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Abstract

ECG is a non-invasive way of determining cardiac health by measuring the electrical activity of the heart. We investigate a

novel detection technique for feature points P, QRS and T to diagnose various atrial and ventricular cardiovascular anomalies

with ECG signals for ambulatory monitoring. Before the system is worthy of field trials, we validated it with several databases

and recorded their response. The QRS complex detection is based on the Pan Tompkins Algorithm and difference operation

method that provides positive predictivity, sensitivity and false detection rate of 99.29\%, 99.49\% and 1.29 \% respectively.

Proposed novel T wave detection provides sensitivity of 97.78\%. Also, proposed P wave detection provides positive predictivity,

sensitivity and false detection rate of 99.43\%, 99.4\% and 1.15\% for the control study (normal subjects) and 82.68\%, 94.3\%

and 25.4\% for the case (patients with cardiac anomalies) study respectively. Disease detection such as, arrhythmia is based on

standard R-R intervals while myocardial infarction is based on the ST-T deviations where the positive predictivity, sensitivity

and accuracy are observed to be 94.6\%, 84.2\% and 85\%, respectively. It should be noted that, since the frontal leads are

only used, the anterior myocardial infarction cases are detected with the injury pattern in lead \textit{avl} and ST depression

in reciprocal leads. Detection of atrial fibrillation is done for both short and long duration signals using statistical methods

using interquartile range and standard deviations, giving very high accuracy, 100\% in most cases. The system hardware for

obtaining the 2 lead ECG signal is designed using commercially available off the shelf components. Small field validation of

the designed system is performed at a Public Health Centre in Gujarat, India with 42 patients (both cases and controls). We

achieved 78.5\% accuracy during the field validation.
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Abstract: ECG is a non-invasive way of determining cardiac health by measuring the electrical activity of the heart. We investigate
a novel detection technique for feature points P, QRS and T to diagnose various atrial and ventricular cardiovascular anomalies
with ECG signals for ambulatory monitoring. Before the system is worthy of field trials, we validated it with several databases and
recorded their response. The QRS complex detection is based on the Pan Tompkins Algorithm and difference operation method
that provides positive predictivity, sensitivity and false detection rate of 99.29%, 99.49% and 1.29 % respectively. Proposed novel T
wave detection provides sensitivity of 97.78%. Also, proposed P wave detection provides positive predictivity, sensitivity and false
detection rate of 99.43%, 99.4% and 1.15% for the control study (normal subjects) and 82.68%, 94.3% and 25.4% for the case
(patients with cardiac anomalies) study respectively. Disease detection such as, arrhythmia is based on standard R-R intervals
while myocardial infarction is based on the ST-T deviations where the positive predictivity, sensitivity and accuracy are observed
to be 94.6%, 84.2% and 85%, respectively. It should be noted that, since the frontal leads are only used, the anterior myocardial
infarction cases are detected with the injury pattern in lead avl and ST depression in reciprocal leads. Detection of atrial fibrillation
is done for both short and long duration signals using statistical methods using interquartile range and standard deviations, giving
very high accuracy, 100% in most cases. The system hardware for obtaining the 2 lead ECG signal is designed using commercially
available off the shelf components. Small field validation of the designed system is performed at a Public Health Centre in Gujarat,
India with 42 patients (both cases and controls). We achieved 78.5% accuracy during the field validation. We thus conclude that
our proposed method is ideal for improvisation in cardiac health monitoring outreach in resource constrained regions.

1 Introduction

Deaths due to cardiovascular diseases affect mostly low and middle
income countries [1]. Timely detection can be beneficial towards pri-
mary health care if, addressed. However, the early detection schemes
in use require expensive and lengthy procedures in hospital settings
and are not practical until serious symptoms appear. Therefore, a
system that can detect cardiac anomalies at very early stages of the
disease can be beneficial.

In literature, various methods are presented for R peak detection
and classification. In [2, 3], the authors determine the R peaks of
ECG QRS complex using the Pan Tompkins Algorithm [4, 5] and
then detect only the rhythmic changes in R-R interval. In [6–8], the
authors detect and characterize MI with 12 lead ECG data avail-
able in the PTB database [9, 10] using neural networks and support
vector machines. A 12 lead ECG along with 3 lead Vector Cardio
Graph signals for Myocardial Infarction (MI) detection is reported
in [11], where the access of 15 lead data in real time is challenging.
Authors in [12, 13] use R peak and P wave information to deter-
mine only the atrial fibrillation. In [14, 15], PQRST point detection
of ECG signal for identifying various cardiovascular diseases using
12 leads are discussed. Although the methods provide better classi-
fication using HRV, it is difficult to implement these algorithms on
portable devices used for ambulatory monitoring. In research work
[14, 15], the detection of various conditions using precordial and
limb leads is discussed that requires expert supervision.

In this paper, we discuss an approach that requires the minimal
intervention of a medical expert for the placement of electrodes,
data acquisition and disease classification within home settings. Our
contribution is summarized in the paper with extensive results and

discussion. Our proposed method detects and classifies some impor-
tant and major cardiac conditions. In this work, we obtain P, QRS and
T points of ECG signals to categorize various atrial and ventricular
anomalies of the heart. We propose a novel P and T detection method
based on local search spaces, while for the QRS detection, the stan-
dard Pan Tompkins Algorithm and difference operation method is
adopted. Noise effects are also discussed for the proposed P and T
waves detection methods. This leads to an efficient detection of heart
rate variability (HRV), arrhythmic conditions, atrial fibrillation, pro-
longation and shortening of QT and PR intervals and subsequent
detection of MI. The use of 4 limb electrodes for obtaining the ECG
signals offers ease of wearability which is one of the key contribu-
tions of this work for ambulatory monitoring [5, 16] applications.
Additionally, user specific information is used along with the ECG
data [17, 18] that improved detection accuracy.

