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1 Introduction

Fractional Calculus is a rapidly growing field of research in recent years due to its wide
range of applications and interdisciplinary approach. Applications of fractional calculus
can be found in almost all sciences, and it is applied to real-world problems. Fractional
differential equations are a field of mathematics that have a lot of applications in science
and technology, as they are used in mathematical modeling (Mainardi 2022, Magin 2010,
Ionescu 2017, Bagley 1986, Carpinteri 2014) and can help find solutions to physical and
engineering problems, such as heat or sound propagation, fluid flow, elasticity, electronics,
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and other areas of science and technology (Mainardi 2010, Miller 1993, Oldham 1974,
Prabhakar 1971, Samkokilbas 1993, Agrawal 2008).

An integral transform is a specific type of mathematical operator. Each integral trans-
form has an associated inverse integral transform, which maps the original domain back
to itself by passing through another domain. Integral transforms are very useful in solving
differential equations. Solving fractional differential equations can be a challenging task.
The goal is to extend integral transforms to solve fractional differential equations.

Many researchers have studied Hilfer-Prabhakar fractional derivatives, which have
gained popularity in modeling and other fields due to their special properties, by using
a combination of various integral transforms such as Laplace, Fourier, Sumudu, Shehu,
Elzaki and others. The Laplace transform of the Hilfer-Prabhakar and its regularized
version is studied in [6], where the authors applied these results to classical equations of
mathematical physics such as heat and free electron laser equations. Panchal et al. [8] ap-
plied the Sumudu transform to some non-homogeneous Cauchy type problems, Yudhveer
et al. [9] applied the Elzaki transform to Hilfer-Prabhakar fractional derivatives and used
these results to solve free electron laser type integro-differential equations, Belgacem et
al. [10] applied the Shehu transform to Prabhakar and Hilfer-Prabhakar derivatives and
used it to find solutions of some fractional differential equations. Similarly, the Formable
transform has deeper connections with Laplace, Elzaki, Sumudu and Shehu transforms.
In 2021, Saadeh et al. [17] discovered a new integral transform called the Formable trans-
form, with the main purpose of solving ordinary and partial differential equations using
this transform.

The main goal of this study is to use the Formable transform to solve fractional dif-
ferential equations. In this paper, we apply the Formable transform to Prabhakar integral,
Prabhakar derivatives, Hilfer-Prabhakar derivative and their regularized versions. We then
use these results to solve some Cauchy type fractional differential equations involving
Hilfer-Prabhakar fractional derivative presented in terms of Mittag-Leffler function.

2 Definitions and preliminaries

Definition 2.1. ( [17]) The Formable integral transform denoted by B(r, v) for the func-

tion ξ(t) which is given as:

R[ξ(t)] = B(r, v) = r

∫ ∞

0

ξ(vt)exp(−rt)dt

=
r

v

∫ ∞

0

exp

(
−rt

v

)
ξ(t)dt, r ∈ (λ1, λ2),

(2.1)
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this is a statement about the set of functions on which the problem or equation is defined,

W =

{
ξ(t) s.t ∃ N, 0 < λ1, λ2, 0 < k, |ξ(t)| ≤ N e

(
t
λj

)
, if t ∈ (−1)j × [0,∞)

}
,

The integral transform (2.1) is defined for all values of ξ(t) that are greater than k.

The name Formable indicates the flexibility to solve ordinary as well as partial differ-

ential equations.

The inverse Formable transform of the function ξ(t) is represented as follows;

R−1[B(r, v)] = 1

2πi

∫ c+i∞

c−i∞

1

r
exp

(
rt

v

)
B(r, v)dr (2.2)

Proposition 2.1. ( [17]) If F(r, v) and G(r, v) are the Formable transforms of the func-

tions ξ(t) and χ(t) respectively, then the Formable transform of their convolution is given

as.

R[ξ(t) ∗ χ(t)), r] = v

r
F(r, v)G(r, v), (2.3)

or equivalently,

R−1
[v
r
F(r, v)G(r, v), t

]
= (ξ(t) ∗ χ(t)) , (2.4)

where

ξ(t)∗χ(t) =
∫ ∞

0

ξ(υ)χ(t− υ)dυ, (2.5)

• Formable-Sumudu duality: Let G(v) be the Sumudu transform of g(t) then

B(1, v) = G(v) (2.6)

• Formable-Shehu duality: Let V (r, v) be the Shehu transform of g(t) then

B(r, v) = r

v
V (r, v) (2.7)

Definition 2.2. ( [2]) The Reimann Liouville integral operator of order ϱ > 0 of a function

