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Abstract

Ecosystem management aims at providing many ecosystem services simultaneously. Such ecosystem multifunctionality can be

limited by trade-offs and increased by synergies among the underlying ecosystem functions (EF), which need to be understood

to develop targeted management. Previous studies found differences in the correlation between EFs. We hypothesised that

correlations between EFs are variable even under the controlled conditions of a field experiment and that seasonal and annual

variation, plant species richness, and plot identity (identity effects of plant communities such as the presence and absence of

functional groups and species) are drivers of these correlations. We used data on 31 EFs related to plants, consumers, and

physical soil properties that were measured over 5 to 19 years, up to three times per year, in a temperate grassland experiment

with 80 different plots, constituting six sown plant species richness levels (1, 2, 4, 8, 16, 60 species). We found that correlations

between pairs of EFs were variable, and correlations between two particular EFs could range from weak to strong correlations or

from negative to positive correlations among the repeated measurements. To determine the drivers of pairwise EF correlations,

the covariance between EFs was partitioned into contributions from plant species richness, plot identity, and time (including

years and seasons). We found that most of the covariance for synergies was explained by species richness (26.5%), whereas

for trade-offs, most covariance was explained by plot identity (29.5%). Additionally, some EF pairs were more affected by

differences among years and seasons and therefore showed a higher temporal variation. Therefore, correlations between two

EFs from single measurements are insufficient to draw conclusions on trade-offs and synergies. Consequently, pairs of EFs need

to be measured repeatedly under different conditions to describe their relationships with more certainty and be able to derive

recommendations for the management of grasslands.
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ABSTRACT

Ecosystem management aims at providing many ecosystem services simultaneously. Such ecosystem multi-
functionality can be limited by trade-offs and increased by synergies among the underlying ecosystem func-
tions (EF), which need to be understood to develop targeted management. Previous studies found differences
in the correlation between EFs. We hypothesized that correlations between EFs are variable even under the
controlled conditions of a field experiment and that seasonal and annual variation, plant species richness,
and plot identity (identity effects of plant communities such as the presence and absence of functional groups
and species) are drivers of these correlations. We used data on 31 EFs related to plants, consumers, and
physical soil properties that were measured over 5 to 19 years, up to three times per year, in a temperate
grassland experiment with 80 different plots, constituting six sown plant species richness levels (1, 2, 4, 8,
16, 60 species). We found that correlations between pairs of EFs were variable, and correlations between two
particular EFs could range from weak to strong correlations or from negative to positive correlations among
the repeated measurements. To determine the drivers of pairwise EF correlations, the covariance between
EFs was partitioned into contributions from plant species richness, plot identity, and time (including years
and seasons). We found that most of the covariance for synergies was explained by species richness (26.5%),
whereas for trade-offs, most covariance was explained by plot identity (29.5%). Additionally, some EF pairs
were more affected by differences among years and seasons and therefore showed a higher temporal variation.
Therefore, correlations between two EFs from single measurements are insufficient to draw conclusions on
trade-offs and synergies. Consequently, pairs of EFs need to be measured repeatedly under different con-
ditions to describe their relationships with more certainty and be able to derive recommendations for the
management of grasslands.

Keywords

Correlation analysis; Synergies; Trade-off; Biodiversity; Temporal Variability; Ecosystem function relation-
ships

INTRODUCTION

Land management and policy aim to improve human well-being by providing multiple ecosystem services,
i.e., ecosystem multifunctionality (Dade, Mitchell et al. 2018). The Millennium ecosystem assessment (2005)
defined ecosystem services (ES) as the ’benefits people obtain from ecosystems’, e.g., food, water, timber,
and cultural values. Ecosystem services derive from ecosystem functions (EF) (Balvanera, Pfisterer et al.
2006, Costanza, de Groot et al. 2017), which describe the biogeochemical processes that are influenced
by the organisms and their traits to sustain an ecosystem (Millennium ecosystem assessment 2005, Reiss,
Bridle et al. 2009). These ecosystem functions can be used to measure the flow and exchange of materials
and energy in ecosystems directly (Naeem 1998), or indirectly via ecosystem properties, such as storage and
retention of water or nutrients (Costanza, de Groot et al. 2017). In the last decades, the average global
crop yields have been rising due to more intensive management practices in agriculture (Foley, Ramankutty
et al. 2011). These management practices had negative side effects on the environment, such as declines
in native pollinators, and increases in pests and diseases, degrading land and water (Gordon, Peterson et
al. 2008, Foley, Ramankutty et al. 2011). On the other hand, one important aim of nature conservation
is to protect areas in order to preserve important ES, such as carbon sequestration and climate regulation,
and to avoid widespread biodiversity declines (Watson and Venter 2017). While ES multifunctionality may
be an implicit or explicit management aim, current management strategies often focus on providing single
ecosystem services, e.g., maximising productivity or the value for nature conservation. ES multifunctionality
requires EF multifunctionality (Manning, van der Plas et al. 2018). Since many ecosystem functions improve
with increasing plant species richness (Scherber, Eisenhauer et al. 2010, Weisser, Roscher et al. 2017),
diversifying ecosystems has been proposed as an alternative management target, and studies have found a
generally positive relationship between plant species richness and multifunctionality (Cardinale, Srivastava
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et al. 2006, Gamfeldt, Hillebrand et al. 2008, Pasari, Levi et al. 2013, Dooley, Isbell et al. 2015, Finney and
Kaye 2017, Hautier, Isbell et al. 2018, Meyer, Ptacnik et al. 2018).

One challenge of promoting multifunctionality is that the simultaneous enhancement of all EFs is likely
impossible because there are trade-offs between EFs (Rodŕıguez, Beard Jr et al. 2006, Manning, van der Plas
et al. 2018, Meyer, Ptacnik et al. 2018). Such trade-offs occur when the provisioning of one EF improves at
the expense of another EF. For example, under conventional management of single crops, high productivity
often is associated with soil degradation (Kleinman, Sharpley et al. 2011, Pereira, Bogunovic et al. 2023). In
contrast, synergies among EFs occur when EFs are co-varying in the same direction (Rodŕıguez, Beard Jr
et al. 2006). For example, high below-ground biomass production is related to a high below-ground carbon
storage (Hanisch, Schweiger et al. 2020).