To validate the proposed algorithms, we have utilized standard
databases available on the Physionet [19] that demonstrate the
robustness of our proposed method. The results obtained for auto-
mated ECG abnormality detection are invariably data dependent
[20]. To make the algorithm comparable to the state of the art, MIT-
BIH Arrhythmia database [20] is utilized for the detection of QRS
complex, the QT database [21] and MIT-BIH arrhythmia database
with P wave annotations [22] are utilized for the validation of the
proposed T and P wave detection, respectively. The PTB database
[9] and MIT-BIH Arrhythmia databases are used for MI, atrial fibril-
lation and arrhythmia classification accuracy. Along with it, the field
validation has been done with cases and controls in a Public Health
Centre in Gujarat, India.
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Fig. 1: 12 Lead versus Proposed 2 Lead Electrodes Configuration

Fig. 2: Proposed 2 Lead System

2 ECG System Hardware

In a conventional 12 lead ECG system, 10 electrodes are connected
to the body that also requires expert supervision for electrode place-
ment [16]. However, it is observed that in resource constrained
regions in India and Africa where the availability of doctors is
severely limited, access to cardiac markers as primary screening
remains a huge challenge [23]. To address this, several researches
have been published where the focus shifts from hardware to soft-
ware system [24, 25]. We have addressed the affordability, auto-
mated detections and ease of use (with or without the medical
personal) as motivation for the system. As shown in Fig. 1, our pro-
posed system uses 4 electrodes that are connected to right arm (RA),
left arm (LA), left leg (LL) and right leg (RL) to obtain lead I and
lead II signals. These limb electrodes provide the complete frontal
plane leads, while lead III and other augmented leads avl, avf and
avr are derived from the Einthoven’s Triangle [16] (Fig. 3) with the
following equations:

Lead III = Lead II − Lead I (1)

avl =
Lead I − Lead III

2
(2)

avf =
Lead II + Lead III

2
(3)

avr =
−Lead I − Lead II

2
(4)

The augmented leads avl, avr and avf do not provide any extra
details but are required for the frontal plane and is also useful for
more accurate detections [16]. The schematic shown in Fig. 2 is
representing the developed system hardware which obtains lead I
and lead II signals and transmits them to a nearby processor over a
Bluetooth channel. We have designed the 2 lead front end system to
obtain the lead I and lead II ECG signals for real time processing of
algorithms.

Fig. 3: Einthoven’s Triangle and the Augmented Leads

Fig. 4: Real Time Implementation with the Designed PCBs

Fig. 5: Real Time Implementation 2 Lead Front End Results

IET Research Journals, pp. 1–11
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Fig. 6: Detection Sequence for an ECG Signal and Categorization

Fig. 7: Various Feature Points in the ECG Signal

The front end and back end system diagrams of the PCBs is shown
in Fig. 4. At the receiver block, the signals are collected by another
Bluetooth module where the algorithms for various cardiac condi-
tions are processed in the local processor. It is worth noting that
MI detection requires at least information from 6 frontal leads while
other conditions require only the lead II signal [16].

To verify the derived bipolar ECG signals, we initially acquire
the three bipolar ECG signals (Lead I, Lead II, Lead III ), with three
separate ECG acquisition boards. The obtained ECG lead III is com-
pared with the derived lead III from eq.1. It provided the correlation
coefficient between the derived and obtained leads approximately
close to 1, signifying the similarity of signals. Although the dc level
of both signals is different, it does not cause any major implications
on the obtained temporal morphological features. Hence, to save the
area and power required by the third acquisition board, the system is
optimized to have only two single lead ECG acquisition boards. Fig.
5 shows the correlation coefficient between derived and obtained
lead for two different cases and leads I, II and III signals. For all
the experiments we have used a sampling frequency of 104 Hz at
a baud rate of 9600 for all the frontal leads, that is sufficient for
the ambulatory monitoring[26]. It is to be noted that for abnormal
and normal signals of the PTB database, the correlation coefficient
between the derived (Lead III, avl, avr and avf) and existing leads
(Lead I, II) are perfectly unity.

3 Feature Point Detection of an ECG Signal

Categorization of several cardiac diseases requires the detection of
feature points associated with ECG signal such as P, QRS, J, T
and additional morphological changes. Our proposed method use a
detection sequence shown in Fig. 6. While, various feature points P,
Q, R, S, T and J associated with ECG signals and various intervals
RR, PR, QT, ST, PQ are shown in Fig. 7 for categorization.

3.1 QRS Complex Detection

In our proposed method, initial step of the algorithm is to find the R
peaks. For this, we have used the standard Pan Tompkins Algorithm
(PTA) [4, 5]. We also observed that the adaptive thresholding in PTA
leads to a minimum acceptable false detection rate that can be use-
ful for ambulatory monitoring schemes. In PTA, ECG signal is sent
to a 5− 15 Hz Band Pass Filter (BPF). The output of BPF is used
for dual thresholding and is further passed through a five-point dif-
ferentiator. The signal that is normalized is then fed to a squaring
block followed by Moving Average Integration Filter (MAF). MAF
is specially designed to capture the widest QRS complex width (e.g.
150 ms in our case). As, the sampling frequency (fs) for the MIT-
BIH [20] arrhythmia database is 360Hz, therefore we have chosen a
54 point (fs × 150ms) MAF to capture QRS complexes. The MAF
output along with the BPF output is used for adaptive thresholding
to detect the R peaks in the signal. In this method, if the R peak is

IET Research Journals, pp. 1–11
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Fig. 8: QRS Detection of an ECG Signal

detected from both BPF and MAF, then that R peak is considered as
the valid R peak.

