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Abstract

As self-driving cars perform more tasks, new challenges arise. One of these challenging tasks is autonomous driving decision-

making due to the uncertainty of the vehicle’s complex environment. This paper provides an overview of decision-making

technology and trajectory control for autonomous vehicles. The main common goal in decision-making is to consider uncer-

tainties, unpredictable situations, and driving tasks to propose a global and robust solution adapted to each situation. The

main concern is safety. Decision-making falls into three categories. The first is the traditional approach, which often consists of

building a rule system and deriving optimal operations. The advantages of such an approach are well known for being easy to

understand and applicable to small problems. The second category of decision-making is based on a probabilistic process and,

due to its efficiency, has several applications in this area. The third category is learning-based approaches. Once a decision has

been made, manipulate the steering angle or accelerator/brake pedals to perform the appropriate action. Two approaches are

existing to designing autonomous driving controllers. Either based on imitating human drivers that includes approaches based

on the use of driver models such as AI, or the use of approach-based models
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Nomenclature 

 
 
 

1. Introduction 

Autonomous vehicles, or "AVs," are still favored and 

appealing due to their advantages in improving peoples' 

quality of life. The capability of an artificial agent to 

navigate (by itself) toward a chosen waypoint without 

colliding is known as autonomous vehicle navigation. This 

topic has drawn a large number of research interest in the 

previous two decades, which justifies the several strategies 

and approaches used to enhance safety and security. The 

requirements of such a moving task from one position to 

another must include techniques in perception, state 

estimation, path planning, and motion control. One of the 

main challenges in autonomous driving is the decision- 

making due to the uncertainty of the complex environment 

surrounding the vehicle. Nowadays, the primary goal of 

decision-making is to provide comprehensive, reliable, and 

robust solutions that are adapted to all conceivable 

circumstances while considering uncertainty and 

unpredictable situations. The crucial task is to ensure the 

safety of road users. Furthermore, the vehicle has to adapt its 

decisions to its environment using sensors and internal 

memory for analyzing and updating its representation of 

both, its inner state and the surrounding objects in the 

environment. Decision-making involves deciding the course 

of action to take in light of the vehicle's internal 

presentation. This method is applicable to a variety of fields 

and performed well for autonomous robots such as the 

humanoid robot [1]. 
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Fig. 1. Standard components of an autonomous driving system architecture 
 

The prediction module involves estimating intentions 

and trajectories that the vehicle needs to perform for 

decision-making. The planning module finds out which 

trajectories are safe, while the control phase issues the 

commands needed to move the vehicle along such a 

trajectory.  Fig. 1 represents the basic components of an 

autonomous vehicle. It consists of three Layers, the first one 

corresponds to the perception and localization layer, the second 

one is the planning maneuver decision-making layer, and the 

last one is the maneuver execution layer. However, fully 

autonomous driving remains a complex task that involves 

challenging aspects and requires skills in domains such as 

perception, vision and image processing, trajectory 

generation path planning, decision-making, modeling, and 

automatic control. In this paper, we will focus on the 

importance of the second and third layers of vehicle 

guidance. 

The rest of the paper is organized as follows. Section 

2 discusses some decision-making methods for autonomous 

driving. In section 3, we introduce vehicle control for path 

tracking which includes the lateral and longitudinal control 

design. In section 4, we formulate decision-making 

approaches and vehicle controllers respectively. Finally, the 

conclusion is drawn in Section 5. 
 

2. Outline of Decision-Making for AVs 
 
Decision-making corresponds to making a choice 

between several possible modes of action when confronted 

with a problem, the goal being to solve it by translating the 

choice made into a behavior. For the autonomous vehicle, it 

involves a certain number of distinct operations such as the 

definition of the object, the search, the analysis and the 

organization of useful information, the elaboration and the 

evaluation of hypotheses for decisions by taking in particular 

relying on prior knowledge and/or experience, the choice of 

a decision hypothesis and its implementation. Some decisions 

are simple to make, while others are much more complex, in 

the sense that they involve a number of variables more or less. 

Efficient path planning algorithms and decision control 

systems are crucial issues for the navigation of autonomous 

vehicles. Therefore, decision-making can be divided into 

three categories as shown in Fig. 2. The first one includes 

traditional approaches often consist of building a system of 

rules and deducing the most suitable maneuver.  

Traditional approaches’ advantages are known by their ability 

to be easily comprehensible and traceable for small 

problems. However, the only shortcoming of these 

approaches is that uncertainties and partial observability 

cannot be considered correct in this type of approach. The 

second type of decision-making is based on a probabilistic 

process and it has several applications in this field due to its 

efficiency. The most used methods in probabilistic 

approaches are Markov Decision Processes, Bayesian 

Networks, and Monte Carlo Decision Maps The third and 

last is learning-based approaches. The biggest challenge for 

decision-making algorithms is to be fast enough to have a 

real-time decision. 