Two mechanisms can cause correlations between EFs. The first mechanism consists of common drivers af-
fecting multiple EFs (Bennett, Peterson et al. 2009), referred to as the common-driver-mechanism in the
following. Environmental conditions can improve one EF while deteriorate another EF (Bradford, Wood et
al. 2014), thereby causing a trade-off between the two EFs or a synergy if both EF would improve or deterio-
rate in the same way in response to the environmental condition. For example, Maestre, Quero et al. (2012)
found that an increase in temperature decreased multifunctionality, which could indicate that either indi-
vidual EFs are negatively affected by increasing temperature, or that higher temperature can cause weaker
synergies and/or stronger trade-offs among EFs. The second mechanism consists of physiological or ecological
constraints among EFs (Bennett, Peterson et al. 2009), referred to as ecological-constraints-mechanism in
the following. As resources are limited within an ecosystem, not all EFs can be improved simultaneously,
independent of external drivers. Carbon sequestration, for example, can be enhanced by afforestation, but
during tree growth, evapotranspiration is increased, and water availability deteriorated (Engel, Jobbágy et
al. 2005). Management strategies cannot easily overcome ecological constraints. Consequently, correlations
among EFs need to be understood to mitigate trade-offs and enhance synergies (Shen, Li et al. 2020). One
decision strategy for ecosystem management could be to consider the occurring species traits to avoid po-
tential trade-offs, as species traits link EFs with each other (Hanisch, Schweiger et al. 2020). An attempt to
consider species traits is to maximize the number of species present, as each species possesses a large number
of traits, or to consider functional groups, classifying groups of plant species according to plant traits, which
seem more likely to influence EFs (Tilman 2001, Roscher, Schumacher et al. 2004). Consequently, correlations
among EFs and the underlying drivers need to be understood to mitigate trade-offs and enhance synergies
(Shen, Li et al. 2020), which is essential to manage ecosystems for multifunctionality.

For example, for the EF-classes ’Nutrition biomass’ and ’Life cycle maintenance, habitat and gene pool
protection’, as many as 50-75% of the case studies reported a trade-off, whereas 25-50% reported a synergy
or no relationship between these classes. For the EF classes ’Intellectual and representative interactions’ and
’Physical and experiential interactions’, 50-75% of the studies reported synergies, while 25-50% reported
the opposite or no relationship. The underlying causes of these conflicting results are still subject to debate
(Dade, Mitchell et al. 2018).

There are several possibilities why the relationship between two particular EFs could differ among studies.
First, the relationship between EFs can change based on the scale or land system considered, e.g. urban
area vs. agricultural area (Adhikari and Hartemink 2016, Lee and Lautenbach 2016). Second, most studies
investigated EF relationships based on single measurements. However, ecological drivers, such as diversity
or nutrient availability, can change over time and cause variation in relationships between EFs (Crouzat,
Mouchet et al. 2015, Torralba, Fagerholm et al. 2018, Zheng, Wang et al. 2019). Third, differences in the
ecosystem investigated, or in abiotic conditions among sites, can cause variation regarding EF relationships
among studies. Land-use type (Li, Chen et al. 2018), management intensity (Rodŕıguez, Beard Jr et al.
2006), and environmental factors like climate and soil pH have been shown to strongly affect individual EFs
(Wang, Liu et al. 2021), and the correlations between EFs (Spake, Lasseur et al. 2017). If these drivers
affect EFs differently, a change in the driver will change the relationship between these EFs. One example
would be EFs dependent on water availability, such as shoot length and root length, being positively related
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within a year of high precipitation (Pérez-Ramos, Roumet et al. 2012), and showing a weaker relationship
at low precipitation, when plants invest more in roots than shoots (Mokany, Raison et al. 2006). In addition,
previous studies have found that drivers of individual EFs are of different importance at different places and
time points (Isbell, Calcagno et al. 2011, Crouzat, Mouchet et al. 2015, Torralba, Fagerholm et al. 2018,
Zheng, Wang et al. 2019, Martin, Durand et al. 2020, Shen, Li et al. 2020, Willemen 2020). This implies
that also the variability in EF relationships may differ among places and time points as these drivers can
influence EF relationships directly by changing the ecological dependency of the two EFs or indirectly by
affecting EFs individually and therefore causing a change in their covariance. Finally, also differences in the
statistical methods used to evaluate relationships between EF classes can bias results (Lee and Lautenbach
2016). For example, no-effect relationships were more likely to be found when correlation coefficients were
used, whereas descriptive methods such as GIS-analyses, which quantify and describe EF relationships based
on cooccurence of EF at the same location, showed a higher probability to identify trade-offs (Lee and
Lautenbach 2016). In summary, there are several reasons why relationships between different EFs may vary.
Whereas a few studies recorded the variation of individual EFs (van der Plas, Schröder-Georgi et al. 2020)
and their drivers over time (Gaglio, Aschonitis et al. 2020, van der Plas, Schröder-Georgi et al. 2020), such
studies are lacking for EF relationships.

To understand whether EF relationships are inherently variable or whether meta-analyses detected variability
because of differences among studies, studies investigating EF relationships repeatedly under comparable
conditions are needed. Furthermore, the drivers of EF relationships need to be investigated to understand,
what might cause variability in EF relationships. Drivers and variability of EF relationships might depend
on the individual EFs or their proxies investigated. For example, it was shown, that plant diversity has
particularly strong effects on lower trophic levels and effects dampen with increasing trophic levels (Scherber,
Eisenhauer et al. 2010). Consequently, it can be expected, that EFs depending on different components of the
ecosystem (e.g. plant productivity and soil microbes) show different EF relationships or a higher variability
of EF relationships. Furthermore, we expect to see similar EF relationships between EFs depending on the
same components of the ecosystem, e.g. between EFs representing plant productivity and EFs representing
invasion resistance.