After determining the R peaks, we obtain the Q and S points to get
complete information of QRS complex. Flow diagram shown in Fig.
8 based on the difference operation method [27] to determine the Q
and S points locations and PTA for R peaks detections. To locate the
Q point, two search spaces for Q1 and Q2 have been created adjacent
to the R peak that are of 55.5 ms and 110 ms durations. The min-
imum point in the first search space has been marked as Q1 while
the minimum point in the second duration is marked as Q2. If the
location of Q1 and Q2 are identical, then the location is the actual
Q point. If the maximum amplitude between Q2 and Q1 (termed as
Mvq) found to be greater than the sum of amplitude of Q1 point
(Vq1) and 0.18 mV (empirical value), then Q2 is selected as the Q
point. Otherwise, Vq1 and amplitude of Q2 (Vq2) is compared and
the minimum point is considered the Q point. Similarly, the search
space of 55 ms and 110 ms is considered after the R peak to deter-
mine the S point and minimum points locations are stored in the
variables named S1 and S2. If S1 and S2 are similar then it is consid-
ered as the actual S point otherwise the minimum point is considered
as S point. A detailed discussion of finding out Q and S point and the
detailed discussion are given in our earlier work [28].

3.2 Baseline and J point Detection

In our proposed algorithm, J point is detected in a search space of
80 ms starting from tR + 20 ms, where tR denotes the position of
the corresponding R peak. We detect three successive points with
a slope less than or equal to an empirical value (2.5 µV/sec). If
the above mentioned condition holds true the midpoint of it has been
considered as the J point. In the case where the condition is not satis-
fied, tS + 60ms is considered as the J point [17], where tS represent
the corresponding S point location. Local search spaces for Baseline
and J point is shown in Fig. 9.

Additionally, for detecting the baseline of the ECG signal, a
search space from tR - 100 ms to tR - 40 ms is considered. This

Fig. 9: Search Spaces for Baseline (Isoelectric Level) and J Point of
the Signal

Fig. 10: Monophasic and Biphasic T waves

Fig. 11: T wave Detection for Biphasic, Monophasic, Positive and
Inverted T Waves

particular segment is again searched for 20 ms duration with min-
imum average slope value. The selected segment’s mean amplitude
is defined as the baseline level or the isoelectric level of the signal.
The J point and baseline are significant for cardiac anomalies.

3.3 Proposed T Wave Detection Algorithm

For the detection of conditions like MI, hypocalcemia and hyper-
calcemia, T wave detection is essential. The nature of T wave can
be monophasic or biphasic in different leads. As shown in Fig. 10,
the waveforms show the biphasic and monophasic nature of the T
waves. Several T wave detection [29, 30] schemes are provided
for the monophasic T waves. To detect monophasic or biphasic T
waves, our proposed algorithm utilizes the QRS complex, J point
and baseline information of the signal. The corresponding RR inter-
vals are also utilized to create reliable search spaces for the existing
T waves. A 200 ms search space, as shown in Fig. 11 is made
adaptive to continuously occurring baseline changes or drifts in
the signal, by subtracting the corresponding baseline level of the
signal from the probable search space. It is to be noted that the
200 ms duration search space for possible T waves starts from the
StartT point, where tJ and RR(i) represent the J point location
and corresponding RR interval, respectively.

IET Research Journals, pp. 1–11
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Fig. 12: Proposed Flow Diagram for P wave Detection

For T wave detection initially, the ECG is passed through
0.5 Hz − 10 Hz BPF to optimize the T wave energy at the out-
put. Following this, the minimum and maximum amplitudes in the
local search space along with respective sample numbers (locations)
have been determined. The biphasic or monophasic T wave loca-
tion is then detected by comparing the absolute (abs) maximum and
minimum values as shown in Fig. 11.

3.4 Proposed P Wave Detection Algorithm

P wave detection algorithm is proposed in this paper and the flow
diagram is shown in Fig. 12. In the beginning, the BPF optimizes the
P wave energy at the output; the QRS complexes of the signal are
set to fixed level so these does not obstruct the detection of P waves.
For Premature Ventricular Contractions (PVC), the P waves may not
occur due to certain physiological constraints [16]. To mitigate this,
we have introduced a prerequisite for the P wave detection: if the
corresponding RR interval of the signal is greater than a threshold
value (0.4 sec), we can only follow the remaining algorithm to detect
the P waves. Otherwise, the P wave for that particular segment will
not exist and hence cannot be detected.

The temporal search space for P wave mentioned in [31] is
adopted in this work. The search space for the P wave starts from
StartP and ends at StopP (see Fig. 12). The maximum amplitude
in this search space is detected. The location of the maximum (tP )
in this region is compared with the previous cycle’s T wave location
(tT ). If the above mentioned condition is true for more than 40% (
Empirical value based on experimentation) times of the total length
of T waves, it is concluded that T wave locations are misinterpreted
as P wave locations and therefore the StartP is shifted to another
location of the signal ( see the flow diagram). The location of max-
imum amplitude in this segment is considered the possible P wave
location. Following this, P wave amplitude (AmplitudeP ) is com-
pared with 1% value of R peak amplitude (AmplitudeR), and if the
condition holds true, a possible P wave is selected as the reasonable P
wave. At the final stage, tP is again searched for the local maximum
in the 40ms region for obtaining the final P wave location.

