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Abstract

Site-occupancy modeling is widely used in ecology but its application is still limited in paleoecology, where incomplete detection

is routine. Here, we make extensive expansions to an earlier multispecies occupancy model used to estimate the dynamics

of relative species abundance in fossil communities. These expansions include incorporating counts of individuals at sites,

explicitly allowing for the inclusion of specimens assignable to genus- but not species-level, a situation common in paleontology,

and modelling regional presence/absence. We provide simulations to check the performance of this new model, as well as

simulations to quantify the benefits of using individual count data versus subsample occupancy data and model estimates

versus face-value (raw) estimates, respectively. We also provide an empirical case study using occupancy data from a community

of marine benthic colonial animals preserved in the Pleistocene of New Zealand. We find that the new model performs well,

especially when it comes to recovering relative abundance dynamics and that it is well worth the effort to both collect individual

count data and to include individuals unidentified to species-level in the site-occupancy modelling framework. This extended

model can be widely applied in paleoecological settings and is necessary when both the average and uncertainty values of relative

abundance dynamics need to be robustly estimated.
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Abstract (207/300) 1 

Site-occupancy modeling is widely used in ecology but its application is still limited in 2 

paleoecology, where incomplete detection is routine. Here, we make extensive expansions to 3 

an earlier multispecies occupancy model used to estimate the dynamics of relative species 4 

abundance in fossil communities. These expansions include incorporating counts of 5 

individuals at sites, explicitly allowing for the inclusion of specimens assignable to genus- but 6 

not species-level, a situation common in paleontology, and modelling regional 7 

presence/absence. We provide simulations to check the performance of this new model, as 8 

well as simulations to quantify the benefits of using individual count data versus subsample 9 

occupancy data and model estimates versus face-value (raw) estimates, respectively. We also 10 

provide an empirical case study using occupancy data from a community of marine benthic 11 

colonial animals preserved in the Pleistocene of New Zealand. We find that the new model 12 

performs well, especially when it comes to recovering relative abundance dynamics and that it 13 

is well worth the effort to both collect individual count data and to include individuals 14 

unidentified to species-level in the site-occupancy modelling framework. This extended 15 

model can be widely applied in paleoecological settings and is necessary when both the 16 

average and uncertainty values of relative abundance dynamics need to be robustly estimated. 17 

 18 

Keywords: hierarchical modelling, multispecies site-occupancy models, fossil communities, 19 

preservation, Bryozoa  20 
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Introduction 21 

The abundance of a given species in its community is the consequence of population growth, 22 

which in turn is a consequence of survival and reproduction. The latter are influenced by 23 

competition, predation, disease, and intraspecific variability and environmental stochasticity. 24 

The relative abundance or dominance of different species in natural, contemporary 25 

communities are observed to shift on shorter time-scales, where such shifts can be directly 26 

attributed to environmental change, invasive species, cyclical behavior, among other factors.  27 

On longer time-scales where observations are more challenging, however, the imprint of 28 

multiple processes not only obscure underlying mechanisms of such shifting dominance, but 29 

may also veil true differences in relative abundances. Yet, it is important to be able to 30 

reconstruct population dynamics deeper in time, using genetic evidence, biogeographic and/or 31 

paleoecological data to understand the past (Hoban et al. 2019, Dussex et al. 2021) and to use 32 

the past as baselines for anthropogenic change (Dillon et al. 2022) . 33 

Site-occupancy modeling uses information from repeated site visits to account for incomplete 34 

detection while estimating population and community parameters, including relative 35 

abundance. It is widely applied in many branches of ecology but its application is limited in 36 

paleoecology, despite detection also being incomplete in the fossil record (Liow 2013, 37 

Lawing et al. 2021). Incomplete detection in the fossil record can be in part attributed to non-38 

biological factors, including varying sedimentation rates, storms, bioturbation, lateral 39 

transport, erosion and other processes that themselves tend to be temporally varying on longer 40 

time scales. A recent study used fossil data to estimate the dynamics of relative species 41 

abundance in a Pleistocene benthic community by developing a multispecies occupancy 42 

model that takes into consideration the features of fossil preservation (Reitan et al. 2022).  43 
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Reitan et al. 2022 were interested in how different species of marine invertebrates encrusting 44 

hard substrates change in their relative abundances over 2 million years. More specifically, 45 

they wanted to build a hierarchical model to estimate how several co-existing cheilostome 46 

bryozoan species waxed and waned over time across several geological formations within the 47 

