+

(
1

Ψ′(t)

d

dt

)n

ξ(t)

]
(X, v)

= FΨ

[
I−γ,Ψ
ϱ,n−ρ,ϖ,0+h(t)

]
(X, v), where h(t) =

(
1

Ψ′(t)

d

dt

)n

ξ(t)

= FΨ

[
(h ∗ eγ,Ψϱ,(n−ρ),ϖ)(t)

]
(X, v)

=
( v
X

)n−ρ (
1−ϖ

( v
X

)ϱ)γ [( v
X

)−n

FΨ[ξ(t)]−
m−1∑
k=0

( v
X

)k−n
(

1

Ψ′(t)

d

dt

)k

ξ(0)

]

=
( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
BΨ(X, v)−

n−1∑
k=0

( v
X

)k−ρ (
1−ϖ

( v
X

)ϱ)γ ( 1

Ψ′(t)

d

dt

)k

ξ(0+)

Definition 3.9. Ψ-Formable transform on Ψ-Hilfer Prabhakar fractional derivative defined by

FΨ[Dγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ(t)] =

(
X

v

)ρ (
1−ϖ

( v
X

)ϱ)γ
BΨ(X, v)

−
n−1∑
k=0

(
X

v

)ν(ρ−n)+n−k (
1−ϖ

( v
X

)ϱ)γν
I−γ(1−ν)−k,Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+ξ(t)|t=0+

(38)

Proof. By using the Ψ-Formable transform definition on Ψ-Hilfer Prabhakar fractional derivative (8)
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and equations (29), (35), we obtain

FΨ[Dγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ(t)](X, v)

= FΨ

[(
I−γν,Ψ
ϱ,ν(n−ρ),ϖ,0+

(
1

Ψ′(t)

d

dt

)n

(I−γ(1−ν),Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+ξ)

)
(t)

]
(X, v)

= FΨ

[
I−γν,Ψ
ϱ,ν(n−ρ),ϖ,0+k(t)

]
(X, v), where k(t) =

(
1

Ψ′(t)

d

dt

)n

I−γ(1−ν),Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+ξ(t)

=
( v
X

)ν(n−ρ) (
1−ϖ

( v
X

)ϱ)γν
FΨ[k(t)](X, v)

=
( v
X

)ν(n−ρ) (
1−ϖ

( v
X

)ϱ)γν
×
[( v
X

)−n

FΨ[I−γ(1−ν),Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+ξ(t)](X, v)−
( v
X

)k−n

I−γ(1−ν),Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+ξ(0
+)

]
=
( v
X

)ν(n−ρ) (
1−ϖ

( v
X

)ϱ)γν [( v
X

)(1−ν)(n−ρ)−n (
1−ϖ

( v
X

)ϱ)γ(1−ν)

FΨ[ξ(t)]

]
−
( v
X

)ν(n−ρ) (
1−ϖ

( v
X

)ϱ)γν [n−1∑
k=0

( v
X

)k−n
(

1

Ψ′(t)

d

dt

)k

I−γ(1−ν),Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+ξ(0
+)

]
=
( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
BΨ(X, v)

−
n−1∑
k=0

( v
X

)ν(n−ρ)+k−n (
1−ϖ

( v
X

)ϱ)γν
Dk,Ψ I−γ(1−ν),Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+ξ(t)|t=0+

Definition 3.10. Ψ-Formable transform on regularized version of Ψ-Hilfer Prabhakar fractional
derivative defined by

FΨ[
CDγ,ρ,ν,Ψ

ϱ,ϖ,0+ ξ(t)] =

(
X

v

)ρ (
1−ϖ

( v
X

)ϱ)γ
BΨ(X, v)

−
n−1∑
k=0

(
X

v

)ρ−k (
1−ϖ

( v
X

)ϱ)γ
Dk,Ψξ(t)|t=0

(39)

Proof. By using the Ψ-Formable transform definition on Ψ-regularized Hilfer Prabhakar fractional
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derivative (9) and equations (29), (35), we obtain