Here we used data of 31 EFs repeatedly measured during 5 to 19 years in a large-scale temperate grassland
biodiversity experiment, i.e., the Jena Experiment (Roscher, Schumacher et al. 2004, Weisser, Roscher et
al. 2017). The 31 EFs covered different components of the ecosystem related to plant productivity, plant
nutrients, soil microbes, consumers, invasion resistance, soil properties, and soil nitrogen and carbon con-
centrations, which are called classes of EFs hereafter. Our study aimed to systematically investigate the
variability in the pairwise relationships between EFs and the underlying drivers of variability. Specifically,
we addressed the following questions:

(1) How variable are EF relationships over time? Do pairs of EFs differ in their relationship between replicated
measurements?

(2) What drives the relationship among EFs? How much do years, seasons, species richness and the identity
of the plots (representing the identity of the studied plant communities) contribute to these relationships by
affecting pairs of EFs in similar or opposing ways?

(3) Are synergies and trade-offs driven differently by years, seasons, plant species richness and the identity
of the studied plots?

METHODS

Study site

In 2002, the Jena Experiment, a biodiversity experiment with 82 plots was established at a former arable
field near to the city of Jena (Germany) (Roscher, Schumacher et al. 2004, Weisser, Roscher et al. 2017).
The plots were sown in May 2002 with a species richness (SR) of 1, 2, 4, 8, 16 and 60 grassland plant species,
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with 16, 16, 16, 16, 14 and 4 replicates, respectively (each replicate was a unique species composition, i.e.
community, except for the highest richness level where all replicates had the same species composition). Plot
identity (”plot ID”) represents the different plots containing different plant communities with a variety of
compositional features (Jochum, Fischer et al. 2020). Plant species for communities with 1–16 species were
randomly chosen from a pool of 60 plant species typical forArrhenatherum grasslands with restrictions to
create different levels of functional-group richness within each level of species richness. We distinguished
three functional groups, namely grasses, herbs (small herbs and tall herbs combined), and legumes, based
on ecologically relevant attributes (Roscher, Schumacher et al. 2004). Species richness and functional group
richness (FGR), number of functional groups per community) were varied as independently as possible
(Roscher, Schumacher et al. 2004). All plots were mown twice a year, did not receive any fertiliser, and were
weeded two to three times a year (Roscher, Schumacher et al. 2004). The chosen mowing regime corresponds
to the region’s typical management of extensively used hay meadows (Weisser, Roscher et al. 2017). Two
monocultures were given up due to the weak establishment of the target species in the first years, resulting
in 80 plots used for this analysis.

Dataset

We based this analysis on 31 EFs measured during 5 to 19 years in the Jena Experiment (full description in
Supporting Information A, Table S1). These EFs are indicative of eight classes of EFs: plant producticity,
plant nutrients, soil microbes, consumers, invasion resistance, soil carbon, soil nitrogen, and soil properties
(Table 1). The EFs within one class of EFs are often related.

The data were categorised into spring (March, April, May), summer (June, July, August), autumn (Septem-
ber, October, November) and winter (December, January, February) according to the meteorological seasons
of the Northern Hemisphere. In the case of multiple measurements of the same EF per season and year, the
raw data were averaged per plot, year, and season. The EFs were always measured on all plots but in different
numbers of years and seasons. The number of years ranged from 5 to 19, and most EFs were measured once
or twice a year. A dataset comprising all plots is referred to as a measurement in the following. The number
of measurements ranged from a minimum of 5 (SoilDensity) to a maximum of 36 (PlantHeight). The inverse
of some EFs was used to represent a valuable function according to humans’ perspective enabeling to identify
synergies and trade-offs (Table 1).

Table 1: List of all Ecosystem functions (EF), the classes of EFs they represent, the abbreviations for the EFs used in the following, and if EFs were inverted to represent a valuable function according to humans’ perspective Table 1: List of all Ecosystem functions (EF), the classes of EFs they represent, the abbreviations for the EFs used in the following, and if EFs were inverted to represent a valuable function according to humans’ perspective Table 1: List of all Ecosystem functions (EF), the classes of EFs they represent, the abbreviations for the EFs used in the following, and if EFs were inverted to represent a valuable function according to humans’ perspective Table 1: List of all Ecosystem functions (EF), the classes of EFs they represent, the abbreviations for the EFs used in the following, and if EFs were inverted to represent a valuable function according to humans’ perspective
Class of EF Ecosystem function (EF) Abbreviation for EF Inverted
Consumer Herbivory damage in % Herbivory no

Predation as bite-marks on dummy Caterpillars in % Predation no
Invasion resistance Invasion resistance as biomass on weeded subplots (inverse of biomass of weeds) WeedBM(-1) yes

Invasion resistance as cover (inverse of weed cover) WeedCover(-1) yes
Invasion resistance as species number on not weeded subplots (inverse of number of weed species) WeedSPrnw

(-1) yes
Invasion resistance as species number on weeded subplots (inverse of number of weed species) WeedSPrw

(-1) yes
Plant productivity Standing root biomass RootBM no

Biomass of target plants ShootBM no
Total cover (inverse of bare ground) BareGround(-1) yes
Cover of target plants PlantCover no
Plant height PlantHeight no
Leaf Area Index LAI no

Plant nutrients Plant tissue carbon (C) concentration PlantC no
Plant tissue calcium (Ca) concentration PlantCa no
Plant tissue potassium (K) concentration PlantK no
Plant tissue magnesium (Mg) concentration PlantMg no
Plant tissue nitrogen (N) concentration PlantN no
Plant tissue sodium (Na) concentration PlantNa no
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Plant tissue phosphorus (P) concentration PlantP no
Soil carbon Inorganic carbon concentration SoilCinorg no

Organic carbon concentration SoilCorg no
Dissolved inorganic carbon concentration in soil solution SoilDIC no
Dissolved organic carbon concentration in soil solution SoilDOC no