 

2.1. Traditional Methods 
 

Finite State Machine “FSM” is used as a decision-

making strategy in the robotic field to rule vehicles’ behavior 

and decision. The FSM is defined by a finite set of states in 

which the agent can be, and by the transitions between the 

states in response to some inputs. In general, the aim of the 

FSM strategy is to search for a suitable behavior such as 

changing lane or making a U-turn to allow the robot to reach 

the desired goal. Furthermore, it sends the chosen trajectory 

to the controller, which in return sends the steering and 

velocity commands, or sends a message to the planner that the 

final goal cannot be reached while operating [2]. 

Fuzzy Analytic hierarchy process “Fuzzy-AHP” based is 

proposed in [3], the method is considered powerful in multi-

objective decision-making under the user’s preference on 

objectives. It is applied to path planning to improve the 

performance of the AHP, which is responsible for decision-

making. The proposed method takes into consideration three 

main objectives, which are the travel distance to the desired 

position, the robot’s rotation, and safety against collision 

between obstacles. As AHP is inappropriate for making 

decisions under uncertain conditions, FAHP came to 

compensate for the weakness of AHP. The main advantage of 

FAHP is that it can be applied with a variety of objectives 

classified into three levels, the highest level being the goal, 

the middle level being the objectives, and the lowest level 

being the alternatives. However, AHP-based decision-

making inevitably involves the decision-maker’s 

subjectivity in determining the preference for evaluation 

objectives [4]. 
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Fig. 2. Flowchart of decision-making approaches and process 
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- Reinforcement Learning 
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To solve this difficulty, fuzzy is addressed to deal with 

ambiguity and uncertainty resulting from AHP; thus 

providing robustness and flexibility; according to [5]. FAHP 

selects the optimal path from pre-planned paths considering 

safety, steepness, congestion, and roughness. 

Responsibility Sensitive Safety ‘RSS’ is a mathematical 

method that represents a rigorous mathematical model 

formalizing an interpretation of the law that can be applicable 

to self-driving vehicles, thus guaranteeing that from a 

planning perspective there will be no accidents caused by the 

AV. RSS is widely used to control swerve maneuvers for 

autonomous driving. [6] Proposes a feasible solution using 

RSS to swerve maneuver boundary condition problems in 

addition to standard brake maneuvers. For that reason, they 

build both lateral and longitudinal safe distances between 

two vehicles. The longitudinal safe distance help to examine 

the swerving maneuver to be done while maintaining an 

appropriate lateral safe distance. 

Red-Black Half-Sweep Successive Over-Relaxation 

‘HSSOR-RB’ iterative method is a numerical technique. [7] 

Introduces a novel technique for mobile robot path planning 

based on potential field method and HSSOR-RB strategy. 

The work implements a numerical potential function in 

configuration space based on the theory of heat transfer. An 

environment is created by the heat transfer, modeled by using 

Laplace’s Equation, which will not only allow skipping the 

known problem of potential field method, which is local 

minima but also, favorable for robot navigation control, 

Laplace’s Equation is fast solved using HSSOR-RB. 

The decision-Making force was inspired by Decision Field 

Theory ‘DFT’, which is a dynamic cognitive approach to 

human decision-making based on psychology. Researchers 

initially introduced it as a deterministic dynamic model of 

approach-avoidance conflict behavior.  

So that the robot can neither, track the task trajectory 

smoothly, nor avoid obstacles in different possible 

configurations. The decision-making force will decide which 

direction is more suitable for obstacle avoidance. In [8], the 

authors presented a new method for obstacle avoidance by 

combining the closed-loop control system, dynamic 

repulsion field, and decision force. The decision-making 

force includes two forces that are repulsive force and the 

driving force. When an obstacle is detected, both the 

obstacle avoidance and decision-making force modules will 

output the repulsive and the decision-making forces to the 

closed-loop control system in order to track the suitable 

direction to a free obstacle. In this work, an algorithm for 

obstacle avoidance is proposed for a two-degree-of-freedom 

manipulator robot, which can also be applied to a mobile 

robot. 

Model Predictive Control ‘MPC’ method sets the current 

control by anticipating future events using a mathematical 

model of the system dynamics. This method is originally used 

as a control method as developed in section 3, and has been 

extended in the literature for decision-making applications as 

reported in [9]. Two levels of decision-making exist in 

decision-making processes; Low level and high level. The 

most developed is the high level, which focuses on long-term 

driving planning, due to the fact that driving strategy 

majorly relates to the high-level decision-making process. 