ξ(t) is

0ℑϱ
t ξ(t) =

1

Γ(ϱ)

∫ t

0

(t− υ)ϱ−1ξ(υ)dυ, ϱ ∈ C and t > 0. (2.8)

Definition 2.3. ( [2]) The Reimann Liouville Fraction derivative of order ϱ > 0 of a
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function ξ(t) is

0Dϱ
t ξ(t) =

1

Γ(n− ϱ)

dn

dtn

∫ t

0

(t− υ)n−ϱ−1ξ(υ)dυ, n− 1 < ϱ < n, n ∈ N. (2.9)

Definition 2.4. ( [2]) Caputo frectional derivative of order ϱ > 0 of a function ξ(t) is

()C0 D
ϱ
t ξ(t) =

1

Γ(n− ϱ)

∫ t

0

(t− υ)n−ϱ−1ξ(n)(υ)dυ, n− 1 < ϱ < n, n ∈ N (2.10)

Definition 2.5. ( [1]) For 0 < ϱ ≤ 1, and 0 ≤ ρ ≤ 1, the Hilfer fractional derivative of

order ϱ and ρ of a function ξ(t) is

0Dϱ,ρ
t ξ(t) =

(
0ℑρ(1−ϱ)

t

d

dt
(0ℑ(1−ϱ)(1−ρ)

t ξ(t))

)
(2.11)

Definition 2.6. ( [19, 20]) Weyl fractional differential operator of order ϱ > 0 of a func-

tion

xi(t) is defined as

−∞Dϱ
t ξ(t) =

1

Γ(n− ϱ)

dn

dtn

∫ t

−∞
(t− υ)n−ϱ−1ξ(υ)dυ, n− 1 < ϱ < n, n ∈ N (2.12)

The modified Fourier transform of the operator (2.12) given by Metzler and Klafter in [21]

F {−∞Dϱ
t ξ(x)} = −kϱξ∗(k), (2.13)

where ξ∗(k) is the Fourier transform of ξ(x)

Definition 2.7. ( [22]) Let ξ(x) be a piecewise continuous function defined on (−∞,∞)

in each partial interval and absolutely integrable in (−∞,∞) then Fourier transform is

defined by the integral equation is

F [ξ(x), k] = ξ∗(k) =

∫ ∞

−∞
ξ(x)exp(ikx)dx, (2.14)

and inverse of Fourier is

ξ−1[ξ∗(k)] =
1

2π

∫ ∞

−∞
ξ(k)exp(−ikx)dk, (2.15)

Definition 2.8. ( [3]) For υ, ϱ ∈ C, Re(ϱ) > 0, one parameter Mittag-Leffler function is
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given by

Eϱ(υ) =
∞∑
k=0

(υ)k

Γ(ϱk + 1)
. (2.16)

For υ, ϱ, ρ ∈ C, Re(ϱ) > 0, two parameter Mittag-Leffler function is given by

Eϱ,ρ(υ) =
∞∑
k=0

(υ)k

Γ(ϱk + ρ)
, (2.17)

Definition 2.9. ( [3]) For υ, ϱ, ρ, γ ∈ C, ϱ > 0, three parameter Mittag-Leffler function,

also called Prabhakar function is given by

Eγ
ϱ,ρ(υ) =

∞∑
k=0

(γ)k
Γ(ϱk + ρ)

(υ)k

k!
, (2.18)

for applications purpose we will use further generalization of (2.18), which is given

by

eγϱ,ρ,ω = tρ−1Eγ
ϱ,ρ(ωt

ϱ) (2.19)

where ω ∈ C is a parameter and t > 0 the independent real variable.

Definition 2.10. ( [3]) Let ξ ∈ L1[0, 1]; 0 < t < b < ∞ and the Prabhakar fractional
integral can be written in the form

()
ℑγ

ϱ,ρ,ω,0+ξ(t) =

∫ t

0

(t− υ)ρ−1Eγ
ϱ,ρ(ω(t− υ)ϱ)ξ(υ)dυ

= (ξ ∗ eγϱ,ρ,ω)(t)
(2.20)

where ϱ, ρ, γ, ω ∈ C and ϱ, ρ > 0,

Definition 2.11. ( [3]) Let ξ ∈ L1[0, 1]; 0 < t < b < ∞ and ξ ∗ eγϱ,ρ,ω ∈ Svn,1[0, b], n =

⌈ρ⌉. The Prabhakar fractional derivative can be written in the form

Dγ
ϱ,ρ,ω,0+ξ(t) =

dn

dtn
ℑ−γ

ϱ,n−ρ,ω,0+ξ(t), (2.21)

where Svn,1[a, b] is the Sobolev Space, ϱ, ρ, γ, ω ∈ C with Re(ϱ), Re(ρ) > 0.