Wanganui basin of New Zealand. In the model they developed, which can also be applied to 48 

other paleoecological study systems, detection was in a one-to-one relationship with 49 

underlying abundance given site-occupancy.  50 

This previous fossil multispecies occupancy model had features that are particularly suited to 51 

data commonly collected or are collectable in paleoecological settings. Like all site-52 

occupancy models, (fossil) sites are re-sampled such that data from the replicate sampling 53 

allow us to tease apart site-occupancy and detection. The replicate sampling are subsamples 54 

within sites, which in the case of Reitan et al. 2022 were unique shells found within the sites, 55 

on which different species of encrusting cheilostome bryozoans were observed.    56 

The current paper extends the Reitan et al. 2022 model by i) using counts of individuals rather 57 

than only presence/absence of species on the subsample-level, ii) adding species-level random 58 

effects, iii) incorporating specimens assignable to genera but not species, iv) modelling 59 

regional presence/absence and v) incorporating information when regional presence is known. 60 

Like the original model, these improvements are applicable to many paleocological systems, 61 

in addition to the one presented in Reitan et al. 2022. To this end, we extend the dataset 62 

presented in Reitan et al. 2022, adding 18 species and 25 sites where observations were made. 63 

We provide simulations to explore how well the expanded model recovers parameters of 64 

interest, and the performance of model-estimated parameters based on individual counts or 65 

subsample-level presence/absence data versus “face-value” information, i.e. raw estimates 66 
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(see Methods and Material). We end by discussing why it is important to explicitly model 67 

detection and present general recommendations for paleoecological work. 68 

 69 

Materials and Methods 70 

Data 71 

The site-occupancy data are collected from a community of fossilized benthic, encrusting 72 

cheilostome bryozoans found in the Wanganui Basin of New Zealand (Carter and Naish 1998, 73 

Proust et al. 2005, Pillans 2017) previously presented in Reitan et al. 2022. There are now 74 

subsamples (= shells, typical substrates for bryozoans) for encrusting cheilostomes in 144 75 

sites in transgressive system track (TST) shell beds from 10 geological formations, spanning 76 

about 2 million years. Such shellbeds reflect similar depositional conditions (facies). We 77 

tabulated the observed presence of any fossilized individuals of 21 focal cheilostome species 78 

on each shell (i.e. subsample) sampled from any given site, including the three previously 79 

analyzed in Reitan et al. 2022. With the exception of five species of Microporella, two of 80 

Escharoides and two of Exochella, each of these species are, as far as we know, sole 81 

representatives of their genera in the Wanganui Basin. This is important for later modeling 82 

considerations. As in the previous study, the superspecies represents all other encrusting 83 

bryozoan species in the community, excluding the 21 focal species. The observed presence of 84 

the superspecies gives information to improve parameter estimates (see Model Description). 85 

These observations constitute the occupancy dataset. For additional sources concerning 86 

regional occupancy (see Extension (v) below), we draw on data collected for a separate study 87 

(Liow et al. 2016) as well as more recently collected material (unpublished but provided in 88 

the zip folder “RAMU-MSOM” available via the editor/Ecography office). 89 

 90 
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Original model: a brief recap  91 

The objective of Reitan et al. 2022, was to estimate the temporal dynamics of relative species 92 

abundance. The data in that study had one row per site containing information about the 93 

number of subsamples having an observed presence of each species, i.e. subsample counts. A 94 

given species, s, has the potential of being observed in a given subsample if it is present in a 95 

given site, i. If a given site is not observed to contain the given species in any of its 96 

subsamples, it could mean either that i) the site was truly devoid of that species or ii) that the 97 

species was present but not sampled (MacKenzie et al. 2002) .  98 

We denote the site-occupancy probability of a given species as 𝛹𝛹 and detection probability as 99 

p. More specifically, p is the probability that each subsample has at least one observation of 100 

the given species. The probability that a species is found on a given subsample is thus 𝛹𝛹𝛹𝛹. 101 