Besides, the low-level decision-making process focuses on 

generating collected action patterns within 0.1s to several 

seconds. Recently, high-level driving schemes were applied 

for the whole decision process and all possible traffic 

scenarios as investigated in [10]. In [11], the authors 

introduce a curiosity-based method with mental energy 

function (bio-interpretable), which is designed to guide 

the learning
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direction of the robot in navigation tasks and re-learn the 

environment information. The experiences were done by 

changing the simulation environment so that the robot can 

reach the final goal through re-learning the current 

environment, which reflects the autonomous learning ability 

and the environmental adaptability of robots. 

Furthermore, the Model to Decision ‘M2D’ method has 

been investigated in the literature and implemented for AV’s 

decision-making. In [12], the authors present an ethical M2D 

approach for autonomous vehicles with full autonomy, 

which remain at level 5 and are able not only to recognize the 

type of obstacles ahead; but also to determine, estimate and 

predict all kinds of information needed in the decision-

making process. The main idea of this work is to introduce 

M2D for making a decision between colliding into an 

immovable rigid barrier or a group of pedestrians. Ethical 

M2D involves the use of a mathematical model of the 

collision scenarios to make a decision; this model describes 

the key features of an autonomous vehicle. 
 

2.2. Probabilistic Methods 
 

Decision-making is widely used in robot soccer navigation 

in a probabilistic way to choose an appropriate kick for 

soccer. The work in [13] presents a probabilistic approach to 

decision-making based on maximizing a game situation score 

function. This approach takes into account only the 

uncertainty in the kicks; it will give better results if the 

method takes into account also the uncertainty in the 

perception in situations including localization, vision, and 

object tracking. Markov Decision Process is defined as a 

discrete-time stochastic state transition system. The Markov 

Decision Process-based approach is used in [14] for trajectory 

planning with the clothoid tentacles method that generates 

tentacles in an ego-centered grid, that represents feasible 

trajectories by the vehicle. Then the problem is formulated as 

Markov Decision Process so that the right trajectory can be 

chosen. The proposed Markov Decision-Making process for 

trajectory planning with tentacles is formulated with five 

components that allow the agent to drive toward the final goal 

while avoiding obstacles. The components are as follows: 

States, which is a set of states of the system. Actions: a set of 

actions allowed in each state where A is the set of all actions. 

Transition Probabilities: This defines the transition 

probabilities of the system. Rewards: Depending on the 

current state of the system and the action taken, then the agent 

will receive a reward drawn from this model. Discount 

Factor: the discount rate used to calculate the long-term 

attenuation. 

Bayesian Networks are typically part of Directed Acyclic 

Graphs. In general, Decision Networks combine BNs with 

additional node types for actions and utilities, whereas 

Dynamic Networks ‘DNs’ allow to support of probabilistic 

reasoning, and decision-making under uncertainty for a 

given system and give the capacity to incorporate multiple 

decision criteria which are the most suitable in path planning. 

BNs can be designed in two levels, the situation assessment 

level to infer the current situation state based on the risk 

assessment and the decision-making strategy level to deduce 

the maneuvering decisions [15]. DBNs are widely used for 

maneuver 

intention, trajectory prediction, and modeling the interaction 

between traffic participants the fact that makes this technique 

very suitable for decision-making. In addition, Dynamic 

Probabilistic Networks have been used as a basis for three 

separate decision-making approaches. These approaches are 

as follows: dynamic decision networks, which are the DPN 

extended with actions node and utility function for each 

period. Hand-coded policy representations through a 

decision tree and supervised learning and reinforcement 

learning methods for solving the full Partially Observable 

Markov Decision Process, which is difficult to solve and 

which helps to find an optimal value (direct link with action 

for agent) that maximizes the expectation for the reward sum 

over the future time slice. This work [16] presents a decision-

making framework for autonomous driving in highway 

environments, to determine an appropriate and desired 

maneuver to the trajectory generation module; in doing so, 

they used the Bayesian approach in decision-making 

calculations of threat levels at the car and lane level. The 

results of this study show that the performance of the 

decision-making framework of Co-Pilot is sufficiently 

reliable and robust for AVs in highway environments. 

Monte Carlo can also be chosen for path planning 

algorithms [17] in order to generate a probability 

distribution for the future motions of traffic scene 

participants. Each object is assigned a goal function, and 

self-adaptive Monte Carlo integration is used with LIDAR 

data to assess the probability that all objects will safely 

reach their goal. 
 

2.3. Learning-based Methods 

 
Most of nowadays strategies in this field are learning-based 

due to their possibility to deal with road conditions and 

risks, which are often unknown or uncertain, the purpose of 

having AVs that are characterized by an adaptive long-term 

high-level strategy besides the ability to adjust flexibly 

through interactive decision-making. 

The paper [18] presents End-to-End learning which treats 

the entire pipeline as one learnable machine-learning task. 