Soil microbes Biomass of microbes MicrobeBM no
Basal respiration SoilResp no

Soil nitrogen Total nitrogen concentration in soil SoilN no
NH4-N concentration in soil SoilNH4 no
NO3-N concentrations in soil SoilNO3 no
Mineral nitrogen concentration (sum of the NH4-N and NO3-N concentrations) in soil SoilNmin no

Soil properties Looseness of soil (Inverse of soil bulk density) SoilDensity(-1) yes
Water content in soil SoilH2O no

Data preparation

All data manipulations and later analyses were conducted using the free software R 3.6.2 (R Core Team 2019)
and Rstudio 1.1.442 (RStudio Team 2016). To approximate normal distributions, all raw data (EFraw) were
boxcox-transformed (EFboxcox) using two lambda-values (λ and λ2) estimated with the package ”geoR”
(Ribeiro Jr 2020):

EFboxcox = boxcoxtransformed (EF) =
ΕΦραω + λ λ

2 − 1

englishλ

To scale all EFs to a comparable range of 0 to 1, the EFboxcox were minmax-transformed (EFminmax):

EFminmax = minmaxtransformed (EF) =
EFboxcox − min(EFboxcox)

(EFboxcox) −min(EFboxcox)

Variation in individual EFs

The variation of individual EFs was quantified as a standard deviation over all data points (individual
measures on plots). The individual EFs are often measured at the same time (Supporting information A,
Table S2). Thus, variation of individual EFs is expected to be comparable and not biased by the identity
of years and seasons measurements were taken. However, we tested whether the variation of individual EFs
depended on the number of repeated measures, meaning how often in time EFs were measured (number of
years * number of seasons). Therefore, a model with the standard deviation per individual EF depending on
the explanatory variable “number of repeated measures” (number of years * number of seasons an individual
EFs was measured) was run.

The drivers of the variation in individual EFs (EFminmax), were tested in a linear model with the explanatory
terms ”block” (factor with four levels), ”SR” (initial number of species planted, log-transformed continuous
variable), ”plotID” (factor with 80 levels), ”season” (factor with 3 levels, as no measurements were done
in winter), ”year” (continuous variable), and their interactions. The plot identity (plotID) effect mainly
accounts for differences among the initially planted communities. This set of terms is referred to as ”drivers”
in the following. The same model was conducted for EFs measured only once per year excluding ”season”
and the respective interaction terms.

6



P
os

te
d

on
15

M
ar

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
67

89
00

62
.2

60
45

82
2/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

To analyse whether different classes of EFs were affected differently by drivers, the variance in individual EFs
explained by individual drivers was calculated by dividing the sum of squares explained by the driver by the
total sum of squares in the repective model of the individual EFs explained above. In a subsequent model
the explained variation per EF and per driver were used as meta-data. The variation was tested against the
classes of EFs (with the different classes of EFs as levels) and the drivers (with the levels ”block”, ”SR”,
”plotID”, ”season”, ”year”, and their interactions) as independent variables.

Relationships between pairs of EFs

Relationships between EF pairs were statistically investigated using covariances and correlations. In corre-
lations, the relationship between two EFs was standardised by the variation of the individual EFs (product
of their standard deviations), enabling us to compare relationships between different EF pairs. To calculate
correlation coefficients, we used the R-package Hmisc 4.4-2 (Harrell Jr 2020). We used the non-standardised
relationships (covariances) to analyse the influence of drivers on relationships among EFs.

Variation in EF correlations

To quantify the general strength and variation of EF correlations, we calculated the mean and the standard
deviation of Fisher’s Z-transformed correlation coefficients for each EF pair. Correlation coefficients were
calculated among measurements on all plots at a particular time point and then averaged across time points.
Hence we refer to this correlation as the mean correlation. It includes the effects of species richness and plot
identity. In order to plot the EF relationships as correlation coefficients on a scale of –1 (perfect negative)
to 1 (perfect positive correlation), the mean correlation coefficients were back-transformed from Z-scale.

The standard deviation of the individual correlations at the different time points quantifies the temporal
variation (among seasons and years) of correlations among EFs. However, using all time points to calculate
the temporal variation, might be influenced by the number of time points and the identity of time points
(deviating years or seasons). Therefore, first, we checked whether this temporal variation, based on all time
points, depended on the number of time points. We analysed the temporal variation of the correlations per
EF pair as a function of the number of timepoints that EF pair was measured (number of years* number of
seasons). The number of repeated measures for pairwise EFs, meaning the number of times two EFs were
measured at the same time (same year and same season), ranged from 0 to 36 times (Supporting information
B, Table S2 contains an overview of the individual EFs and at what time (years and seasons) they were
measured). Second, we checked whether the variation of correlations per EF pair depended on the identity of
the time point that EF pair was measured. Therefore, for each EF-pair we randomly chose four time points
to calculate a standard deviation of the respective correlation coeffcients. For each EF-pair this was done
20 times. The range of these 20 standard deviations per EF pair was used to check whether the standard
deviation for that EF pair was stable (small range indicating no identity effect of years and seasons) or not
(large range indicating strong identity effects of years or seasons).

Drivers of the covariance between EF pairs

To analyse whether years, seasons, species richness, and plot identity affect EF relationships by driving
individual EFs in similar or opposing ways, we partitioned overall covariances into contributions of the
different explanatory terms. Here, plot identity was further decomposed in the effects of functional group
richness, and the presence of the functional groups legumes, herbs (tall and short herbs combined), or grasses.
This decomposition of covariances was based on an additive partitioning of sums of products (SPs) in the
same way as additive partitioning of sum of squares (SS) is used in a decomposition of variances in an analysis
of variance (ANOVA). This type of covariance analysis has previously been used to investigate, for example,
the influence of explanatory terms on trait-trait relationships (He, Wang et al. 2009) and is frequently used
in quantitative genetic and phylogenetic approaches (Kempthorne 1957, Bell 1989).

