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Abstract

The present study presents an alternative analytical workflow that combines mid-infrared (MIR) microscopic imaging and deep
learning to diagnose human lymphoma and differentiate between small and large cell lymphoma. We could show that using a
deep learning approach to analyze MIR hyperspectral data obtained from benign and malignant lymph node pathology results
in high accuracy for correct classification, learning the distinct region of 3900 cm-1 to 850 cm-1. The accuracy is above 95% for
every pair of malignant lymphoid tissue and still above 90% for the distinction between benign and malignant lymphoid tissue
for binary classification. These results demonstrate that a preliminary diagnosis and subtyping of human lymphoma could be

streamlined by applying a deep learning approach to analyze MIR spectroscopic data.
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Abstract

The present study presents an alternative analytical workflow that combines mid-infrared (MIR) microscopic
imaging and deep learning to diagnose human lymphoma and differentiate between small and large cell
lymphoma. We could show that using a deep learning approach to analyze MIR hyperspectral data obtained
from benign and malignant lymph node pathology results in high accuracy for correct classification, learning
the distinct region of 3900 cm™' to 850 cm™!. The accuracy is above 95% for every pair of malignant lymphoid
tissue and still above 90% for the distinction between benign and malignant lymphoid tissue for binary
classification. These results demonstrate that a preliminary diagnosis and subtyping of human lymphoma
could be streamlined by applying a deep learning approach to analyze MIR spectroscopic data.
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Abbreviation:

ANN: neural network

CAE: Convolutional Autoencoder
DA: discriminant analysis
DLBCL: diffuse large B-cell lymphoma
FC: follicle centre

FL: follicular lymphoma

GCB: germinal centre

HCA: hierarchical cluster analysis
MIR: Mid-infrared

MZ: mantle zone

non-GCB: non-germinal centre
PCA: principal component analysis
PLS: partial least squares

RF': random forest

rLN: Reactive (normal) lymph nodes



SVMs: support vector machines
Introduction

Mid-infrared (MIR) microscopic imaging is a modern analytical method that is widely used to characterize
the components of biological specimens [1-3] and has already been applied in tissue histology [4-6]. MIR
microscopic imaging was, for example, used to aid in the differentiation between benign and malignant
disease [3, 5, 7-11] and was tested for imaging lymph node histopathology [6, 12]. Our group successfully
implemented this method for the differentiation between reactive lymph nodes, small and large cell lymphoma
using follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL) as an example [13].

IR microscopic imaging experiments are measurements that include high-quality and high-quantity infor-
mation. Thus, chemometric tools in imaging analysis are a prerequisite to taking advantage of the entire
measurement [14]. Statistical classification methods have been used for histopathological studies, which dis-
criminate between pixels of healthy tissue versus pixels of diseased tissue [15, 16]. Multifactorial statistical
analysis methods related to IR data have been widely implemented for identifying changes in lipids, proteins,
nucleic acids, and carbohydrates, such as principal component analysis (PCA) [17, 18] and partial least squa-
res (PLS) [19, 20] combined with discriminant analysis (DA) [21], hierarchical cluster analysis (HCA) [22],
support vector machines (SVMs) [23] and random forest (RF) [24]. As a pattern-recognition-based approach,
the (artificial) neural network ((A)NN) proved to be effective in analyzing data obtained from biological spe-
cimens, also using IR imaging techniques [25-27]. NNs perform best when trained with a large amount of
labelled data [28, 29]. However, in pathology, labelling data, which means (whole-slide) images, is complex
and time-consuming [28]. These limitations can be eliminated by employing so-called self-supervised and un-
supervised techniques [28, 29]. One unsupervised technique is the Convolutional Autoencoder (CAE), which
is trained with unlabelled data [29, 30]. Such NNs were developed to work with high-dimensional data and
have already been implemented to solve medical problems, such as radiology, cardiology, neurology, and even
pathology [30-34]. In brief, the input layer of the CAE compresses the data and creates a code, which is then
used to reconstruct them in the output layer [30]. The CAE-based network consists of several convolutional
layers with a decreasing number of filters that create a bottleneck in the centre of the network (Figure la
). After this bottleneck, the number of neurons increases again, allowing the network to reproduce the input
data. The bottleneck in the centre of the CAE forces the NN to learn the features of the input data. This
can be compared to a dimensionality reduction as performed with PCA [30].

This study combines MIR imaging of unstained tissue slides and a deep learning approach using CAE as an
example of an unsupervised technique to differentiate between benign and malignant lymphoid tissues and
to classify lymphoma subtypes.