Furthermore, end-to-end driving in the autonomous vehicles 

field is defined as a system where a neural network makes the 

main driving decisions, without forcing what the 

inputs/outputs of the network should be or in how many 

stages it is trained. In addition, Reinforcement Learning ‘RL’ 

is learning of decision-making through the ego vehicle’s 

interaction with the environment. Using the known sensors 

(Lidar, Radar, Camera RGB…), the vehicle makes 

observations of the environment, the fact which makes the 

vehicle able to capture the current state which then enables an 

active decision to be made accordingly. In [19], authors 

propose a learning method to deal with obstacle avoidance 

problems for autonomous vehicles in a dynamically changing 

environment (multiple goals). The proposed method is based 

on a multiple goals reinforcement-learning framework while 

considering several goals and they employed Q-learning in 

order to determine action decisions based on the interaction 

of other vehicles with the agent with respect to its interesting 

goal. With this fusion of two methods Reinforcement, 

learning and Q learning, the authors succeeded to make 

corrective action decisions for the overtaking problem, 

avoiding collisions with vehicles, 
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Lane-Keeping, Path Tracking 

Maintains Vehicle Stability by 
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Regulating the vehicle’s cruise speed  
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vehicle by generating acceleration or braking  
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Optimal Linear Quadratic Predictive Control 

Sliding Mode Control  

Lyapunov Stability Control 

Backstepping Control  

Control Barrier Function 

Flatness Control 

Fuzzy Logic Control  

PID Control   

Model Predictive Control  

Limit-Cycle   

Fig. 3. Flowchart of existing motion controllers for autonomous driving cars. 
 

reaching the final target, and keeping and maintaining almost 

the speed and the heading angle, respectively. 

Inverse reinforcement learning is presented in [20]. The 

authors proposed this method to learn individual driving 

styles for self-driving cars from the demonstration. In [21], 

deep reinforcement learning for the decision-making of 

autonomous vehicles is proposed. By using a transfer 

reinforcement-learning framework in order to improve the 

control performance and learning efficiency for automated 

vehicles’ decision-making problems. Another approach 

based on RL named Q-Learning algorithm ‘QL’, by 

definition is a reinforcement learning technique. This 

technique does not require any initial model of the 

environment. Q letter designates the function that measures 

the quality of an action performed in a given state of the 

system. By some researchers, QL is a simple model-free of 

RL method. QL is known for its simplicity but it is not very 

effective in handling a dynamically changing environment. 

The fact that many other QL extensions as an improved 

version of QL are developed to overcome the approach 

weakness. In [19], QL and DAQL are used to determine 

individual action decisions, for target seeking, it allows the 

vehicle to learn to achieve the goals. Deep learning-based 

decision-making system is proposed in [22] for autonomous 

vehicles for decision-making before entering a roundabout. 

The proposed approach helps vehicles make correct 

decisions, including decisions to enter or wait, when 

entering a roundabout. Curiosity based is a method inspired 

by psychology research. Authors in [23] proposed a 

curiosity-based mobile robot path planning method with a 

designed mental energy function to guide the Learning 

direction of the robot in navigation. 

 

3. Vehicle Control for Path Tracking 

 
By definition, vehicle control involves maneuvering 

the vehicle using actuators such as the steering wheel, brake, 

and accelerator to ensure the reference path following. There 

are two ways to design controllers for autonomous driving; 

either based on the imitation of the human driver, which 

includes approaches based on the use of driver models such 

as AI (Artificial Intelligence), or the use of approaches 

based on the theory command. 

The vehicle control system is composed of 

longitudinal and lateral controllers or it can have a coupled 

controller for both of them as it is described in Fig. 3. Most 

of the control strategies proposed in the literature deal 

independently with longitudinal control or lateral control. 

Lateral control is responsible for lane keeping or lane 

changing for obstacle avoidance, whereas longitudinal 

control is designed for tracking (car following). 

 
3.1. Lateral and Longitudinal Controllers 

 

Lateral control focuses on adjusting the steering angle 

such that the vehicle follows the desired reference path. 

Wherein the complexity of the dynamic model of the vehicle, 

the environment, and driving situations make the 

transposition of the proposed solutions of path following 

problems into the context of the autonomous driving field 

quite difficult. It is considered the most challenging part of 

vehicle dynamics research while considering the 

nonlinearity of the system, uncertainty, and existing 

disturbances in the environment. Therefore, designing robust 

control laws 

Conductor Model NN based 

Command  theory     Model 
based 

Methods 

Longitudinal Control 

Control 

Lateral Control 
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capable of considering these requirements; remains one of the 

main challenges today in the vehicle dynamics field. 