The sums of products, which are equivalent to covariances, were obtained per EF pair using the following
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formula:

SP (X,Y ) =
SS(X + Y ) − SS(X) − SS(Y )

2

where X and Y are the EFs of interest, and X+Y is the sum of the two EFs. The SS were obtained from
general linear models (implemented with the lm() function in R (Mangiafico 2015)) with the explanatory
terms ”block”, ”log(SR)”, ”plotID”, ”season”, ”year”, and the interactions ”season:year”, ”log(SR):(season
+ year + season:year)”, ” plotID:(season + year + season:year)” (note that here, following conventions of
R, we use the colon instead of a multiplication sign as interaction operator). For each EF pair, three linear
models were run: one for each of the individual EFs (X and Y) and one for the sum of the two EFs (X + Y),
based on the measurements from different time points of EFminmax. Like in ANOVA, SPs are divided by their
degrees of freedom to obtain mean SPs (MSPs), which are divided by residual MSP to calculate F-ratios and
significances. Because there are nested effects, not all terms could be tested against ”Residuals”. ”Block”
and ”log(SR)” had to be tested at the level of variation between plots with different species compositions
(plotID). Similarly, the interaction terms ”log(SR):(season + year + season:year)” had to be tested for the
same reason against “plotID:(season + year + season:year)”. All other terms were tested against ”Residuals”
(Supporting Information B, Table S3). It has been shown that for balanced experimental designs such as
the Jena Experiment this method is comparable to linear mixed-model analysis using restricted maximum
likelihood methods (Schmid, Baruffol et al. 2017).

Because SPs are additive, we can express the influence of each driver on EF covariation (i.e., the relationship
between the EFs) by calculating the percentage of the (absolute) total sum of products explained, similar
to a percentage variance explained (He, Wang et al. 2009). However, unlike variances, covariances are
either positive, indicating a positive relationship between two variables, or negative, indicating an inverse
(i.e. trade-off) relationship between two variables. The sign of SPs for each explanatory term informs us
about whether covariances are positive or negative. This means that we could deduce whether the individual
drivers affected the EFs in a pair in an trade-off (negative covariance) or synergistic (positive covariance) way.
Therefore, we show ”signed percentages” of covariance in the results by multiplying the absolute percentages
with the sign of the respective covariance.

RESULTS

Variation in individual EFs

First, we compared the variation of individual EFs and EF classes. The average standard deviation, cal-
culated by averaging all standard deviations of all EFs, was 0.17. While some EFs varied strongly in time
among replicated measures, other EFs showed a low variation (Table 2; minimum standard deviation was
0.07 for plant carbon, maximum standard deviation was 0.38 for plant sodium). The variation of individual
EFs did not depend on the number of times (number of years * number of seasons) they were measured
(F1,29= 0.753, p= 0.393)(Supporting information C, Fig. S3). Classes of EFs did not differ significantly in
their variation (F7,23=0.76, p=0.63; Table 2).

Table 2: Variation in ecosystem functions (EF) expressed as standard deviation. The standard deviation over all measurements and the average standard deviation per class of EF correlations are listed. The table also lists the number of years and seasons the EFs were measured. Table 2: Variation in ecosystem functions (EF) expressed as standard deviation. The standard deviation over all measurements and the average standard deviation per class of EF correlations are listed. The table also lists the number of years and seasons the EFs were measured. Table 2: Variation in ecosystem functions (EF) expressed as standard deviation. The standard deviation over all measurements and the average standard deviation per class of EF correlations are listed. The table also lists the number of years and seasons the EFs were measured. Table 2: Variation in ecosystem functions (EF) expressed as standard deviation. The standard deviation over all measurements and the average standard deviation per class of EF correlations are listed. The table also lists the number of years and seasons the EFs were measured. Table 2: Variation in ecosystem functions (EF) expressed as standard deviation. The standard deviation over all measurements and the average standard deviation per class of EF correlations are listed. The table also lists the number of years and seasons the EFs were measured. Table 2: Variation in ecosystem functions (EF) expressed as standard deviation. The standard deviation over all measurements and the average standard deviation per class of EF correlations are listed. The table also lists the number of years and seasons the EFs were measured.
Classes of EF EF N years N seasons Standard deviation Average standard deviation per class of EF
Consumer Herbivory 5 2 0.12 0.2

Predation 7 2 0.27
Invasion resistance WeedBM(-1) 16 2 0.18 0.18

WeedCover(-1) 18 2 0.19
WeedSPrnw

(-1) 5 2 0.16
WeedSPrw

(-1) 5 2 0.19
Plant productivity RootBM 7 2 0.17 0.17
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ShootBM 18 2 0.16
BareGround(-1) 18 2 0.25
PlantCover 18 2 0.14
PlantHeight 18 2 0.15
LAI 18 2 0.13

Plant nutrients PlantC 10 2 0.07 0.16
PlantCa 5 2 0.09
PlantK 5 2 0.16
PlantMg 5 2 0.14
PlantN 10 2 0.14
PlantNa 5 2 0.38
PlantP 5 2 0.12

Soil carbon SoilCinorg 5 1 0.28 0.23
SoilCorg 5 1 0.18
SoilDIC 4 1 0.28
SoilDOC 4 1 0.17

Soil microbes MicrobeBM 17 1 0.13 0.14
SoilResp 17 1 0.14

Soil nitrogen SoilN 5 1 0.20 0.12
SoilNH4 16 1 0.17
SoilNmin 16 1 0.12
SoilNO3 16 1 0.14

Soil properties SoilDensity(-1) 5 1 0.17 0.16
SoilH2O 15 1 0.07

Second, we tested if measures of individual EFs differed among years, seasons, species richness levels, and
plot identities (Fig. 1). Considering all EFs, year explained on average 4.7% of the variation of EFs, and
season explained on average 4.1%. Additionally, species richness explained 8.6%, while plot identity explained
21.3% of the variation of individual EFs. These differences explained about one-fourth of the variation of
the individual EFs. One-third of the variation in individual EFs was unexplained: 34.1% for EFs, which
were measured in several seasons, and 48.3% for EFs measured in just one season. All tested interaction
terms explained only a small part of the total variation of the EFs (Fig. 1).