Materials and Methods
Patients and Material

The dataset acquired as part of our previous study on MIR imaging of human lymphomas was used [13].
This dataset includes MIR measurements of six cases of FL and 12 cases of DLBCL (five germinal centre
(GCB) and seven non-germinal centre (non-GCB) subtypes), which were diagnosed between 2002 and 2012
at the Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck.
Reactive (normal) lymph nodes (rLN) served as control. The study was conducted according to the THC-
GCP guidelines and the declaration of Helsinki. Ethical approval was obtained from the ethical committee
of the Medical University of Innsbruck (EK-Nr.1213/2017). For information on initial sample preparation
and MIR imaging, please refer to Willenbacher E et al. (2021) [13].

Data Processing

In order to classify data by a neural network, the network has to learn a feature representation of the data.
Usually, this is achieved by training on a big set of labelled data. Labelling histological data, however, is
time-consuming and expensive. A solution to that issue is to train the network in an unsupervised manner.
To do so we implemented a convolutional autoencoder (CAE). Those neural networks have a bottleneck in



their architecture. This bottleneck forces the network to learn a reduced representation of the data. This
reduced representation can then be used as input for a classifier network.

We fed the single-pixel spectra of the two-dimensional dataset into the ANN. A total number of over 1 million
single spectra from different IR datasets was used to pre-train the CAE. Using a large variety of data allows
the neural network to learn the features of the IR data without the danger of overfitting the network [29].

The neural network was implemented using Python and Tensorflow. The training of the Autoencoder took
around 4 hours on an NVidia GTX 1080 GPU. After this network preparation, the so-called decoder part
(blue layers in Figure 1a ) of the Autoencoder has been removed. The updated neural network ends at the
bottleneck. All the layers are frozen at this point, which means they cannot be altered anymore by further
training. With that, the previous feature extraction capabilities are preserved. Next, a small neural network
consisting of two layers with ten fully connected neurons is added to the network. These two layers are
connected to the output of the network, which, depending on the task, consists of several (for multiclass
classification) or one (for binary classification) output neurons (Figure 1b ).
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Figure 1. a) S chematic of the CAE. The CAE receives an IR spectrum as input and tries to reproduce
this input data. The pink convolutional layers have a Kernel size of 10 with 32,64, and 32 filters. An
additional Dropout layer (20% dropout rate) was added to prevent overfitting. The green layer describes
a fully connected dense layer with 24 neurons. The blue part of the network consists of three upscaling
convolutional layers with a kernel size of 3,5 and 4, respectively, and 64,128 and 55 Filters. The total
number of parameters accounts for 800.863 parameters. b) The green layers represent the two added dense
layers with 10 neurons for the classification tasks. The grey squares represent output neurons. The number
of output neurons depends on the number of classes to be distinguished. The trainable parameters account
for 261.

This final part of the network will be trained to classify the different subtypes of lymphoma and normal
(reactive) control. It uses the pre-trained feature detection of the first part of the Autoencoder. With that,
the number of parameters to be fitted is reduced to 253 Parameters.

Labelling training and test data are required to train the classifier part of the neural network. Here, areas
of interest in lymphoma tissue (FL = follicular and intrafollicular area; DLBCL, non-GCB and DLBCL,
GCB subtype) and rLN were labelled, and the corresponding spectra were extracted. One sample served as
a training set, and the other as an evaluation set. The labelling procedure of the training data is depicted
in Figure 2 .
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Figure 2 Workflow for the labelling and extraction of the training and evaluation spectra of the different
classes. The first row shows the optical images of the FL (a), DLBCL (b and c), and normal control (e).
The second row shows the labelled regions. The coloured labels correspond to FL (grey), DLBCL, non-GCB
subtype (orange), DLBCL, GCB subtype (pink), and rLNs (green = follicle centre (FC); blue = mantle zone
(MZ)). The right column shows a selection of spectra, with the type corresponding to the coloured bar on
the left.

Table 1 shows the type of disease, label colour as manually assigned (see figure 2), and the number of
spectra obtained for analysis.

Type FL DLBCL, non-GCB DLBCL, GCB rLN¥C¢ rLNMZ
Colour in Fig. 2 Grey Orange Pink Green Blue
Nr. Spectra 45.000 40.000 50.000 35.000  45.000

Table 1. Type of tissue, the colour of label and number of spectra obtained for this study
After labelling, the following steps were carried out:

Application of the network to distinguish between benign and malignant lymphoid tissue types. To do so,
the neural network is trained with two sets of spectral data (e.g., FL vs DLBCL, non-GCB). The evaluation
of the deep classifier is done on the second set of spectra containing the respective classes.

Classification of more than two types (multiclass) of neoplastic and reactive lymphoid tissue.
Results

Figure 3 shows the binary (left side) and multiclass (right side) classification obtained from MIR imaging
data applying the deep learning approach described above.
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Figure 3 Confusion matrices for the binary (right side) and multiclass (left side) classification between the
benign and malignant lymphoid tissues. The x-axis shows the true label. The y-axis corresponds to the
predicted label.
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As shown in Figure 3, the accuracy is above 95% for every pair of malignant lymphoid tissue and still
above 90% for the distinction between benign and malignant lymphoid tissue. The multiclass classification
between the lymphoma types (FL and DLBCL) and rLNF¢ and rLNMZ leads to similarly high accuracy for
the binary classification. This multiclass classification’s accuracy is still above 94 % for all neoplastic and
reactive lymphoid tissue types.