Fig. 13: Detection Algorithm for Various Arrhythmias

4 ECG Features and Disease Categorization

A detection sequence for determining the feature points R Peaks,
QRS Complex, J Point, P wave and T wave is used as shown in
Fig. 6. These features are further used to diagnose various heart
anomalies and disease categorization.

4.1 R-R Interval

For observing the various rhythmic changes, the R-R intervals of
lead II (connected between LL and RA) are preferred as this pro-
vides the best representation for these changes [16]. The detection
of arrhythmias is based only on the rhythmic changes [44] asso-
ciated with the signal. As shown in Fig. 13 the algorithm detects
Tachycardia, Asystole, Bradycardia, R on T condition, Bigeminy,
Trigeminy, PVC and Interpolated PVC arrhythmias depending on
the R-R intervals. A detailed discussion is given in our earlier work
[32].

4.2 ST-T Segment

The ST-T segment anomalies are used to detect Ischemic Heart Dis-
eases (IHD) or MIs [16, 33] that represent an insufficient supply
of blood to the heart and missing it can be fatal. MI can be fur-
ther subcategorized mainly as Anterior, Inferior, Lateral and Septal
cases according to its effects on the various arteries connected with
the heart. In conventional hospital settings, invasive methods such as
blood troponin levels with 12 lead ECG signal are used to detect the
MI conditions. Our proposed system is aimed at ambulatory mon-
itoring services that utilize the frontal leads for the ST-T deviated
MI detection. The MI can cause morphological changes on the ST-T
segment of the ECG signal, such as T wave inversion, Hyperacute
T waves, ST depression or elevation above the baseline of the sig-
nal [16]. It is one of the observation that our proposed method take
advantage of.

To detect hyperacute T waves, the R peaks amplitude is compared
with T waves amplitude. If the amplitude of T peak is more than
80% of the corresponding R peak and it is comparable for most of
the signal, then it is considered the hyperacute tall T waves case.
Similarly, to detect the inverted T waves, the amplitude of J point and
amplitude of T peak is considered for the comparison. If the J point
amplitude is greater than the corresponding T peaks amplitude for
most of the signal, it is considered the case of inverted T waves. To
detect the ST elevation and ST depression in the signal, we adopted
the analysis from [34].

IET Research Journals, pp. 1–11
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Table 1 Morphological Features Associated with Various Types of MI

Types of Morphological
MI Features

Inferior STE (II, III and avf ) AND STD (I and avl)
OR HT (II, III and avf )
OR IT (II, III and avf )

Lateral STE (I and avl)AND STD (III and avf )
OR HT (I and avl)
OR IT (I and avl)

Inferolateral STE (I, II, III and avl)
OR HT (I, II, III and avl)
OR IT (I, II, III and avl)

Anterior Injury pattern in avl [35] OR
or Septal STD (II, III and avf )

After detecting Hyperacute T waves (HT), Inverted T waves (IT),
ST segment elevation (STE) and ST segment depression (STD)
in the contiguous leads, we considered novel feature user specific
information (USI) such as gender, age and smoking status in the pro-
posed algorithm. With the experimental results, we conclude that the
inclusion of USI improve the algorithm efficacy, also mentioned in
standard European Society of Cardiology [17, 18] where these fea-
tures are vital in diagnosing the cardiac health of an individual. The
MI cases are further subcategorized into Lateral, Inferior, Anterior
or Septal and Inferolateral cases. Morphological changes to localize
MI into subcategories is shown in Table 1. The detection algorithm
for MI with the morphological features is shown in Fig. 14.

In the standard 12 leads setup, anterior and septal MI detection
requires the access of precordial or chest leads ( V1, V2, V3, V4,
V5 and V6). Still, in the proposed method, we have utilized the
critical observations from [35] and [36] to use only frontal leads
to detect anterior or septal MI cases. According to the observation,
the injury pattern of avl lead (when STelevation > 0.05 mV or
T wave Inversion) and ST depression in inferior leads (Lead II, III
and avf) are essential features for detecting anterior or septal MI
cases. Based on our experiments, we conclude that utilization of avl
lead and reciprocal leads led to the optimization of the system. A
detailed discussion regarding MI detection algorithm can be found
in our earlier work [37].

Fig. 14: Detection Algorithm for MI

Fig. 15: Search Space for PR interval

4.3 QT Interval

QT interval is significant for detecting cardiac conditions such as
Hypocalcemia or Hypercalcemia. It is the time interval between the
starting of Q waves to the end of T waves (Toff ). To detect the
Toff point, a duration of 80 ms has been considered starting from
Tpeak + 40 ms. In the above mentioned duration, a 16 ms seg-
ment with the minimum slope value has been determined by using
the moving window operation. The starting point of the selected
duration is considered as the Toff point. To make the QT inter-
val adaptive to RR interval variability, we utilized Bazett’s formula
and detected the corrected QT interval [16, 38] with the following
formula:

QTc =
QT√
RR

(5)

The normal range of QTc duration is between 390 ms and
460ms. If the detected duration lies beyond the mentioned range, it
signifies cardiac anomaly.

4.4 PR Interval

The electrical signal passes from the atria to the ventricles of the
heart through the AV node. The PR time delay occurs mainly due
to the passage of the electrical impulse through the Atrioventricular
(AV) node, which acts as a regulator of conduction. This corresponds
to the PR interval that gives us information regarding the AV node
anomalies. The boundary values for the PR interval are 120 ms and
200 ms, beyond this range the PR interval is considered as abnor-
mal [16]. AV block and AV node anomalies can be detected with
a PR interval of the ECG signal. For determining the PR interval
(see Fig. 15), we require the Pon and Ron points on the ECG signal
where Pon represents the starting point of the P wave and Ron is the
starting point of QRS complex. For determining the Pon we have
determined the minimum slope interval of 16 ms duration within a
search space of 100ms to 10ms prior to the P wave peak. The Ron

point is considered a fixed point 40ms prior to the Q point.