The Reimann Liouville Fractional Derivative in (2.9) can be written in the form

Dγ
ϱ,ρ,ω,0+ξ(t) = Dρ+ϵ

0+ ℑ−γ
ϱ,ϵ,ω,0+ξ(t), (2.22)

Definition 2.12. ( [6]) Let ξ ∈ AC[0, b], 0 < t < b < ∞, and n = ⌈ρ⌉. The regularized
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Prabhakar fractional derivative is given by

CDγ
ϱ,ρ,ω,0+ξ(t) = ℑ−γ

ϱ,n−ρ,ω,0+
dn

dtn
ξ(t) (2.23)

where ϱ, ρ, γ, ω ∈ C with Re(ϱ), Re(ρ) > 0.

Definition 2.13. ( [6, 7]) Let ξ ∈ L1[a, b], ρ ∈ (0, 1), ν ∈ [0, 1], 0 < b < t ≤ ∞, ξ ∗
e
−γ(1−ν)
ϱ,(1−ν)(1−ρ),ω(.) ∈ AC1[a, b]. The Hilfer-Prabhakar fractional derivative is given by

Dγ,ρ,ν
ϱ,ω,0+ξ(t) =

(
ℑ−γν

ϱ,ν(1−ρ),ω,0+
d

dt
(ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ)

)
(t) (2.24)

Definition 2.14. ( [7]) Let ξ ∈ L1[a, b], ρ ∈ (0, 1), ν ∈ [0, 1], 0 < b < t ≤ ∞. The

regularized Hilfer-Prabhakar fractional derivative of ξ(t) is given by

CDγ,ρ,ν
ϱ,ω,0+ξ(t) =

(
ℑ−γν

ϱ,ν(1−ρ),ω,0+ℑ
−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+
d

dt
ξ

)
(t)

= ℑ−γ
ϱ,1−ρ,ω,0+

d

dt
ξ(t)

(2.25)

Theorem 2.1. ( [17]) Suppose B(r, v) is the Formable transform of ξ(t), then the Formable

transform of nth derivative ξ(n)(t) is denoted by Bn(r, v) and

Rn(r, v) = R[ξ(n)(t)] =
(r
v

)n
B(r, v)−

n−1∑
k=0

(r
v

)n−k

ξ(k)(0), n ≥ 0 (2.26)

or equivalently,

Rn(r, v) = R[ξ(n)(t)] =
(v
r

)−n

B(r, v)−
n−1∑
k=0

(v
r

)k−n

ξ(k)(0) (2.27)

Definition 2.15. ( [18]) For 0 < ϱ < 1 and ω ∈ C such that Re(ϱ) > 0, Re(ρ) >

0), Re(γ) > 0. The Shehu transform of Mittage-Leffler function tρ−1Eγ
ϱ,ρ(ωt

ϱ) is given

by

SH
[
tρ−1Eγ

ϱ,ρ(ωt
ϱ)
]
(r, v) =

(v
r

)ρ (
1− ω

(v
r

)ϱ)−γ

(2.28)

Lemma 2.2. Let 0 < ϱ < 1 and ω ∈ C such that Re(ϱ) > 0, Re(ρ) > 0), Re(γ) > 0.

The Formable transform of Mittage-Leffler type function tρ−1Eγ
ϱ,ρ(ωt

ϱ), is given by

R
[
tρ−1Eγ

ϱ,ρ(ωt
ϱ)
]
(r, v) =

(r
v

)1−ρ (
1− ω

(v
r

)ϱ)−γ

, (2.29)

Proof. Using equation (2.28) and the duality of Formable-Shahu transform (2.7) we got
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the desired result

R
[
tρ−1Eγ

ϱ,ρ(ωt
ϱ)
]
(r, v) =

(v
r

)ρ−1 (
1− ω

(v
r

)ϱ)−γ

Lemma 2.3. Let the Formable transform of the function ξ(t) be B(r, v) then the Formable

transform of Prabhakar fractional integral of ξ(t) by using (2.3), (2.29) is given as:

R[ℑγ
ϱ,ρ,ω,0+ξ(t)] =

(v
r

)ρ (
1− ω

(v
r

)ϱ)−γ

, (2.30)

Proof.