FΨ[
CDγ,ρ,ν,Ψ

ϱ,ϖ,0+ ξ(t)](X, v)

= FΨ

[
I−γν,Ψ
ϱ,ν(n−ρ),ϖ,0+I

−γ(1−ν),Ψ

ϱ,(1−ν)(n−ρ),ϖ,0+

(
1

Ψ′(t)

d

dt

)n

ξ(t)

]
(X, v)

= FΨ

[
I−γ,Ψ
ϱ,n−ρ,ϖ,0+

(
1

Ψ′(t)

d

dt

)n

ξ(t)

]
(X, v)

= FΨ

[
I−γ,Ψ
ϱ,n−ρ,ϖ,0+z(t)

]
(X, v), z(t) =

(
1

Ψ′(t)

d

dt

)n

ξ(t)

=
( v
X

)n−ρ (
1−ϖ

( v
X

)ϱ)γ
FΨ[z(t)](X, v)

=
( v
X

)n−ρ (
1−ϖ

( v
X

)ϱ)γ [( v
X

)−n

FΨ[ξ(t)]−
n−1∑
k=0

( v
X

)k−n

Dk,Ψξ(0+)

]

=
( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
BΨ(X, v)−

n−1∑
k=0

( v
X

)k−ρ (
1−ϖ

( v
X

)ϱ)γ
Dk,Ψξ(0+)

4 Applications
In this section, the applications of the Ψ-Formable transform on Ψ-Hilfer-Prabhakar and Ψ-regularized
Hilfer-Prabhakar fractional derivatives are discussed for solving Cauchy type fractional differential
equations.

Theorem 4.1. The solution for the generalized Cauchy type problem of the fractional advection dis-
persion equation

Dγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ(x, t) = −wDxξ(x, t) + ϑ η

λ
2 ξ(x, t) (40)

subjects to below constraints

I−γ(1−ν),Ψ

ϱ,(1−ν)(1−ρ),ϖ,0+ξ(x, 0
+) = g(x), ϖ, γ, x ∈ R, ϱ > 0, (41)

lim
x→∞

ξ(x, t) = 0, t ≥ 0, (42)

is provided

ξ(x, t) =
1

2π

∫ ∞

−∞
e(−ikx)g(k)

∞∑
n=0

(iwk − ϑ|k|λ)ntν(1−ρ)+nρ+ρ−1E
γ(1+n)−γν
ϱ,ν(1−ρ)+ρ(n+1)(ϖ(Ψ(t))ϱ)dk (43)

where η
λ
2 is the fractional generalized Laplace operator of order λ, λ ∈ (0, 2), ρ ∈ (0, 1), ν ∈

[0, 1] : x ∈ R, t ∈ R+, γ > 0 Fourier transform of η
λ
2 is −|k|λ discussed in [31]

Proof. Applying the Fourier and Ψ-Formable transforms on equation (40) by using the equation (38).
First we will use Fourier transform on (40)

Dγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ

∗(x, t) = iwkξ∗(k, t)− ϑ|k|λξ∗(k, t) (44)
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where ξ∗(k, t) is the Fourier transform of ξ(x, t) with respect to variable x, now applying the Ψ-
Formable transform on (44), we will get( v

X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
ξ
∗
(k,X, v)−

( v
X

)ν(1−ρ)−1 (
1−ϖ

( v
X

)ϱ)γν
g∗(k)

= iwkξ
∗
(k,X, v)− ϑ|k|λξ∗(k,X, v)

where ξ
∗
(k,X, v) is the Ψ-Formable integral transform of ξ∗(k, t) with respect to variable t, therefore,

we have

ξ
∗
(k,X, v)

[( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
+ ϑ|k|λ − iwk

]
=
( v
X

)ν(1−ρ)−1 (
1−ϖ

( v
X

)ϱ)γν
g∗(k)

ξ
∗
(k,X, v) =

(
v
X

)ν(1−ρ)−1 (
1−ϖ

(
v
X

)ϱ)γν
g∗(k)(

v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ [
1 + ϑ|k|λ−iwk

( v
X )