Different variables explained the variation of EFs in different classes of EFs. For example, for invasion
resistance and plant productivity, SR explained a large proportion of the variation (on average, 23.1% and
21.0%; Fig. 1, green). For consumer-related functions, year explained a large proportion (on average 11.9%;
Fig. 1, red). For plant nutrients, plot identity explained, on average, 38% of the variation (Fig. 1, blue).
This means, that classes of EFs were differently affected by biological and environmental conditions (classes
of EF: F7,245=4.2, p=<0.01; Driver F12,245=38.35, p<0.01; classes of EF: Driver: F60,245=5.4, p<0.01, where
”driver” represents the year, season, SR, plotID and their interactions).
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Figure 1: Percentage of variation in individual EFs that was explained by year, season, species richness (SR),
plot identity (plotID), and the interaction among these variables. The influence of the explanatory terms
is plotted in % of total sum of squares, corresponding to increments in multiple R2 * 100. Explanatory
terms are plotted for individual effects > 5%. All effects less <5% are summarized as ”other”, e.g. various
interaction-effects. Hatched barplots represent a simpler model, including only year, SR, plotID and their
interactions for EF, which were measured in only one season. Non-hatched barplots represent full models
including all terms. The graph corresponds to a hierarchical partitioning of type one (Groemping 2006),
but because explanatory terms were not correlated, there was no need to average across different fitting
sequences.

Variation in EF correlations

Positive correlations (indicating synergies) and negative correlations (indicating trade-offs) were observed
across all measures (Fig. 2, upper triangle). For instance, plant height and shoot biomass showed a synergy,
while soil dissolved carbon and plant height showed a trade-off in their mean correlations. The strength of
these correlations differed among pairs of EFs, with some EF pairs showed no correlation, while others showed
weak, moderate, or strong correlations. We observed no strong negative correlations. All EFs showed positive
correlations to some and negative correlations to other EFs (according to their mean correlation) (Fig. 2,
upper triangle), with EFs in some classes showing predominantly positive correlations (plant productivity
and invasion resistance) and others mostly negative correlations (plant productivity and plant nutrients).
The EF correlations were robust against the method of calculating correlations, i.e. whether we used mean
correlations (correlation coefficient averaged across time points), grand-total correlations (one correlation
coefficient using all data from all time points), or between-group correlations (one correlation coefficient
calculated with datapoints averaged across time points) (Supporting information D, Fig. S4). As expected,
EF correlations tended to be stronger when the variation of individual measurements across time points was
removed, i.e. for the between-group correlations (Supporting information D, Fig. S4).

The variation per EF pair was quantified by the standard deviation of correlation coefficients, which were
calculated for every time point when the two EFs were measured in the same year and season. Overall,
there was considerable variation in EF correlations (mean standard deviation = 0.16, mean correlation
coefficient = 0.14) (Fig. 2, lower triangle). We tested if the variation in the EF correlations depended
on the correlation’s average strength. EF pairs generally showed a higher variation in their correlation
when they show a stronger correlation irrespective of this correlation being positive or negative (F5,281=9.4,
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p<0.001, Supporting information E, Fig. S5). Additionally, we tested if the variation in the EF correlations
depended on the number of times the EF-pair was measured (number of years * number of seasons). EF
pairs generally showed an increasing variation in their correlations with a higher number of times the EF-pair
was measured (F1,572=120.91, p<0.001) (Supporting information E, Fig. S6). Lastly, we checked whether
the variation in correlations among EFs depend on the identity of time points they were measured. These
ranges of temporal variation were rather small, on average showing a standard deviation ± 0.08 (Supporting
information D, Fig S7). Furthermore, the range of temporal variation of correlations, are different for the
individual EF-pairs, some EF-pairs show a strong identity effect of time points (e.g. SoilNH4 SoilNmin,
PlantCover WeedCover) and some a weak identity effect of time points (e.g. ShootBM SoilN, PlantC -
SoilCorg) (Supporting information E, Fig S7).

Figure 2: Variation in the correlations between pairs of ecosystem functions (EFs) (lower triangle) and
average correlation between these EFs (upper triangle). The different EFs (see list in table 1) were grouped
into classes. Mean correlations were calculated using Fisher’s Z transformation of EF correlations per season
and year that were averaged over time. The standard deviation of the EF correlations per year and season
was calculated to estimate the variation of EF correlations. When no average correlation is shown, the
respective EF was not measured in the same season and year. A missing standard deviation for an EF
pair shown to have a correlation coefficient represents cases where a correlation coefficient could only be
calculated for a single time point.

Drivers of the covariance of EF pairs

To test if the drivers year or season, species richness, and plot identity affect relationships among EFs, we
quantified the covariance between all pairs of EFs and the contribution of each driver to these covariances
in percentage. These percentages were signed because the drivers can contribute to the EF covariances by
affecting the underlying EFs synergistically (signed positive) or antagonistically (signed negative). Impor-
tantly, the contribution of individual drivers can have antagonistic (more negative covariance) or synergistic

11
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(more positive covariance) effects irrespective of the overall relationship between the respective EF being a
synergy or a trade-off.

All tested drivers (year, season, SR, and plot ID) affected the covariances between EFs. The largest fraction
of covariance among EFs was explained by SR and plotID. However, effects differed between EF pairs in
synergies and trade-offs (defined by the sign of the mean correlation, Fig. 2, upper triangle). For synergies,
most of the covariance was explained by SR (26.5%). In contrast, for trade-offs, most of the covariance was
explained by plot identity (–29.5%, Fig. 3), with the negative value indicating that the individual EFs were
driven antagonistically, causing a trade-off. When further investigating plotID, the presence of herbs and
legumes already explained half of the effect of plot ID (Supporting information F, Table S4). For synergies,
plot ID had intermediate positive effects (18%), mainly due to the presence of grasses and herbs. Year and
season caused both positive and negative covariances, so that the average percentages explained by year
and season were low (2.8% and -0.6%). For trade-offs, the average percentage of explained covariance by
SR was low (–4.2%), contributing positively and negatively to covariance. Season contributed an additional
–12.1% to covariance, while year explained very little (-1.3%). Interactions between drivers explained very
little covariance (Supporting Information E, Table S3). Unexplained residual covariance was, on average,
|4.5%| of the covariance (for synergies 5.5% and for trade-offs –3.6%), suggesting a low amount of random
covariation between EFs.