The neural network, once trained, performs a forward execution of a complex function depicted by the NN,
representing the analysis of an IR image in less than 25 ms. NNs with three output classes have been trained
to visualize the capabilities of the deep learning approach. These three classes serve as a colour code for
an RGB image, whereby the NN classifies the spectrum of each pixel. This means that it was decided to
which class the corresponding subsection belongs for each pixel individually. This leads to the satisfactory
resolution images shown inFigure 4 A-C .
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Figure 4 a) Results of the classification of the NN for FL showing histology on the left side and the right

side neural network classification with FL (follicular/intrafollicular) in red, GCB in green and normal tissue
(rLN¥C) in blue.
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Figure 4 b) Results of the classification of the NN for DLBCL, non-GCB showing histology on the left
side and on the right side neural network classification with DLBCL, non-GCB in blue, GCB in green and
normal tissue (rLNFC ) in red.
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Figure 4 c) Results of the classification of the NN for rLNF¢/MZ showing histology on the left side and the
right side neural network classification with rLN¥C in green and rLNM?Z in red and FL in blue.

Discussion

Our study showed that using a deep learning approach to analyze MIR imaging data from unstained histo-
logical slides can distinguish between benign and malignant lymphoid tissue and aid in classifying types of
lymphomas. MIR imaging on tissue sections results in large and complex data sets that must be analyzed
and interpreted. Focussing on possible use in routine diagnostics, the data acquisition and the subsequent
analysis must take place within a narrow time window to offer an advantage over standard pathological
diagnostics or assist the pathologist during the diagnostic procedure. A deep learning approach using NN,
offers such a possibility. Our NN, once trained, analyzed a MIR image in less than 25 ms. However, training
NNs using a deep learning approach takes considerable time and requires graphical processing units (GPUs)
and high-performance machines to process digital images [28, 30]. The training, however has to be performed
only once, and the NN can then be used to classify IR data without further training. This even allows for
real-time spectrum analysis.



NNs have already been implemented in medicine and used in various studies in the fields of radiology,
cardiology, neurology, and pathology [30-34]. But several caveats prevent such techniques from being widely
used. One of the most important is undoubtedly the ”black box” character of such analyses [29, 30]. The
decisions of such algorithms are not easy for the human user to understand and interpret. Therefore, a
certain scepticism about such approaches is understandable, especially in medicine, where comprehensible
decisions with sometimes severe consequences for patients must be made and justified [28, 29].

Another problem is the need for large datasets to train NNs for a specific problem [28, 30]. Small datasets
result in poor performance of NNs, while on the other hand, one has to bear in mind not to ”overfit” a NN
[29, 30]. In the case of pathological diagnoses, obtaining such datasets is a significant problem, especially
regarding rare diseases. But one has also to consider the extreme variability of histopathological patterns
derived from various tissue types, building up organs [28]. Additionally, data quality is essential, especially
when dealing with pixel-based data (images) in pathology, where artefacts might pose serious problems [28,
35, 36]. In fact, concerning MIR imaging, there are currently no available datasets that could be used, and it
is also questionable if there will be any in the future. Overall, it is doubtful that any deep learning approach
using NNs, combined with MIR microscopic imaging, will replace pathologists in the foreseeable future. It is
more likely, that deep learning-driven approaches will be used to assist a pathologist during the diagnostic
procedure [37].

Finally, besides technical questions and dataset availability, ethical and legal questions are also associated
with the use of deep learning in decision-making processes in pathology. These fundamental questions range
from concern about data privacy to the question of responsibility for a wrong decision based on a deep
learning approach [29]. However, when there are fewer and fewer pathologists, deep learning techniques may
assist as a diagnostic tool to support the pathologist in stratifying patients, identifying urgent cases, and
thus better directing the routine workflow.

Finally, the financial side of introducing such technologies must also be considered. The financial pressure
on pathology laboratories is already a challenge because of the increasing digitization and subsequent data
storage [28]. The acquisition of access to the appropriate hard- and software, such as GPU clusters, as a
must to train deep learning algorithms in practice, could fail due to a lack of funding [28, 38].

Our results demonstrate that a diagnosis and subtyping of human lymphoma could be streamlined based on
MIR microscopy and a deep learning approach for data analysis. This might be a complementary pathway
for a quick preliminary assessment of the type and aggressiveness of the disease and could probably help in
advance to identify urgent diagnoses and, given the increasing shortage of pathologists, to prioritize these
patients in the routine workflow.
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