4.5 P wave and R-R Interval

Often the absence of P waves and irregular R-R interval signi-
fies atrial fibrillation. Here, the atria do not provide the necessary
impulses to the ventricles that cause the absence of P waves and
the irregular R-R intervals. The R-R information and P wave infor-
mation is used to detect this condition. The features utilized for 30
mins of data are standard deviation of R-R intervals and number of
detected P waves in comparison with detected R waves while for
1 min of data, interquartile range of R-R interval is used. The val-
ues of interquartile range and standard deviation are quite higher in
the atrial fibrillation cases compared to the normal cases. Similarly,
in atrial fibrillation cases, the length of detected P waves are at least
20% lesser than the length of detected R waves.

5 Results and Discussions

This section discusses the results for feature point, disease detection
and efficiency metrics on various databases.

IET Research Journals, pp. 1–11
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5.1 Description of Databases utilized

For the validation of P, Q, R, S, T points and cardiac anomalies detec-
tion, we have utilized several databases available in the Physiobank
[19]. A brief description of the databases that are used in this work
is given as following.

5.1.1 Physikalisch-Technische Bundesanstalt Database
(PTB) [9]: The database contains 549 records from 290 subjects.
Each record contains 15 simultaneously measured signals out of
that 12 signals represent the standard 12 lead ECG signals and the
remaining three signals are the Frank leads. This dataset consists of
records for MI cases, other cardiac anomalies and normal cases and
is utilized for validating the MI detection algorithm. The sampling
frequency of the database is 1 KHz.

5.1.2 MIT-BIH Arrhythmia Database (MITDB)[20]: This
dataset contains 48 half-hour recordings of two channel ambulatory
ECG with a sampling frequency of 360 Hz for MLII and V5 lead
signals. The database provides the R peak annotations for the valida-
tion of results. Further, the database consists of various arrhythmic
test cases.

5.1.3 QT Database (QTDB)[21]: This database provides the
PQRST boundaries for 105 fifteen-minute recordings. Waveform
boundaries are given for the subsets of recordings and manually
determined by the annotators. At least 30 beats in each record were
annotated. The sampling frequency for the database is 250 Hz and
the dataset is an amalgam of various other MIT- BIH databases with
the specific boundary conditions.

5.1.4 MIT-BIH Arrhythmia P wave Annotations (PWAVE)[22]:
This database consists of 12 recordings with P wave annotations
from the MITDB. The database is used to verify the P detection
algorithm results.

5.1.5 MIT-BIH Noise Stress Database (NSTDB) [39]: This
database includes 12 half-hour ECG recordings and 3 half-hour
recordings of noise typical in ambulatory ECG recordings. The
database consists of different signal to noise ratios (SNR) data for
the record #118 and #119 of MITDB. The data is provided with
24 dB, 18 dB, 12 dB, 6 dB, 0 dB and −6 dB SNRs. The dataset
is utilized to verify the proposed P wave and T wave robustness over
different SNRs.

5.2 Efficiency Metrics

The efficiency for the ECG feature point detection and disease detec-
tion is typically measured in terms of True Positives (TP), False
Positives (FP), False Negatives (FN) and True Negatives (TN) [17].
Here, TP result is the result that is correctly detected; False FP is
a result that is detected but not present in the signal; FN when the
condition or case is not detected but the presence of a particular con-
dition is there in the annotations. TN is the result that is correctly
undetected due to the nonexistence of the condition.

Based on the TP, FP, FN and TN values the efficiency metrics
in Positive Predictivity (PPV), Sensitivity (SEN), Specificity (SP),
False Detection Rate (FDR) and Accuracy (ACC) are calculated and
are given as following.

Positive Predictivity =
TP

TP + FP
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

FP + TN
(8)

False Detection Rate =
FN + FP

TP + FN
(9)

Accuracy =
TP + TN

TP + FP + FN + TN
(10)

Table 2 Efficiency Metrics for QRS Complex Detection
Total Number of Mean Mean Mean

Annotated Beats PPV% SEN% FDR%
Beats Detected

109864 109391 99.29 99.49 1.29

Table 3 Overall T Wave Peak and Toff Location Detection Evaluation
Total Annotated Beats TP FN SEN%

673 658 15 97.78

Fig. 16: T Wave Noise Stress Anaysis for two MITDB Records

5.3 Feature Point Detection Results

5.3.1 QRS Complex Detection: In our proposed algorithm,
the QRS detection utilizes the Pan Tompkins Algorithm [4, 5] and
difference operation method [27] on MITDB [20] and the results are
compared with the given annotations. The results given in Table 2
signifies the overall QRS detection results for 24 hours data avail-
able in database. The average FDR is found out to be 1.29% for
the database. It signifies that the method detects most of the QRS
complexes efficiently.

5.3.2 T Wave Detection: For the validation of the T wave
detection algorithm, we have utilized the MITDB records from the
QT database [21]. Total of 15 MITDB records are available in the
QT database and it also provides the manual annotations for the nor-
mal beats. The results are compared with the manual annotations
provided in the database. The proposed algorithm’s overall SEN is
found to be 97.78% as shown in Table 3. It is to be noted that QTDB
only consists of normal beats annotations for the selected segments
of the signal; therefore, the algorithm could not detect any FP out-
puts for the particular segments. Hence, the efficiency metrics for T
wave detection is restricted to only SEN% values.