R[ℑγ
ϱ,ρ,ω,0+ξ(t)](r, v) = R

[∫ t

0

(t− υ)ρ−1Eγ
ϱ,ρ[ω(t− υ)ϱ]ξ(υ)dυ, s

]
(r, v)

= R
[
(ξ ∗ eγϱ,ρ,ω)(t)

]
(r, v)

=
v

r
.R
[
tρ−1Eγ

ϱ,ρ(ωt
ϱ)
]
×R[ξ(t)]

=
(v
r

)ρ (
1− ω

(v
r

)ϱ)−γ

B(r, v),

3 Main results

Theorem 3.1. [Formable transform of Prabhakar derivative]:The Formable transform

of the Prabhakar fractional derivative is represented as follows

R[Dγ
ϱ,ρ,ω,0+ξ(t)] =

(r
v

)ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)−

m−1∑
k=0

(r
v

)n−k

Dγ
ϱ,k−n+ρ,ω,0+ξ(t)|t=0

(3.1)

Proof. If the Formable transform of ξ(t) is represented by B(r, v), by applying the Formable
transform to the Prabhakar fractional derivative (2.21) w.r.t variable t and using equations
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(2.26) and convolution (2.3), we get the following result

R[Dγ
ϱ,ρ,ω,0+ξ(t)](r, v)

= R
[
dn

dtn
ℑ−γ

ϱ,n−ρ,ω,0+ξ(t)

]
(r, v)

= R
[
dn

dtn
g(t)

]
(r, v), where g(t) = ℑ−γ

ϱ,n−ρ,ω,0+ξ(t)

=
(r
v

)n
R[g(t)](r, v)−

n−1∑
k=0

(r
v

)n−k

g(k)(0), g(k)(0) =
dk

dtk
ℑ−γ

ϱ,n−ρ,ω,0+ξ(0)

=
(r
v

)n
R
[
(ξ ∗ eγϱ,(n−ρ),ω)(t)

]
(r, v)−

n−1∑
k=0

(r
v

)n−k

g(k)(0)

=
(r
v

)n (v
r

)n−ρ (
1− ω

(v
r

)ϱ)γ
R[ξ(t)]−

n−1∑
k=0

(r
v

)n−k dk

dtk
ℑ−γ

ϱ,n−ρ,ω,0+ξ(t)
∣∣
t=0

=
(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)−

n−1∑
k=0

(v
r

)k−n [
Dγ

ϱ,k−n+ρ,ω,0+ξ(t)
]
t=0

Theorem 3.2. [Formable transform of regularised Prabhakar derivative]: The Formable

transform of regularised Prabhakar fractional derivative is expressed as

R[CDγ
ϱ,ρ,ω,0+ξ(t)] =

(r
v

)ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)−

n−1∑
k=0

(r
v

)ρ−k (
1− ω

(v
r

)ϱ)γ
ξ(k)(0+)

(3.2)

Proof. If the Formable transform of ξ(t) is represented by B(r, v), by applying the Formable
transform to the regularized Prabhakar fractional derivative (2.23) w.r.t variable t, and us-
ing equations (2.30), (2.26), and the convolution (2.3) of the Formable transform, we get
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the following result

R[CDγ
ϱ,ρ,ω,0+ξ(t)](r, v)

= R
[
ℑ−γ

ϱ,n−ρ,ω,0+
dn

dtn
ξ(t)

]
(r, v)

= R
[
ℑ−γ

ϱ,n−ρ,ω,0+h(t)
]
(r, v), where h(t) =

dn

dtn
ξ(t)

=
(v
r

)n−ρ (
1− ω

(v
r

)ϱ)γ
R[h(t)](r, v)

=
(v
r

)n−ρ (
1− ω

(v
r

)ϱ)γ [(v
r

)−n

R[ξ(t)]−
m−1∑
k=0

(v
r

)k−n

ξ(k)(0)

]

=
(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)−

n−1∑
k=0

(v
r

)k−ρ (
1− ω

(v
r

)ϱ)γ
ξ(k)(0+)

Theorem 3.3. [Formable transform of Hilfer-Prabhakar derivative]: The Formable

transform to the Hilfer-Prabhakar fractional derivative is represented as follows

R[Dγ,ρ,ν
ϱ,ω,0+ξ(t)] =

(r
v

)ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)

−
(r
v

)ν(ρ−1)+1 (
1− ω

(v
r

)ϱ)γν
ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(t)|t=0+

(3.3)

Proof. If the Formable transform of ξ(t) is represented by B(r, v), by applying the Formable
transform to the Hilfer-Prabhakar fractional derivative (2.24) w.r.t variable t, and using
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equations (2.30), (2.26), we get the following result