Figure 3: The contribution of SR, plot ID, season and year to total covariance between the 116 pairs of
EFs, separated for EF pairs showing positive relationships (synergies, 78 pairs) and negative relationships
(trade-offs, 38 EF pairs) according to their mean correlation. The violin plots show for each driver the mean
(solid line), the standard error, and the distribution of contributions to covariance of EF pairs. Positive
contributions indicate that the driver causes positive covariances between pairs of EFs, synergistically driving
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the two individual EFs. Negative contributions indicate that the driver causes negative covariances between
pairs of EFs, driving the two individual EFs antagonistically. Results are derived by partitioning overall
covariances into contributions of the different drivers; see method section for explanation. In this graph,
only effects are shown, which on average explain >5% of covariance. In Supporting information F), the same
graph with all variables (including FGR, and the presence/ absence of grasses, legumes and herbs) is shown.

DISCUSSION

We investigated the variation in the correlations between different EFs and the drivers of these relationships.
We found that correlations were variable, and correlations between two particular EFs could range from weak
to strong or from negative to positive among the repeated measurements. Overall, EF pairs generally showed
an increasing variation in their correlations with a higher number of times the EF-pair was measured. The
correlations among pairwise EFs were differently affected by the identity of time points (years and seasons).
That means that some EF-pairs showed more stable correlations throughout time, whereas other EF-pairs
were more affected by differences in years and seasons and therefore showed a higher temporal variation.
Species richness and plot identity (including the presence of legumes, grasses, herbs) explained the largest
fraction of covariance among EFs, while the effects of time (year, season, and their interaction) explained
little covariance. We found that most of the covariance for synergies was explained by species richness
(˜26.5%), whereas for trade-offs, most covariance was explained by plot identity (-29.5%). Time explained
13.4% of covariance for trade-offs but little for synergies (3.3%). Correlations among EFs and the drivers
of these correlations varied over time. These results indicate the importance of repeated measurements of
ecosystem functions (EFs) over time to avoid spurious conclusions, and suggests that land management
practices that promote biodiversity and reduce negative identity effects can enhance multifunctionality in
grasslands.

We found that even under the controlled conditions of our experiment, correlations among EFs were variable.
High temporal variation of individual EFs had been documented before (Carpenter, Mooney et al. 2009,
Cardinale, Duffy et al. 2012, Gaglio, Aschonitis et al. 2020, Qiu, Carpenter et al. 2020, van der Plas,
Schröder-Georgi et al. 2020). However, until now, inconsistent correlations between EFs or classes of EFs have
only been found when different studies were compared (Lee and Lautenbach 2016). Although all functions
were measured with a consistent methodology at a single field site. Trade-offs were as variable as synergies
(Supporting information E, Fig. S5), and relationships for many pairs of functions could range from synergy
to trade-off when correlations were calculated for different time points, which confirms the previous study of
Lee and Lautenbach (2016). Lee and Lautenbach (2016) found that the agreement on the type of relationship
for a particular pair of EFs, i.e. synergy, trade-off, or no-effect relationship, decreased the more often the
relationships were measured. Similarly, we found that the variability of EF relationships increased with the
number of measurements (Supplementary information E, Fig. S6), which indicates, that single measurements
can be misleading when EF relationships are identified. Furthermore we showed, that not the identity of
time points (years and seasons), but the identity of EF pairs were associated with a high variation in
EF relationships (Supporting information, Fig S7). That means, that it depends on the particular EF pair,
whether their correlation was highly variable because of differences between years or seasons. One explanation
could be that ecosystem processes vary caused by a change or adjustment of biotic assemblages as a response
to their environmental conditions (Turner and Chapin 2005), leading to changes in EF relationships or
multifunctionality with changing environmental conditions (Zirbel, Grman et al. 2019). In our study, the
variation in relationships between EFs originated from the temporal variation in EF drivers (possible reasons
could be inter-annual variation in rainfall, temperature or other cyclic patterns such as boom and bust cycles
of herbivory), while in Lee and Lautenbach (2016), the variation in the relationships among classes of EFs
was introduced by different studies, and therefore additional site-dependent contexts.

Regarding the identified EF relationships (mean correlations among all the different EFs), we found both,
synergies and trade-offs that can be explained by biological processes and therefore confirm other studies
investigating the individual EFs (Jarrell and Beverly 1981, Allan, Weisser et al. 2013). For example, EFs
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of the classes plant nutrients and plant productivity showed often a trade-off, indicating a dilution effect.
i.e. when plant growth improved, plant nutrient concentrations decreased in the plant tissue (Jarrell and
Beverly 1981). However, the carbon concentration of plants (PlantC) showed mainly synergies with EFs of
the class plant productivity. One reason could be that a high biomass reflects a high nutrient-efficiency and
thus comparatively low nutrient concentrations and correspondingly high C concentrations (Allan, Weisser
et al. 2013). Furthermore, organic carbon in the soil (SoilDOC, SoilCorg) was positively related to plant
productivity (Fig. 2). This is consistent with studies, showing that a high biomass production leads to
an accumulation of dead plant material in the soil (Post and Kwon 2000) or root exodation of plants
(Raich and Tufekciogul 2000). As the Jena experiment was established on depleted arable soil, a higher
carbon concentration in the soil occured faster with higher biomass production, but in the end the carbon
concentration might be the same on all plots due to accelerated litter decomposition (Weisser, Roscher et al.
2017). EFs of the class Invasion resistance showed synergies with EFs of the class plant productivity. This is
consistent with former studies, showing that a high biomass of the native species suppressed invasive species
(Yannelli, MacLaren et al. 2020, Rojas-Botero, Kollmann et al. 2022), often due to a more complete use of
available resources (Hector, Dobson et al. 2001, Roscher, Beßler et al. 2009). Summarizing these examples,
the relationships identified here for the classes of EFs are consistent with the underlying biological processes.