To ensure such a maneuver, the vehicle must have 

longitudinal control as CACC (Cooperative Adaptive Cruise 

Control), ACC (Adaptive Cruise Control), and CC (Cruise 

Control) to provide robust and string stable car-following in 

urban environments [24]. However, the purpose of using 

longitudinal control is to control the longitudinal movement 

of the vehicle, such as longitudinal speed, acceleration, or 

longitudinal position of the vehicle, by operating on the 

engine torque. The most interesting part of Longitudinal 

control is how ACC regulates speed according to the driver's 

set point and maintains a safe distance from the vehicle in 

front. When a vehicle approaches another vehicle, the 

system immediately reduces or stops engine power and 

moves forward to maintain a safe following distance. This 

distance can be measured by a radar or camera or a 

combination of both that detects the obstacle. The fusion 

between multiple sensors is well recommended in this field in 

order to improve the control performance. 

In the research that is detailed in the following paragraph, 

lateral and longitudinal control problems have been 

investigated in a decoupled way. In fact, numerous works 

dealing with the lateral guidance of AV are based on the 

assumption of a constant speed and low longitudinal 

dynamics. The development of intelligent systems requires 

efficient and coupled control of the longitudinal and lateral 

movements of the vehicle. In [25], the authors present a 

coupled non-linear control of the longitudinal and lateral 

modes of the vehicle, and an estimator of road deflection 

angle. As it has an important influence on vehicle lateral 

dynamics behavior and control vehicle systems, they used an 

algebraic estimation approach, which is employed in this 

work to estimate simultaneously the vehicle dynamic 

parameters such as lateral forces and deflection angle. For 

the coupled non-linear control, they consider a three degree-

of-freedom ‘DOF’ nonlinear model of the vehicle describing 

the longitudinal, lateral, and yaw dynamics. The obtained 

experimental tests provide promising results on the joint 

approach of algebraic estimation and flatness control. 

The core of a coupled longitudinal and lateral dynamic is 

the control design that is based on a complex mathematical 

model, which is a challenging task due to these couplings. 

However, we cannot deny the existence of strong couplings 

between the two dynamics at several levels: dynamic, 

kinematic, and tire-forces. Consequently, to improve 

performance guidance in a large operating range, the 

simultaneous inclusion of longitudinal and lateral control 

becomes unavoidable and necessary. Authors in [26] deal 

with the longitudinal and lateral control of autonomous 

driving. As the automated guidance must be simultaneously 

performed with longitudinal and lateral control, a 

combination of the steering and the longitudinal controllers; 

is introduced. The authors propose an automated steering 

strategy based on Nonlinear-MPC for lateral control, and the 

longitudinal control here is based on a direct Lyapunov 

approach. Moreover, this work adds a second contribution 

that consists of the use of heterogeneous criteria to update 

the longitudinal speed reference to improve the lateral 

stability level, thus increasing safety. 

3.2. Control Methods 

3.2.1 Model-based controllers: Numerous works on 

vehicle control are done using Optimal Linear Quadratic 

predictive control which provides optimal control [27]. H∞ 

controller-based approaches are presented in [28,29]. It is a 

state-feedback controller that authors use for control design 

for ground vehicles processing steer-by-wire and drive/brake- 

by-wire functions, their experimental results show the 

effectiveness of the control algorithm in dealing with the 

steering system when tracking yaw rate references. Sliding 

Mode Control ‘SMC’ has been developed and implemented 

for several applications as provided in [30-32]. In [31], SMC 

is applied with Predictive Voltage for the innovative 

paradigm of path planning and control of autonomous 

driving vehicles lateral maneuvering. The proposed control 

assures smooth lateral vehicle motion to the target lane. 

Nevertheless, the steering command still suffers from 

chattering issues. In [32], Backstepping control method with 

Sliding Mode Observer is employed for an autonomous lane-

keeping System. The proposed control has a relatively 

simple control law to implement. Besides, it pronounces 

robustness against parameter uncertainties and noises. The 

two basic functions of vehicle lateral control systems are lane 

keeping and lane changing. Lane-keeping system 

automatically controls the steering to not only keep the 

vehicle in its lane but also to follow the lane. Concerning lane 

changing system it steers the vehicle from the current lane to 

an adjacent lane. Both are concerned with using Fuzzy logic 

control as in [33, 34]. By considering the external 

disturbance and the parameters uncertainties, an adaptive 

robust controller based on Backstepping technology is 

widely used to improve the lateral dynamics stability as in 

[35,36]. Flatness control is presented in [37], authors used 

flatness-based and new algebraic estimation techniques for a 

combined longitudinal and lateral vehicle control. This 

nonlinear control is designed for automatic path tracking of 

straight or curved trajectories, and also it can be used to 

perform lane keeping and lane changing while avoiding 

obstacles. In [38], the authors integrate Lyapunov theory for 

the desired path-tracking system, thus guaranteeing global 

system stability. Model Predictive Control ‘MPC’ is 

designed for low-level control or cooperative driving 

applications. It is a method used in the trajectory tracking of 

autonomous vehicles, it deals with both linear and nonlinear 

systems, and requires online optimization problems to be 

solved at each prediction sampling time. The main 

disadvantage of this approach is the computation time of 

nonlinear MPC [39]. Proportional-Integral-Derivative ‘PID’ 

is a control loop mechanism that employs feedback control, 

which is widely used in industrial control systems [40]. 