R[Dγ,ρ,ν
ϱ,ω,0+ξ(t)](r, v)

= R
[(

ℑ−γν
ϱ,ν(1−ρ),ω,0+

d

dt
(ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ)

)
(t)

]
(r, v)

= R
[
ℑ−γν

ϱ,ν(1−ρ),ω,0+k(t)
]
(r, v), where k(t) =

d

dt
ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(t)

=
(v
r

)ν(1−ρ) (
1− ω

(v
r

)ϱ)γν
×
[(v

r

)−1

R[ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(t)](r, v)−
(v
r

)−1

ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(0
+)

]
=
(v
r

)ν(1−ρ) (
1− ω

(v
r

)ϱ)γν
×
[(v

r

)(1−ν)(1−ρ)−1 (
1− ω

(v
r

)ϱ)γ(1−ν)

R[ξ(t)]−
(v
r

)−1

ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(0
+)

]
=
(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)

−
(v
r

)ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)γν
ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(t)|t=0+

Theorem 3.4. [Formable transform of regularized Hilfer-Prabhakar derivative]: The

Formable transform to the regularized Hilfer-Prabhakar fractional derivative is repre-

sented as follows

R[CDγ,ρ,ν
ϱ,ω,0+ξ(t)] =

(r
v

)ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)−

(r
v

)ρ (
1− ω

(v
r

)ϱ)γ
ξ(0+) (3.4)

Proof. If the Formable transform of ξ(t) is denoted by B(r, v), by applying the Formable
transform to the regularized Hilfer-Prabhakar fractional derivative (2.25) w.r.t variable t,
and using the equations (2.30), (2.26) and convolution (2.3 ) of Formable transform, we
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get the following result

R[CDγ,ρ,ν
ϱ,ω,0+ξ(t)](r, v) = R

[
ℑ−γν

ϱ,ν(1−ρ),ω,0+ℑ
−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+
d

dt
ξ(t)

]
(r, v)

= R
[
ℑ−γ

ϱ,1−ρ,ω,0+
d

dt
ξ(t)

]
(r, v)

= R
[
ℑ−γ

ϱ,1−ρ,ω,0+z(t)
]
(r, v), z(t) =

d

dt
ξ(t)

=
(v
r

)1−ρ (
1− ω

(v
r

)ϱ)γ
R[z(t)](r, v)

=
(v
r

)1−ρ (
1− ω

(v
r

)ϱ)γ [(v
r

)−1

R[ξ(t)]−
(v
r

)−1

f(0+)

]
=
(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)−

(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
ξ(0+)

4 Applications

In this section, we will use the Formable transform of Hilfer-Prabhakar and regularized
Hilfer-Prabhakar fractional derivative to find solutions of some Cauchy type fractional
differential equations.

Theorem 4.1. The solution of the generalized Cauchy type problem for fractional advec-

tion dispersion equation

Dγ,ρ,ν
ϱ,ω,0+ξ(x, t) = −wDxξ(x, t) + ϑ ∆

λ
2 ξ(x, t) (4.1)

subjects to below constraints

ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(x, 0
+) = g(x), ω, γ, x ∈ R, ϱ > 0, (4.2)

lim
x→∞

ξ(x, t) = 0, t ≥ 0, (4.3)

is given by

ξ(x, t) =
1

2π

∫ ∞

−∞
e(−ikx)g(k)

∞∑
n=0

(iwk − ϑ|k|λ)ntν(1−ρ)+nρ+ρ−1E
γ(1+n)−γν
ϱ,ν(1−ρ)+ρ(n+1)(ωt

ϱ)dk

(4.4)
where ∆

λ
2 is the fractional generalized Laplace operator of order λ, λ ∈ (0, 2), ρ ∈

(0, 1), ν ∈ [0, 1] : x ∈ R, t ∈ R+, γ > 0 Fourier transform of ∆
λ
2 is −|k|λ discussed

11



in [30]

Proof. Applying the Fourier and Formable transforms on equation (4.1) by using the
equations (3.3), (2.13). First we will use Fourier transform

Dγ,ρ,ν
ϱ,ω,0+ξ

∗(x, t) = iwkξ∗(k, t)− ϑ|k|λξ∗(k, t) (4.5)

where ξ∗(k, t) is the Fourier transform of ξ(x, t) with respect to variable x, now applying
the Formable transform on (4.5), we will get(v

r

)−ρ (
1− ω

(v
r

)ϱ)γ
ξ
∗
(k, r, v)−

(v
r

)ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)γν
g∗(k)