Further, to check the robustness of the algorithm in a noisy envi-
ronment, we have used the MIT-BIH noise stress database. In this
database, only record #118 and #119 are provided with differ-
ent SNR values starting from 24 dB. We have assumed the result
obtained for T waves on the 24 dB SNR to be ideal. We consid-
ered this to be the annotations for other data sets with varying SNRs
from 18 dB, 12 dB, 6 dB, 0 dB and −6 dB to analyze the effects
of noise. Fig.16 shows the effects on SEN, PPV and FDR with the
varying SNRs. A significant decrease in SEN , PPV and increment in
FDR represents comparatively more false outputs. Table 4 shows the
state of art comparison of the proposed T wave detection algorithm.
As can be seen in the table proposed method is comparable to the
state of the art.

5.3.3 P Wave Detection: For validating the P wave detec-
tion algorithm, the MIT-BIH arrhythmia database with P wave
annotations is considered. This database contains 5 normal and
7 abnormal records with various cardiac anomalies. Records
#100, #101, #103, #117 and #122 are the normal signals and
Records #106, #119, #207, #214, #222, #223 and #231
are the abnormal signals with various arrhythmic conditions. For the
normal and abnormal records, the overall FDR is 1.15% and 25.4%,
respectively that signifies the higher false results for the abnormal
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Table 4 State of Art Comparison for T Wave Detection Methods
Algorithm Method Data SEN% Limitations

Used
[29] Block of 10 records 99.86 Not suitable

Interest for Biphasic
T waves

[40] Wavelet Selected 94.65 Trained on
Transform beats combined

dataset
[41] Multiscale Selected Ton= 99.8 Not suitable

Morphological segments Toff= 99.6 for Biphasic
Derivative T waves

Proposed Temporal 15 Records 97.78 Requires
Method Local of MITDB QRS, J,

Search from QTDB Baseline
Spaces Database information

Table 5 Proposed P wave Detection Algorithm Validation Results
Records TP FP FN PPV% SEN% FDR%
Category
Normal 10141 58 60 99.43 99.4 1.15
Records

Abnormal 9866 2066 596 82.68 94.3 25.4
Records

Fig. 17: P Wave Noise Stress Anaysis for two MITDB Records

pathologies. The overall P wave detection results for the abnormal
and normal signals is shown in Table 5.

Also, noise analysis is performed for P waves to verify the robust-
ness of the algorithm on the noise stress database. An assumption is
made that the obtained results at 24 dB are ideal and are compared
as annotations for the remaining SNRs values ranging from 18 dB to
−6 dB at an interval of 6 dB. Fig. 17 shows the noise stress analysis
for the P wave detection algorithm and it is concluded that decreas-
ing SNR affects the results. The false outputs (FN, FP) also increase
with the increase in noise levels, leading to higher FDR and lower
SEN and PPV values.

Table 6 State of Art Comparison for P wave Detection Methods
Algorithm Method Data Used Signals SEN% PPV%

[31] Phasor MITDB P Normal 98.42 99.98
Transform Waves Abnormal 96.40 85.84

[42] Wavelet MITDB P Normal 77.84 75.03
Transform Waves Abnormal 96.26 76.74

[43] Phasor MITDB P Normal 79.79 75.02
Transform Waves Abnormal 89.39 83.59

Proposed Temporal MITDB P Normal 99.39 99.42
Method Search Spaces Waves Abnormal 94.23 82.74

The state of art comparison for proposed P wave detection is
shown in Table 6. The proposed algorithm provides comparable
results with various state of the art.

Table 7 Results for Arrhytmias Detection
Record Arrhythmia Present Arrhythmia Detected

100 PVC PVC, Interpolated PVC
101 APC PVC
102 PVC PVC
106 Tachycardia, PVC, Tachycardia, PVC,

Bigeminy Trigeminy
108 Interpolated PVC, Interpolated PVC,

PVC PVC
114 PVC, PVC, Asystole,

Ventricular Couplets Bradycardia, Trigeminy
119 Trigeminy, Bigeminy Trigeminy, PVC,

Interpolated PVC
200 Tachycardia, PVC, PVC, Trigeminy,

Bigeminy, APC Tachycardia
201 Trigeminy Trigeminy
203 Trigeminy, Tachycardia, Tachycardia, Trigeminy,

Multiform PVC PVC, Interpolated PVC
207 Bigeminy, Tachycardia Tachycardia, Trigeminy,

PVC, Interpolated PVC
214 Trigeminy, Tachycardia Trigeminy, PVC, Tachycardia,

Interpolated PVC, PVC
221 Tachycardia, PVC Tachycardia, PVC,

Trigeminy
222 Bigeminy Tachycardia, PVC
223 Trigeminy, Tachycardia, Tachycardia, Trigeminy,

Bigeminy, PVC PVC, Interpolated PVC
232 Bradycardia, Asystole Bradycardia, Asystole, PVC
234 Tachycardia, PVC Tachycardia, PVC

Table 8 Efficiency Metrics of Proposed MI Detection Algorithm with & without USI
USI TP TN FP FN PPV% SEN% SP% ACC%
✓ 123 45 7 23 94.6 84.2 86.5 85
X 123 30 22 23 84.8 84.2 57.6 77.27

5.4 Disease Detection Results based on various features

The main morphological ECG features are utilized by our proposed
algorithm to detect various cardiac conditions. The results obtained
for the same are discussed following.