Recently, the Limit Cycle controller has been investigated 

by many researchers and has been implemented for several 

issues mainly in the robotic field. It generates precisely the 

robot trajectories, which are defined according to a set of 

differential equations as developed in [21, 41 ,42]. This 

approach is known for this optimality and it uses specific 

reactive rules, which allows the robot to avoid deadlocks, 

local minima, and oscillations. The Limit Cycle control is 

presented by authors in [41] where they used a modified 

Limit Cycle Navigation method for the case of local sensing. 

In [42], a stable limit cycle has been proposed and designed 

for Nonlinear Time-delay Systems. This technique leads to 
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achieving strong behavior for trajectory tracking in 

nonlinear dynamical systems. In the temporal domain, 

stable limit cycles are similar to stable oscillations. In this 

way, numerous real systems have been subjected to this 

behavior's analysis in an effort to create stable oscillations 

by modifying an appropriate limit cycle to correspond to 

the desired output's shape, amplitude, and frequency. In the 

limit cycle shaping technique, oscillatory behavior is a 

natural characteristic of solutions and is not dependent on a 

reference signal or on temporal derivatives either. As 

reported in previous research, the Lyapunov theorem is 

primarily used to characterize the stability of limit cycles 

and the candidate Lyapunov function is chosen based on 

the desired limit cycle's geometric shape. 

3.2.2 Neural Network-based controllers: Artificial Neural 

Network ‘ANN’ is a popular form of approximate learning 

solution. The latter is based on the error backpropagation to 

adjust the weights of neural connections with different 

learning strategies. Nowadays, many works intend to use 

neural network approaches for autonomous driving where the 

vehicle can choose the correct motion and accomplish the 

task of reaching the final destination with collision-free 

according to the environment information perceived by the 

sensors. Behind an unknown and dynamic environment, this 

task proves to be difficult, which explains the need for a 

large time-life so that the proposed neural network method 

can learn and accumulate more about behavior knowledge. In 

addition, Fuzzy logic [43] is part of a neural network-based 

controller, reinforcement-learning algorithm [44] is suitable 

for the application of the control of intelligent robots, but it 

has some limitations as the problems of the delayed reward 

and temporal credit assignment. Adaptive neural network is 

presented in [45]. ANNs are widely used due to their good 

generalization performance and effectiveness in solving the 

problem of nonlinear mapping. Authors in [46], propose a 

multi-layer feedforward artificial neural network to develop 

a motion planning controller for a mobile robot. The multi-

layer feedforward artificial neural network is a supervised 

learning technique that requires some training data. The 

authors gathered the training samples using Q-learning. 

They reduced the complexity of planning to five state 

actions: move forward, turn right, turn left, rotate 180 

degrees, and stop action. The ability of the vehicle to learn 

and adapt is necessary for the creation of a self-driving 

automobile. To improve control outcomes and overcome the 

drawbacks of the already implemented control systems, it is 

advised to combine existing methods. 

The previously discussed controllers in the literature have 

been developed for both decision-making and path control 

and tracking for autonomous vehicles. These proposed 

controllers have been implemented for precise obstacle 

avoidance thus trajectories tracking in time. Nevertheless, 

the overall stability of the vehicle and the passenger’s safety 

neither were given sufficient consideration. Safety is equally 

paramount of importance and brought to the forefront of 

Autonomous vehicle design, especially for dynamic AVs 

when prone to a random and unknown environment. In this 

way, several studies have been investigated to ensure safety 

hence stability as well. Several authors have refocused on 

AV’s safety by introducing Control Barrier Function ‘CBF’ 

approach [47-49]. It is considered the most 

effective algorithm to guarantee AV stability and safety, 

thus solving such AV problems as lane-keeping in [50], 

obstacle avoidance, and free-collisions in [51]. The CBF has 

been integrated with other controllers to achieve 

simultaneous decision-making, path tracking, and safety at 

the same time. In [52], a robust control for lateral dynamics 

of autonomous vehicles has been developed using Barrier 

Lyapunov-Function control. Furthermore, the CBF has been 

successfully combined with MPC and SMC for autonomous 

surface vehicles in presence of tire forces, road curvature, and 

parametric uncertainties as reported in [48] and [53] 

respectively. Due to recent activity in related fields and the 

necessity of safety associated with autonomous systems, the 

authors envision control gate functionality to become an 

integral part of modern control system design. 