= iwkξ
∗
(k, r, v)− ϑ|k|λξ∗(k, r, v)

where ξ
∗
(k, r, v) is the Formable integral transform of ξ∗(k, t) with respect to variable t,

therefore, we have

ξ
∗
(k, r, v)

[(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
+ ϑ|k|λ − iwk

]
=
(v
r

)ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)γν
g∗(k)

ξ
∗
(k, r, v) =

(
v
r

)ν(1−ρ)−1 (
1− ω

(
v
r

)ϱ)γν
g∗(k)(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ [
1 + ϑ|k|λ−iwk

( v
r )

−ρ
(1−ω( v

r )
ϱ
)
γ

] , if ϑ|k|λ − iwk(
v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ < 1

ξ
∗
(k, r, v) =

(v
r

)ν(1−ρ)+ρ−1 (
1− ω

(v
r

)ϱ)γν−γ

g∗(k)
∞∑
n=0

[
−ϑ|k|λ + iwk(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
]n

ξ
∗
(k, r, v) =

∞∑
n=0

(iwk − ϑ|k|λ)n
(v
r

)ν(1−ρ)+ρ+ρn−1 (
1− ω

(v
r

)ϱ)γν−γn−γ

g∗(k)

now, applying the inverse of Fourier ξ−1[ξ∗(k)] = 1
2π

∫∞
−∞ e−ikxξ(k)dk and Formable

R−1[
(
v
r

)ρ−1 (
1− ω

(
v
r

)ϱ)−γ
] = tρ−1Eγ

ϱ,ρ(ωt
ϱ) transforms and we will get the desired

result

ξ(x, t) =
1

2π

∫ ∞

−∞
e(−ikx)g(k)

∞∑
n=0

(iwk − ϑ|k|λ)ntν(1−ρ)+nρ+ρ−1E
γ(1+n)−γν
ϱ,ν(1−ρ)+ρ(n+1)(ωt

ϱ)dk

Remark 1: If we take w = 0 and ϑ = ih
2m

in the abobe equation (4.1), the result
will reach to one dimensional space time Schrodinger fractional equation for mass m and

12



plank constant h.

ξ(x, t) =
1

2π

∫ ∞

−∞
e(−ikx)g(k)

∞∑
n=0

(− ih

2m
|k|λ)tν(1−ρ)+nρ+ρ−1E

γ(1+n)−γν
ϱ,ν(1−ρ)+ρ(n+1)(ωt

ϱ)dk

(4.6)

Theorem 4.2. The solution of the generalized Cauchy type problem for fractional advec-

tion dispersion equation

CDγ,ρ,ν
ϱ,ω,0+ξ(x, t) = −wDxξ(x, t) + ϑ ∆

λ
2 ξ(x, t) (4.7)

subjects to below constraints

ξ(x, 0+) = g(x), x ∈ R, (4.8)

lim
|x|→∞

ξ(x, t) = 0, t ≥ 0, (4.9)

is given by

ξ(x, t) =
1

2π

∫ ∞

−∞
e(−ikx)g(k)

∞∑
n=0

(iwk − ϑ|k|λ)tρnEγn
ϱ,ρ(n+1)(ωt

ϱ)dk (4.10)

where ∆
λ
2 is the fractional generalized Laplace operator of order λ, λ ∈ (0, 2), ρ ∈

(0, 1), ν ∈ [0, 1] : x ∈ R, t ∈ R+, γ > 0 Fourier transform of ∆
λ
2 is −|k|λ discussed

in [30]

Proof. Applying the Fourier and Formable integral transforms on equation (4.7) by using
the equations (3.4), (2.13), first we will aply the Fourier transform

CDγ,ρ,ν
ϱ,ω,0+ξ

∗(k, t) = iwkξ∗(k, t)− ϑ|k|λξ∗(k, t) (4.11)

where ξ∗(k, t) is the Fourier transform of ξ(x, t) with respect to variable x. Now, we will
apply the Formable integral transform on equation (4.11)(v

r

)−ρ (
1− ω

(v
r

)ϱ)γ
ξ
∗
(k, r, v)−

(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
ξ∗(k, 0)

= iwkξ
∗
(k, r, v)− ϑ|k|λξ∗(k, r, v)

where ξ
∗
(k, r, v) is the Formable integral transform of ξ∗(k, t) with respect to variable t,

13



therefore

ξ
∗
(k, r, v)

[(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
+ ϑ|k|λ − iwk

]
=
(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
g∗(k)