−ρ
(1−ϖ( v

X )
ϱ
)
γ

] , if ϑ|k|λ − iwk(
v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ < 1

ξ
∗
(k,X, v) =

(
v
X

)ν(1−ρ)−1 (
1−ϖ

(
v
X

)ϱ)γν
g∗(k)(

v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
[
1 +

ϑ|k|λ − iwk(
v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
]−1

ξ
∗
(k,X, v) =

( v
X

)ν(1−ρ)+ρ−1 (
1−ϖ

( v
X

)ϱ)γν−γ

g∗(k)
∞∑
n=0

[
−ϑ|k|λ + iwk(

v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
]n

ξ
∗
(k,X, v) =

∞∑
n=0

(iwk − ϑ|k|λ)n
( v
X

)ν(1−ρ)+ρ+ρn−1 (
1−ϖ

( v
X

)ϱ)γν−γn−γ

g∗(k)

the solution of the problem was obtained by applying the inverse of both the Fourier and Ψ-Formable
transforms

ξ(x, t) =
1

2π

∫ ∞

−∞
e(−ikx)g(k)

∞∑
n=0

(iwk − ϑ|k|λ)ntν(1−ρ)+nρ+ρ−1E
γ(1+n)−γν
ϱ,ν(1−ρ)+ρ(n+1)(ϖ(Ψ(t))ϱ)dk

Remark 1: If the values of w and ϑ in the equation (40) are set to 0 and ih
2m

respectively, the
equation will be reduced to the one-dimensional space-time Schrodinger fractional equation, where
the values of mass and plank constant are m and h respectively.

ξ(x, t) =
1

2π

∫ ∞

−∞
e(−ikx)g(k)

∞∑
n=0

(− ih

2m
|k|λ)tν(1−ρ)+nρ+ρ−1E

γ(1+n)−γν
ϱ,ν(1−ρ)+ρ(n+1)(ϖ(Ψ(t))ϱ)dk (45)

Theorem 4.2. Investigating the solution to a generalized Cauchy problem for the fractional heat
equation

CDγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ(x, t) = N

∂2

∂x2
ξ(x, t) (46)

subject to the initial condition
ξ(x, 0) = g(x) (47)

lim
x→∞

ξ(x, t) = 0
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with ρ ∈ (0, 1), ν[0, 1]; ϖ, x ∈ R; N, ϱ > 0, γ ≥ 0, is given by

ξ(x, t) =
1

2π

∫ ∞

−∞
e−ikxg(k)dk

∞∑
n=0

tρnEγn
ϱ,ρn+1(ϖ(Ψ(t))ϱ)(−Nk2)n (48)

Proof. Applying the Fourier and Ψ-Formable transform on equation (46) by using the equations (39),
(47), first we will apply the Fourier transform

CDγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ

∗(k, t) = −Nk2ξ∗(k, t) (49)

where ξ∗(k, t) is the Fourier integral transform of ξ(x, t) with respect to variable x, now applying the
Ψ-Formable integral transform on (49)( v

X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
ξ
∗
(k,X, v)−

( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
ξ∗(k, 0) = −Nk2ξ∗(k,X, v)

where ξ
∗
(k,X, v) is Ψ-the Formable integral transform of ξ∗(k, t) with respect to variable t, therefore

ξ
∗
(k,X, v)

[( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
+Nk2

]
=
( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
g∗(k),

ξ
∗
(k,X, v) =

(
v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
g∗(k)(

v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ [
1 + Nk2

( v
X )

−ρ
(1−ϖ( v

X )
ϱ
)
γ

] , if Nk2(
v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ < 1

ξ
∗
(k,X, v) =

(
v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
g∗(k)(

v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
[
1 +

Nk2(
v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
]−1

,

ξ
∗
(k,X, v) = g∗(k)