 
4. Discussions 

The decision-making module is a fundamental component 

of autonomous driving since it has finite set of actions to 

perform. There will be no reasonable behavior without 

decision-making action. Different decision-making 

algorithms have been implemented in the past few years (see 

section 2) which focus on planning, predicting, reactivity, and 

so forth. The main task in decision-making algorithms is that 

it must be fast enough to have real-time. According to [15], 

decision-making systems for self-driving require four criteria, 

rapidity in the planned decision, coherency for avoiding 

unnecessary actions, and providentness which means that 

the module should foresee how the situation will evolve 

after some time/maneuvers and include it in the decision- 

making, and finally, the predictability. 

The present paper discusses the state-of-the-art algorithms 

in the domain of decision-making of autonomous driving. 

Table.1 summarizes the main advantages and drawbacks of 

the mentioned decision-making approaches. It illustrates a 

comparison between performances of the traditional, the 

probabilistic, and the learning-based approaches. The most 

important task in DMS (Decision-Making System) is the 

ability to solve any unexpected situation while considering 

uncertainty and finding the right balance between accuracy 

and computational complexities. For doing, the probabilistic 

approaches are recommended for such general decision-

making in autonomous vehicles, because it has the potential 

to take into account the nature of the stochastic dynamics of a 

traffic environment, to be able to account for uncertainties 

thanks to well-known probabilistic algorithms and to take 

into account both of the present and future interactions 

between the participants. 

The second part of this paper deals with control strategies 

for autonomous vehicles. Automatic control is the last part 

of the autonomous vehicle sequence and one of the most 

important tasks since it is responsible for ensuring its motion. 

The controllers vary depending on the chosen technique. In 

this paper, various vehicle control methods are presented. A 

summary of the discussed control algorithm in this review is 

listed in Table. 2. The main advantages and drawbacks are 

given for each proposed technique for AV system control. 

For lateral control, several works used the dynamic bicycle 

model, which seems to be the most appropriate for high-speed 
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warnings for the driver. 

Table 1. Analysis of decision-making approaches for AVs. 

Category Method Advantages Drawbacks 
 

Searches for a suitable behavior 
Finite State Machine [2] that makes the vehicle reach an objective 

Transitions are coded and tested by
 

hand and thus prone to errors 
checkpoint, online 

 

 

 

Traditional 

 

 
Fuzzy Analytic Hierarchy Process [3] 

 
Handles the uncertainty, robustness and 

flexibility, powerful in multi-objective 

decision-making, online ------------ 

 

 
 

Responsibility Sensitive Safety [6] 

 

 

 
Red-Black Half Sweep Successive 

Over Relaxation [7] 

 

 

Guarantees safety 

 
 

Reduces computational complexity, fast 

iterative method, and solves path 

planning problems. 

The lack of long-term decision- 

making, the sacrifice of traffic 

efficiency 

 

 
 

Static environment 

 

 

Decision-Making Force [8] 

Brings great flexibility into the online 

adaption framework, and guarantees the 

end effector and robot links’ safety. 

 

Less efficient. 

 
 

Probabilistic 

Markov Decision Process [14] 
Dynamic environment with

 
uncertain dynamics. 

Considers interaction between 

High complexity 

Bayesian Networks [15, 16] participants, flexible design. Computationally expensive 
 

Monte Carlo Decision Map [17] 
Used to either control the car, or to display 

 
Makes correct action decisions for 

Exponential computational cost, 

short-term prediction 

Offline, Discrete space, unsafety of 

 

Learning-Based 

End-to-End Learning [18] 
overtaking problem. 

the decisions. 

 

Curiosity-Based [11, 23] Re-learning of the environment. Computational complexity. 
 

autonomous driving. It is basically a non-linear and time-

varying model. However, it is difficult to make a very 

objective comparison of the control techniques developed in 

the literature because they are generally used on different 

models and vehicles, with different assumptions. Many of 

them have only been validated in simulation using 

autonomous driving simulators as Carla, CarMaker, and so 

forth. However, we can deduct from the analysis that 

adaptive controllers are more efficient. Control laws such as 

Sliding Mode Control, MPC, and Predictive Linear Quadratic 

optimal control seem to be appropriate. In addition, the use of 

artificial intelligence techniques or even hybrid controllers is 

also recommended since neural network approaches can 

have unexpected behavior while running the network in real-

time or giving some inexplicable outputs. On the contrary, 

longitudinal control is responsible for regulating the car’s 

cruise velocity. Many researchers focus on classical 

controllers such as PID, which are widely used to provide 

longitudinal control in self-driving car applications. 

Furthermore, Fuzzy controllers and Sliding mode controllers 

in this field are still being developed and  

implemented due to their significant advantages and pronounce 

performance in following and keeping, respectively, the 

reference velocity. 