ξ
∗
(k, r, v) =

(
v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
g∗(k)(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ [
1 + ϑ|k|λ−iwk

( v
r )

−ρ
(1−ω( v

r )
ϱ
)
γ

] , if [ ϑ|k|λ − iwk(
v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
]
< 1

ξ
∗
(k, r, v) =

(
v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
g∗(k)(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
[
1 +

ϑ|k|λ − iwk(
v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
]−1

ξ
∗
(k, r, v) = g∗(k)

∞∑
n=0

(iwk − ϑ|k|λ)n
(v
r

)ρn (
1− ω

(v
r

)ϱ)−γn

,

applying the inverse of Formable and Fourier on both sides of the above equation, we will
get the final result

ξ(x, t) =
1

2π

∫ ∞

−∞
e(−ikx)g(k)

∞∑
n=0

(iwk − ϑ|k|λ)tρnEγn
ϱ,ρ(n+1)(ωt

ϱ)dk

Theorem 4.3. The solution of generalized Cauchy type problem for fractional heat equa-

tion

Dγ,ρ,ν
ϱ,ω,0+ξ(x, t) = M

∂2

∂x2
ξ(x, t), (4.12)

ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(x, t)|t=0 = g(x), (4.13)

lim
x→∞

ξ(x, t) = 0,

with ρ ∈ (0, 1), ν[0, 1]; ω, x ∈ R; M,ϱ > 0, γ ≥ 0, is given by

ξ(x, t) =
1

2π

∫ ∞

−∞
e−ikxg(k)

∞∑
n=0

(−Mk2)ntρ(n+1)−ν(ρ−1)−1E
γ(n+1−ν)
ϱ,ρ(n+1)+ν(1−ρ)(ωt

ϱ)dk

(4.14)

Proof. Applying the Fourier and Formable transform on equation (4.12) by using equa-
tions (3.3), (4.13), (2.15), first we will apply the Fourier transform

Dγ,ρ,ν
ϱ,ω,0+ξ

∗(x, t) = −Mk2ξ∗(k, t) (4.15)

where ξ∗(k, t) is the Fourier transform of ξ(x, t) with respect to variable x, now applying

14



the Formable integral transform on equation (4.15)(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
ξ
∗
(k, r, v)−

(v
r

)ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)γν
ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+f
∗(x, 0)

= −Mk2ξ
∗
(k, r, v)

where ξ
∗
(k, r, v) is the Formable integral transform of ξ∗(k, t) with respect to variable t,

therefore we have(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
ξ
∗
(k, r, v)−

(v
r

)ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)γν
g∗(k) = −Mk2ξ

∗
(k, r, v)

ξ
∗
(k, r, v)

[(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
+Mk2

]
=
(v
r

)ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)γν
g∗(k)

ξ
∗
(k, r, v) =

(
v
r

)ν(1−ρ)−1 (
1− ω

(
v
r

)ϱ)γν
g∗(k)(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
+Mk2

ξ
∗
(k, r, v) =

(
v
r

)ν(1−ρ)−1 (
1− ω

(
v
r

)ϱ)γν
g∗(k)(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ [
1 + Mk2

( v
r )

−ρ
(1−ω( v

r )
ϱ
)
γ

] , if ( Mk2(
v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
)

< 1

ξ
∗
(k, r, v) =

(v
r

)ν(1−ρ)+ρ−1 (
1− ω

(v
r

)ϱ)γν−γ

g∗(k)
∞∑
n=0

[
−Mk2(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
]n

ξ
∗
(k, r, v) =

(v
r

)ν(1−ρ)+ρ−1 (
1− ω

(v
r

)ϱ)γν−γ

g∗(k)
∞∑
n=0

(−Mk2)n
(v
r

)ρn (
1− ω

(v
r

)ϱ)−γn

ξ
∗
(k, r, v) = g∗(k)

∞∑
n=0

(−Mk2)n
(v
r

)ρn+ν(1−ρ)+ρ−1 (
1− ω

(v
r

)ϱ)γν−γn−γ

,

applying the inverse of Fourier and Formable transforms, we will get the desired result

ξ(x, t) =
1

2π

∫ ∞

−∞
e−ikxg(k)