∞∑
n=0

(−Nk2)n
( v
X

)ρn (
1−ϖ

( v
X

)ϱ)−γn

g∗(k),

ξ
∗
(k,X, v) =

∞∑
n=0

(−Nk2)n
( v
X

)ρn (
1−ϖ

( v
X

)ϱ)−γn

g∗(k),

the solution of the problem was obtained by applying the inverse of both the Fourier and Ψ-Formable
transforms

ξ(x, t) =
1

2π

∫ ∞

−∞
e−ikxg(k)dk

∞∑
n=0

tρnEγn
ϱ,ρn+1(ϖ(Ψ(t))ϱ)(−Nk2)n

Theorem 4.3. Investigating the solution to a generalized Cauchy problem for the fractional heat
equation

Dγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ(x, t) =M

∂2

∂x2
ξ(x, t), (50)

I−γ(1−ν),Ψ

ϱ,(1−ν)(1−ρ),ϖ,0+ξ(x, t)|t=0 = g(x), (51)

lim
x→∞

ξ(x, t) = 0,

with ρ ∈ (0, 1), ν[0, 1]; ϖ, x ∈ R; M,ϱ > 0, γ ≥ 0, is given by

ξ(x, t) =
1

2π

∫ ∞

−∞
e−ikxg(k)

∞∑
n=0

(−Mk2)ntρ(n+1)−ν(ρ−1)−1E
γ(n+1−ν)
ϱ,ρ(n+1)+ν(1−ρ)(ϖ(Ψ(t))ϱ)dk (52)
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Proof. Applying the Fourier and Ψ-Formable transform on equation (50) by using equations (38),
(51), first we will apply the Fourier transform

Dγ,ρ,ν,Ψ
ϱ,ϖ,0+ ξ

∗(x, t) = −Mk2ξ∗(k, t) (53)

where ξ∗(k, t) is the Fourier transform of ξ(x, t) with respect to variable x, now applying the Ψ-
Formable integral transform on equation (53)( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
ξ
∗
(k,X, v)−

( v
X

)ν(1−ρ)−1 (
1−ϖ

( v
X

)ϱ)γν
I−γ(1−ν),Ψ

ϱ,(1−ν)(1−ρ),ϖ,0+f
∗(x, 0)

= −Mk2ξ
∗
(k,X, v)

where ξ
∗
(k,X, v) is the Ψ-Formable integral transform of ξ∗(k, t) with respect to variable t, therefore

we have( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
ξ
∗
(k,X, v)−

( v
X

)ν(1−ρ)−1 (
1−ϖ

( v
X

)ϱ)γν
g∗(k) = −Mk2ξ

∗
(k,X, v)

ξ
∗
(k,X, v)

[( v
X

)−ρ (
1−ϖ

( v
X

)ϱ)γ
+Mk2

]
=
( v
X

)ν(1−ρ)−1 (
1−ϖ

( v
X

)ϱ)γν
g∗(k)

ξ
∗
(k,X, v) =

(
v
X

)ν(1−ρ)−1 (
1−ϖ

(
v
X

)ϱ)γν
g∗(k)(

v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
+Mk2

ξ
∗
(k,X, v) =

(
v
X

)ν(1−ρ)−1 (
1−ϖ

(
v
X

)ϱ)γν
g∗(k)(

v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ [
1 + Mk2

( v
X )

−ρ
(1−ϖ( v

X )
ϱ
)
γ

] , if ( Mk2(
v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
)
< 1

ξ
∗
(k,X, v) =

(
v
X

)ν(1−ρ)−1 (
1−ϖ

(
v
X

)ϱ)γν
g∗(k)(

v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
[
1 +

Mk2(
v
X

)−ρ (
1−ϖ

(
v
X

)ϱ)γ
]−1

ξ
∗
(k,X, v) =

( v
X

)ν(1−ρ)+ρ−1 (
1−ϖ

( v
X

)ϱ)γν−γ

g∗(k)
∞∑
n=0

(−Mk2)n
( v
X

)ρn (
1−ϖ

( v
X

)ϱ)−γn

ξ
∗
(k,X, v) = g∗(k)

∞∑
n=0

(−Mk2)n
( v
X

)ρn+ν(1−ρ)+ρ−1 (
1−ϖ

( v
X

)ϱ)γν−γn−γ

,

the solution of the Cauchy type fractional differential equation was obtained by applying the inverse
of both the Fourier and Ψ-Formable transforms.