 

5. Conclusion 

In this paper, we have addressed the problem of decision 

making and command control in order to ensure safe and 

smooth trajectory tracking. 

The first level is a scan of all decision-making methods for 

AVs. The second level is to discuss some vehicle control 

methods for path following for autonomous vehicle. 

After having performed a large state-of-art, research on 

control and decision-making of autonomous vehicles, several 

contributions have been presented. 

During the last few years, several challenges have 

stimulated research methods for the design of autonomous 

driving. Many researchers and developers as well as 

carmakers become more interested in the development of 

such applications. This is a fast-growing field of research, 
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Table 2. Analysis of system control algorithms for AVs. 
 

Category Method Advantages Drawbacks Experimental 

Validation 

  Robust and string stable car-following 

in urban environments 

Speed regulation according to the 

driver's set point 

safe distance from the vehicle in front 

Assumption of constant 

speed and low longitudinal 

dynamics 

V 

 Cooperative Adaptive 

Cruise Control [24] 

 

Lateral 

and 

Longitudi

-n al 

Control 

   

CC (Cruise Control) promising results on the joint 

approach of algebraic estimation and 

flatness control 

Requirement of efficient 

and coupled control for 

vehicle movement 

---------- 

 Optimal Linear Quadratic 

predictive control [27] 

H∞ State-Feedback 

Controller [28,29] 

Optimal control 

Vehicle stability and the trajectory 

improvement along the desired path 

Dealing with steering system when 

tracking yaw rate reference 

Limitation for multi- 

variable systems and 

systems with constraints 

Difficulty to restrict the 

manipulated controlled 

variable. 

NV 

V 

  

Sliding Mode Control 

with Backstepping [30] 

Robust against parametric 

uncertainties and noises 

 

Chattering phenomena 
 

V 

 
Flatness control [37] Perform lane keeping and lane 

changing while avoiding obstacle 
Difficulties to use real 

measurements for reference 

signal generation for control 

application 

Required algebraic 

estimation of measurements 

 

V 

 
Model Predictive Control 

[39] 

Application for both of linear and 

nonlinear systems 

Less sensors are used 
High performance when tracking 

reference in the next step in sampling 

time 

Computation time of 

nonlinear MPC 

Requires online 

optimization problem to be 

solved at each sampling 

time 

Limitations on steering 

angle and steering angle 

rate 

 

V 

Model 

based 

Control 

  

 PID Controller [40] Employ feedback control 

Industrial control systems 

applications 

Saturation issues in time 

Tuning parameters 

problems 

NV 

 Limit cycle [21, 41, 42] Optimal control based on differential 

equations 

Simple to implement 
High accuracy generation of the robot 

trajectories 

Strong behavior for trajectory 

tracking in nonlinear dynamical 

systems. 

Combination of 

linearization methods 

Necessitate to add the 

avoidance trajectory 

equation to the controller 

Reference and trajectory 

error still exist 

NV 

 Lyapunov and Control 

Barrier Function [47-53] 

Guarantee the system stability and 

safety of vehicle 

Candidate for nonlinear systems 

control 

 NV 

 ------------  
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Table 2. Analysis of system control algorithms for AVs. (The following) 
 

Category Method Advantages Drawbacks Experimental 

Validation 

 Artificial Neural Networks 

‘ANN’ [46] 

Adjust the weights of neural 

connections 

unexpected behavior while 

running the network in real time 

V 

 
Fuzzy logic [43] Suitable for control of 

intelligent robots. 

Problems of the delayed reward 

and temporal credit assignment. 

NV 

Neural 

Network- 

based 

controllers 

 
Adaptive neural network 

[45] 

 
Good generalization 

performance Effective for 

solving the problem of 

nonlinear mapping 

 
Requirement of own learning 

and adaptive abilities of the 

vehicle 

Combination of existing method 

to get better control 

 
V 

 

Securing autonomous driving in urban areas is one of the 

biggest issues facing the world today  

Furthermore, these research works are interested in three 

key steps to achieve autonomous navigation: the planning of 

trajectories, the decision-making, and the development of 

robust control laws that will ensure, in real-time, trajectory 

tracking. A well-designed system for self-driving cars should 

ensure not only path tracking while avoiding obstacles, but 

also must take into account safety, and the ability to comfort in 

critical situations and it should have a strong positive impact 

on traffic safety. 

By making the state-of-the-art, we have concluded the fact 

of using multiple complementary criteria, which allowed to 

have not only redundancy in the assessment but also to 

improve the accuracy of the acquired information. In addition, 

as each event on the road is distinct and a prompt response is 

necessary to handle any emergency or critical situation, the 

given methodologies and online verification of the safety of 

autonomous cars are essential. 
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