5.4.1 R-R Features based Arrhythmia Detection: Various
arrhythmic conditions [44] such as tachycardia, bradycardia, asys-
tole and other such conditions are determined using R-R features as
shown in Fig. 13. As shown in Table 7, the algorithm can detect most
of the conditions. Premature Ventricular Contractions and Atrial Pre-
mature Contractions are the most common arrhythmias present in the
MITDB.

5.4.2 ST-T Segment Anomalies based MI Detection: To
validate our algorithm, we have used the lead I and lead II signals
from the 15 data present in the PTB database [9]. Our algorithm
classifies and localize the MI cases and the efficiency metrics for the
proposed algorithm with and without using USI is shown in Table
8. With the utilization of USI, the proposed 2 lead algorithm shows
≈ 10% improvement in accuracy compared to the case when it was
not utilized. By applying weights to the user specific parameters we
achieved higher accuracy from the algorithm. For example, a male
above 60 years of age and with positive smoking status has a higher
probability of the disease compared to the counterpart [18]. There-
fore, it is concluded that the inclusion of such parameters makes the
algorithm robust for real-time deployment.

The algorithm detect and localize the site of infarct into three
major categories. Inferior, Anterior and Lateral MI has been detected
based on all the four stages of MI. The results based on the site of
infarcts are shown in Table 9, signifies that even with the absence
of precordial leads the algorithm can detect most of the Anterior MI
cases.
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Table 9 Types of MI Cases in PTB and Cases Detected by Proposed Algorithm
MI Categories Subcategories Total Detected

Cases Cases
Inferior Inferior 36 30

Inferolateral 25 19
Inferoposterior 4 4

Inferoposterolateral 9 6
Anterior Anterior 23 21

Anterolateral 18 17
Anteroseptal 28 25

Anteroseptolateral 1 1
Anterior, Inferior 1 0

Lateral - 1 0

Table 10 Comparison of Proposed MI Detection Algorithm with State of the Arts

Ref. Method Leads Dataset SEN% PPV% SP%
Utilized Config.

[6] Support Vector 12 Lead PTB 94.6 _ 96.0
Machine ECG

[7] Neural Network & 12 Lead PTB 96.55 _ 95.24
Genetic Algorithm ECG

[8] Morphological 12 Lead PTB 97.73 _ 93.44
Characteristics ECG

by Support
Vector Machine

[11] ECG & VCG VCG & PTB 95.8 - 94.2
indexes based 12 Lead
Identification ECG

[45] ST deviation 2 leads ST-T 84 85 _
detection based (Variable)

on morphological
features

[46] Morphological 2 leads ST-T 83 75 _
features for (Variable)
T deviations

[47] QRS loop & VCG Unknown 88.5 _ 92.1
parameter ST

vector magnitude
processing

[48] Wavelet transform VCG PTB 96.5 _ 75
based recurrence

quantification
analysis

Proposed IT, HT, STE Lead I, PTB 84.2 94.6 86.5
System & STD Features Lead II

of Frontal
Leads with USI

The state of the art comparison is shown in Table 10. In all the
mentioned parameters in the table, our proposed method is compa-
rable and in certain cases performs better compared to the state of
art. Therefore, we conclude that the system offers itself as an useful
screening tool for the post MI patients even at the home settings.

5.4.3 QT Interval Validation: The validation of QT interval is
verified with the Toff point on QT Database. The QT duration is the
interval between the onset of the QRS complex and Toff point. The
validation is restricted to the endpoint of T wave and QT duration
beyond this as the QT anomalies (Hypocalcemia, Hypercalcemia
etc.) are not provided in the database.

The 15 MITDB signals of QT Database are considered for testing.
Table 3 shows the results for Toff point detection as we have cor-
rectly identified the Toff for the detected T peaks. Table 11 shows
the corrected QT duration for the Record #Sel103m for the beats
ranging from 2 to 12 while the first beat is not considered. We select
the prolongation of QT interval as the feature for Hypocalcaemia and
shortening of QT interval, the feature for Hypercalcaemia.

5.4.4 PR Interval Validation Results: The PR interval pro-
vides information regarding the AV node anomalies. The ideal PR
interval must lie between 120 ms to 200 ms. Otherwise, it signi-
fies the AV node conduction anomalies such as AV nodal rhythm,
AV Block etc. The ground truth values for validating the PR inter-
val is not provided in the database. Hence, we have calculated the

PR interval for the initial few beats, for example, Record #sel100 is
considered and the results are shown in Table 12.

5.4.5 P wave R-R features: Atrial fibrillation can be diag-
nosed by the absence of P waves and irregular R-R intervals. For
the 30 minute datasets, we have adopted standard deviations (S.D.)
of R-R interval and a number of detected P waves versus R waves to
detect atrial fibrillation cases. However, for small duration datasets
(≈ 1min of data), these features do not provide the expected results
as the standard deviation for a smaller range of data does not provide
the required variability index for the R-R intervals.

Table 13 shows some of the important features obtained for
MITDB normal and atrial fibrillation affected waveforms for 30min
of data.

To improve the detections on smaller datasets, the interquartile
range (IQR) is considered to obtain the variations approximation. We
have also observed that in the case of atrial fibrillation R-R interval
distribution is skewed instead of Gaussian. For determining the IQR,
the RR interval is arranged in ascending order and determined by the
following equations.

IQR = Q3−Q1 (11)

Q1 Position =
(length(RR) + 1)

4
(12)

Q3 Position =
(length(RR) + 1)× 3

4
(13)

Fig. 18 shows the histogram and box plot of the IQR for the
Record #222 of MITDB. It shows the data for 1 min interval
leads to skewed distribution and hence, IQR (101) provides a better
measurement for the variations.