ξ(x, t) =
1

2π

∫ ∞

−∞
e−ikxg(k)

∞∑
n=0

(−Mk2)ntρ(n+1)−ν(ρ−1)−1E
γ(n+1−ν)
ϱ,ρ(n+1)+ν(1−ρ)(ϖ(Ψ(t))ϱ)dk

Theorem 4.4. Investigating the solution to a Cauchy problem for a fractional differential equation
CDγ,ρ,ν,Ψ

ϱ,−ϖ,0+ξ(x, t) = −λ(1− x)ξ(x, t), for |x| ≤ 1 (54)

ξ(x, 0) = 1 (55)

with the constraints that
t > 0, λ > 0, γ ≥ 0, 0 < ϱ ≤ 1, 0 < ρ ≤ 1, is obtained

ξ(x, t) =
∞∑
n=0

(λx− λ)ntρnEγn
ϱ,ρn+1(−ϖ(Ψ(t))ϱ) (56)
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Proof. Let ξ(x,X, v) be the Ψ-Formable integral transform of ξ(x, t) with respect to variable t. Now
applying the Formable transform on equation (54) by using (39), (55), then we get( v

X

)−ρ (
1 +ϖ

( v
X

)ϱ)γ
ξ(x,X, v)−

( v
X

)−ρ (
1 +ϖ

( v
X

)ϱ)γ
ξ(x, 0)

= −λ(1− x)ξ(x,X, v)

ξ(x,X, v)

[( v
X

)−ρ (
1 +ϖ

( v
X

)ϱ)γ
+ λ(1− x)

]
=
( v
X

)−ρ (
1 +ϖ

( v
X

)ϱ)γ
ξ(x,X, v) =

(
v
X

)−ρ (
1 +ϖ

(
v
X

)ϱ)γ(
v
X

)−ρ (
1 +ϖ

(
v
X

)ϱ)γ [
1 + λ(1−x)

( v
X )

−ρ
(1+ϖ( v

X )
ϱ
)
γ

] , if λ(1− x)(
v
X

)−ρ (
1 +ϖ

(
v
X

)ϱ)γ < 1

ξ(x,X, v) =

(
v
X

)−ρ (
1 +ϖ

(
v
X

)ϱ)γ(
v
X

)−ρ (
1 +ϖ

(
v
X

)ϱ)γ
[
1 +

λ(1− x)(
v
X

)−ρ (
1 +ϖ

(
v
X

)ϱ)γ
]−1

ξ(x,X, v) =
∞∑
n=0

[
−λ(1− x)(

v
X

)−ρ (
1 +ϖ

(
v
X

)ϱ)γ
]n

ξ(x,X, v) =
∞∑
n=0

(−λ)n(1− x)n
( v
X

)ρn (
1 +ϖ

( v
X

)ϱ)−γn

,

the solution of the Cauchy type fractional differential equation was obtained by applying the inverse
of the Ψ-Formable integral transform on both sides of the above equation.

ξ(x, t) =
∞∑
n=0

(λx− λ)ntρnEγn
ϱ,ρn+1(−ϖ(Ψ(t))ϱ)

5 Conclusion
The generalised Foramable transform called as Ψ-Formable transform was used on both the Ψ-
Hilfer-Prabhakar fractional derivative and its regularized version. The applications of this transform
were then demonstrated by solving Cauchy type fractional differential equations using the Ψ-Hilfer-
Prabhakar fractional derivative and the three parameter Mittage-Leffler function. The results indicate
that the Ψ-Formable transform is a useful tool for solving fractional differential equations.
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