∞∑
n=0

(−Mk2)ntρ(n+1)−ν(ρ−1)−1E
γ(n+1−ν)
ϱ,ρ(n+1)+ν(1−ρ)(ωt

ϱ)dk

Theorem 4.4. The solution of Cauchy type fractional differential equation

Dγ,ρ,ν
ϱ,ω,0+ξ(t) = λℑδ

ϱ,ρ,ω,0+ξ(t) + y(t), (4.16)(
ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(t)
)
|t=0 = M (4.17)

where ξ(t) ∈ L1[0,∞) : ρ ∈ (0, 1), ν ∈ [0, 1] : ω, λ ∈ C : t, ϱ > 0, K, γ, δ ≥
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0, is given by

ξ(t) =
∞∑
n=0

λnℑγ+n(δ+γ)

ϱ,ρ(2n+1),ω,0+y(t) +M
∞∑
n=0

λntρ(2n+1)+ν(1−ρ)−1

× Eδn+γn+γ−γν
ϱ,ν(1−ρ)+ρ(2n+1)(ωt

ϱ)

(4.18)

Proof. Let B(r, v) be the Formable transform of ξ(t), applying the Formable transform
on both side of equation (4.16) and using (3.3), (4.17), (2.30) equations, then

R[λℑδ
ϱ,ρ,ω,0+ξ(t) + y(t)](r, v) = R

[
λℑδ

ϱ,ρ,ω,0+ξ(t)
]
(r, v) +R[y(t)](r, v)

= λR[ξ(t)tρ−1Eδ
ϱ,ρ(ωt

ϱ)](r, v) +R[y(t)](r, v)

= λ
(v
r

)
B(r, v)

(v
r

)ρ−1 (
1− ω

(v
r

)ϱ)−δ

+R[y(t)](r, v)

= λ
(v
r

)ρ (
1− ω

(v
r

)ϱ)−δ

B(r, v) +R[y(t)](r, v),

R
[
Dγ,ρ,ν

ϱ,ω,0+y(t)
]
(r, v) =

(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)

−
(v
r

)ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)γν
ℑ−γ(1−ν)

ϱ,(1−ν)(1−ρ),ω,0+ξ(t)|t=0,

=
(v
r

)−ρ (
1− ω

(v
r

)ϱ)γ
B(r, v)−

(v
r

)ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)γν
M
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therefore

B(r, v) =
R[y(t)](r, v) +

(
v
r

)ν(1−ρ)−1 (
1− ω

(
v
r

)ϱ)γν
M(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ [
1− λ( v

r )
ρ
(1−ω( v

r )
ϱ
)−δ

( v
r )

−ρ
(1−ω( v

r )
ϱ
)
γ

] , if

[
λ
(
v
r

)ρ
(1− ω

(
v
r

)ϱ
)−δ(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
]
< 1

=
R[y(t)](r, v) +

(
v
r

)ν(1−ρ)−1 (
1− ω

(
v
r

)ϱ)γν
M(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ ∞∑
n=0

[
λ
(
v
r

)ρ
(1− ω

(
v
r

)ϱ
)−δ(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ
]n

=
R[y(t)](r, v) +

(
v
r

)ν(1−ρ)−1 (
1− ω

(
v
r

)ϱ)γν
M(

v
r

)−ρ (
1− ω

(
v
r

)ϱ)γ ∞∑
n=0

λn
(v
r

)2ρn (
1− ω

(v
r

)ϱ)−δn−γn

=

(
R[y(t)](r, v) +

(v
r

)ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)γν
M

)
×

∞∑
n=0

λn
(v
r

)2ρn+ρ (
1− ω

(v
r

)ϱ)−δn−γn−γ

= R[y(t)](r, v)
∞∑
n=0

λn
(v
r

)2ρn+ρ (
1− ω

(v
r

)ϱ)−δn−γn−γ

+M

∞∑
n=0

λn
(v
r

)2ρn+ρ+ν(1−ρ)−1 (
1− ω

(v
r

)ϱ)−δn−γn−γ+γν

,

by taking the inverse of Formable transform on both sides of the above equation, we will
get the desired result

ξ(t) =
∞∑
n=0

ℑγ+n(δ+γ)

ϱ,ρ(2n+1),ω,0+λ
ny(t) +

∞∑
n=0

tρ(2n+1)+ν(1−ρ)−1Mλn

× Eδn+γn+γ−γν
ϱ,ν(1−ρ)+ρ(2n+1)(ωt

ϱ)

5 Conclusion

In this study, we first applied the Formable transform to the Hilfer-Prabhakar fractional
derivative and its regularized version. Next, we used these results to solve some Cauchy
type fractional differential equations involving Hilfer-Prabhakar fractional derivatives by
using the Formable and Fourier transforms, which involve the three parameter Mittag-
Leffler function. The results indicate that this transform is very useful for solving frac-
tional differential equations.
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