Fig. 19 shows the Poincare plots for record #222 and record
#101 for 30 mins and 1 min data. It is to be noted that we have
considered one minute duration from the database with the atrial fib-
rillation episodes. As we can see the atrial fibrillation affected signals
show more spread in Poincare plot as the R-R interval is varying
more compared to a normal waveform. Table 14 shows the IQR for
normal cases and atrial fibrillation cases for 1 min of duration.

5.5 Field Validation

Field visits have been performed in a Public Health Centre in
Gujarat, India to validate the system in real-time environment. In
total 42, cases and controls have been considered for the validation.
Out of these 42 cases and controls, 18 are TN, 15 are TP, 1 is FP, 8
are FN results The system provided the ACC of 78.5% for the total
of 42 cases and controls. TP cases mainly consist of various types
of MI and arrhythmias. It is to be noted that the automated results of
the system were compared with the cardiologist’s diagnosis on the
12 lead ECG data obtained in the hospital.

6 Conclusion

In this paper, cardiovascular atrial and ventricular disease detection
front end along with the proposed algorithms for the back end has
been demonstrated. Various critical features P Wave, QRS Complex
and T Wave of the ECG signal have been quantified in this work. R
Peaks, Q point and S point detection achieved PPV, SEN and FDR of
99.29%, 99.49% and 1.29% respectively. The novel T wave detec-
tion method based on probable time domain spaces achieved the
detection SEN of 97.78% for the MITDB signals available in the
QTDB database. For the normal sinus rhythm signals, the proposed
P wave detection algorithm achieved the overall PPV, SEN and FDR
of 99.4%, 99.43% and 1.15% respectively. Similarly, for the abnor-
mal pathologies, the values are 94.3%, 82.6% and 25.4%. The work
categorizes various diseases based on the R-R segment, ST-T seg-
ment, PR segment, QT segment, P wave and R-R interval. Based on
the mentioned features, detection for diseases such as arrhythmias,
MIs, prolongation and shortening of QT and PR intervals, and atrial
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Table 11 QTc Duration for Record Sel103 from QT Database
Beat QRS Onset Toff QT QT R-R R-R QTc
no. (Sample) (Samples) (Samples) (sec) (Samples) (sec) (sec)
2 392 483 91 0.3640 216 0.864 0.3916
3 601 699 98 0.3920 209 0.836 0.4287
4 813 910 97 0.3880 211 0.844 0.4223
5 1022 1120 98 0.3920 210 0.840 0.4277
6 1238 1344 106 0.4240 217 0.868 0.4551
7 1470 1573 103 0.4120 231 0.924 0.4286
8 1690 1789 99 0.3960 219 0.876 0.4231
9 1890 1998 100 0.4000 209 0.836 0.4375

10 2106 2209 103 0.4120 208 0.832 0.4517
11 2317 2422 105 0.4200 210 0.840 0.4583
12 2525 2627 102 0.4080 209 0.836 0.4462

Table 12 PR Duration for Record Sel100 from QT Database
Beat P Onset R onset PR PR
no. (Sample) (Samples) (Samples) (sec)
3 476 524 48 0.192
4 662 707 45 0.18
5 856 897 41 0.164
6 1040 1085 45 0.18
7 1235 1283 48 0.192
8 1440 1488 48 0.192
9 1631 1684 53 0.212

10 1828 1877 49 0.196
11 2019 2065 46 0.184
12 2209 2258 49 0.196
13 2404 2446 42 0.168
14 2588 2632 44 0.176

Table 13 Important Features for Atrial Fibrillation Detection for 30 minutes Data
Waveforms Record Std. Deviation # of R # of P

(R-R) (waves) (waves)
Normal 100 17.48 2272 2268
Cases 101 26.3 1868 1850

103 17 2083 1935
117 15.42 1530 1530
122 15.11 2477 2471

Atrial 201 135.58 1922 1373
Fibrillation 202 103.57 2127 1692

Cases 203 82.058 2913 2123
210 48.46 2614 2324
217 33.79 2202 687
219 82.46 2153 2084
221 72.77 2424 1603
222 83.16 2492 1983

Fig. 18: Histogram and Box Plot for R-R Interval Record 222
MITDB

fibrillation has been done that corresponds to atrial and ventricular
anomalies related to cardiac health. MI detection and localization
obtains PPV, SEN, SP and ACC of 94.6%, 84.2%, 86.5% and 85%
on the PTB Database. Anterior and septal MI detection utilizes the
injury pattern in avl lead and reciprocal changes in inferior leads
as features and it makes the system sufficient by only using frontal

Fig. 19: Poincare Plot for R-R Interval for 1 min and 30 min Data

Table 14 Statistical IQR for Atrial Fibrillation Detection for 1 min Dataset
ECG Record IQR
Cases No. (R-R)

Normal 100 27
Cases 101 33.25

103 37.75
117 35.5
122 23.25

Atrial 201 79
Fibrillation 202 90.75

Cases 203 279.25
210 101.50
217 50
219 149
221 155.75
222 100.50

leads. Atrial fibrillation detection ACC on MITDB is found out to
be 100% for 30 mins and 1 min data. It has been observed that
the use of personal user information such as gender, age and tobacco
usage records with the algorithm leads to more robust detections.
The designed system for real-time lead I and lead II signal acqui-
sition and processing achieved 78.5% accuracy in detecting various
cardiac anomalies therefore, we conclude that it is an ideal tool for
improving cardiac health literacy in resource constrained regions.
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