We found that synergies and trade-offs have different drivers. Species richness is a known driver of many
EFs (Gamfeldt and Roger 2017, Weisser, Roscher et al. 2017, Craven, Eisenhauer et al. 2018) and ecosystem
services (van der Plas 2019). When two EFs improve with higher SR, a positive covariance is introduced,
strengthening their relationship. The fact that we showed that SR affected the majority of investigated EFs
positively explains that the large majority of SR effects on the covariance between EFs were positive and
that EFs in synergies were stronger effected by SR than EFs in trade-offs (Fig. 2). However, the relationship
between two EFs weakens when SR has contrasting effects on the two EFs, as indicated by a few pairs
of EFs for which we showed SR to cause negative covariance. In our study, plot identity represents all
other differences among plant communities within a diversity level, such as FGR, the presence of different
functional groups (Supporting information F, Fig S8), species identity, and the presence of other groups of
organisms (e.g. microbes, insects) associated with particular plant communities. These identity effects were
mostly positive for EFs in synergies and mostly negative for EFs in trade-offs. This can be explained by
selection effects, which have been documented repeatedly by comparing the performance, such as biomass
production, of plant communities (Marquard, Weigelt et al. 2009). A high performance of a plant community
may be associated with a high abundance of certain species (Loreau and Hector 2001) and therefore with
many simultaneously occurring EFs (many synergies). A low performance is associated with a negative
selection effect (Loreau and Hector 2001) and could be related to the occurrence of just a few EFs, as they
are restricted by trade-offs. Outside an experimental setup, the equivalent of SR and plotID would be the
different communities associated with landscape patches. As a consequence of different biotic communities,
different levels of individual EFs would occur in these patches and different correlations among EFs could be
identified. While the effect of different aspects of SR and plotID (FGR, presence/absence of functional groups
or individual species) on individual EFs is frequently investigated, further research is needed to identify how
different SR/ plotID impacts the relationships between EF.

Time (year, season, and their interaction) explained some, albeit little, covariance among EFs and affected
synergies and trade-offs differently. Time can become a driver of EF relationships when environmental con-
ditions vary over time, e.g., temperature and extreme events, affecting the biological activity of organisms.
Trade-offs were more affected by temporal effects than synergies. Season was among the main drivers of
trade-offs, reflecting the pronounced change in abiotic conditions among seasons in the temperate zone. As
an example, soil microbial activity strongly responds to climatic conditions, affecting carbon and nutrient
cycling (Frey, Lee et al. 2013). Further, competition strongly affects trade-offs, which can be changed by
altering the environmental conditions, such as the availability of water or light that fluctuate with time.
Consequently, temporal variability in these drivers can induce variability in EF correlations underlying the
importance of repeated measurements to identify the true relationships between EF.

When investigating the drivers of EF correlations, we found that some covariance among EFs could not be
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explained by any of the drivers tested in our study. We interpret this unexplained covariance as EF pairs
affected by the ecological-constraints-mechanism. Plants have access to a limited pool of resources they can
invest in, e.g. in growth or defence against natural enemies, resultingin a growth-defense trade-off (Karasov,
Chae et al. 2017). Because providing unlimited resources within a local patch is impossible, ecological trade-
offs resulting from resource limitation are inevitable. Further, the simultaneous provision of EFs can be
limited by competition. For example, in our study, improved plant productivity was associated with higher
invasion resistance (considered good), likely due to intensified competition for space and light between the
resident plant community and potential invading plant individuals in our plots. Furthermore, the higher
the root biomass was, the lower were the soil nutrient concentrations, implying competition among plant
species for available nutrients. Resource limitations and competition may limit biological activities, leading
to trade-offs between EFs. These trade-offs can be weakened when competition in diverse communities is
reduced by complementarity between species (Weisser, Roscher et al. 2017). Understanding how ecological
constraints affect relationships between EFs is an important topic for further investigation.

Our results have implications for land management aiming at promoting multifunctionality. Relationships
among EFs affect multifunctionality since they can either promote (synergies) or limit (trade-offs) multi-
functionality. Analysing the drivers of relationships between EFs, we showed that SR can promote synergies
among EFs, resulting in increased multifunctionality. Consequently, promoting diversity is a mean to foster
multifunctionality, confirming previous empirical biodiversity multifunctionality relationships (Isbell, Cal-
cagno et al. 2011, Lefcheck, Byrnes et al. 2015, Meyer, Ptacnik et al. 2018). Further, we showed that plot
identity effects, including functional group richness and the presence/absence of individual functional groups,
were important drivers for trade-offs between EFs. While we tested for identity effects of plots, there are
likely individual plant species that cause these trade-offs by maximising some EFs at the expense of other
EFs. When future research can identify such plant species with strong effects on trade-offs, land management
can target low densities of these disadvantageous species to reduce trade-offs between EF and promote mul-
tifunctionality. Nevertheless, competition for resources and the resulting ecological trade-offs between EFs
are challenging to resolve.

CONCLUSIONS

Our study showed that even under the controlled conditions of a single experimental field site, correlations
among EFs were variable over time. Consequently, repeated measurements of EF are needed to avoid spurious
and non-generalisable conclusions about relationships among EFs.

Moreover, our results show the potential for land management to promote multifunctionality in both the
establishment and the management phase by incorporating two principles. First, maintaining or increasing
biodiversity of grasslands, which we showed increases synergies among EFs, promoting multifunctionality.
Second, reducing negative identity effects by reducing the proportion of disadvantageous species or commu-
nities as indicated by the strong effect of plot identity strengthening trade-offs.

Future studies should continue to investigate the drivers of EF relationships to identify common drivers
causing trade-offs and separate common drivers from potential ecological constraints. Importantly, these
studies should also address how environmental conditions can change these relationships and identify influ-
ential species enabling recommendations on how to adapt management for maximising multifunctionality.
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