The site-occupancy and detection probabilities can be specific to sites i belonging to specific 102 

time-intervals (i.e. geological formations). Here, formation, 𝑓𝑓 ∈ 1,⋯ ,𝑁𝑁! where 𝑁𝑁! is the 103 

number of formations, and species, 𝑠𝑠 ∈ 1,⋯ , 𝑆𝑆, where 𝑆𝑆 is the number of species (and the 104 

superspecies is indexed as 𝑆𝑆). Thus, we write Ψ",$(𝜃𝜃) and 𝑝𝑝",$(𝜃𝜃) for the site-occupancy and 105 

detection probabilities respectively, where 𝜃𝜃 is the set of parameters and random variables of 106 

the model. Since 𝑝𝑝 is independent for each subsample, the binomial distribution can be used 107 

to summarize the chance of observing 𝑦𝑦",$ out of 𝑇𝑇! subsamples in site i, with presence of s. 108 

However, there may be variation in true abundance of a species from site to site, and hence 109 

variation in its detection probability, giving rise to overdispersion. Temporal variation within 110 

each formation, observational errors and local heterogeneity in preservation can further 111 

introduce extra variation, thus, we use a beta-binomial distribution. Since site-occupancy is 112 

not guaranteed, this further expands into a zero-inflated beta-binomial distribution. We 113 

assume site-occupancy probability and the detection probability are each affected by a 114 
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random factor (𝛿𝛿!("),$ and 𝜀𝜀!("),$, respectively) representing individual species dynamics in a 115 

given formation. Additional random factors representing dynamics common across species 116 

(𝑣𝑣!(") and 𝑢𝑢!(") for site-occupancy and detection probabilities, respectively) encompass 117 

variation in preservation characteristics and hence detection probabilities in different 118 

geological formations.  119 

To estimate species relative abundance, we assume that detection probability given 120 

occupancy, p, is linked to abundance-given-occupancy such 𝑝𝑝 = 1 − 𝑒𝑒'( via a Poisson model 121 

where 𝜆𝜆 is the mean number of detections. 𝜆𝜆 is associated with relative abundance dynamics 122 

via a log-link (i.e. the abundance-focused model in Reitan et al. 2022). We use a logistic link 123 

between site-occupancy probability and the accompanying random factors. Thus 𝑦𝑦",$ as a 124 

zero-inflated beta-binomial distribution is: 125 

𝑦𝑦!,# ∼ 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 )𝑇𝑇!, 𝑝𝑝𝑖𝑖,𝑠𝑠(𝜃𝜃) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒2−𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽# + 𝑢𝑢$(!) + 𝜀𝜀$(!),#)6, 𝜅𝜅#, Ψ!,#(𝜃𝜃) = 𝐼𝐼(𝑠𝑠 = 𝑆𝑆) +126 

𝐼𝐼(𝑠𝑠 < 𝑆𝑆)logit'(2𝛼𝛼# + 𝑣𝑣$(!) + 𝛿𝛿$(!),#6G                                                      (1a) 127 

𝑢𝑢$ ∼ 𝑁𝑁(0, 𝜎𝜎)*), 𝑣𝑣$ ∼ 𝑁𝑁(0, 𝜎𝜎+*), 𝛿𝛿$,# ∼ 𝑁𝑁20, 𝜎𝜎,,#
* 6, 𝜀𝜀$,# ∼ 𝑁𝑁20, 𝜎𝜎-,#* 6                               (1b) 128 

Here, 𝜅𝜅$ is an overdispersion parameter (which we retrospectively found did not need the 129 

species-dependency we imposed on it). I() is the indicator function which takes value 1 when 130 

the statement inside is true and 0 if false. S is the total number of species. αs and βs give 131 

average site-occupancy and detection probabilities for each species on their transformed 132 

scales (but see Reitan et al. 2022).   133 

Using this, relative abundance is estimated as  134 

𝑅𝑅!,$ =
+!,#(,)	.!,#(,)	

∑ +!,#$(,)	.!,#$(,)%
#$&'

.             (2) 135 
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We replaced the site index, i, with the formation index f, as both site-occupancy probability 136 

and abundance-given-occupancy only depend on species and formation here. Site-dependent 137 

variation is modelled through overdispersion.  138 

We propose a set of modifications to the above model. Mathematical details of the new model 139 

follow after verbal descriptions of the extensions in the following section. 140 

Model extensions 141 

Extension (i): Individual counts versus subsample count data per site 142 

The original modelling was performed on the number of subsamples observed to have at least 143 

one individual of a given species (subsample counts). Some subsamples were observed to 144 

have tens of individuals of some species, while others just a few or none, reduction of the 145 

information to subsample counts constitutes a potentially huge loss of information.  146 

Handling the data on the subsample level for individual counts is likely computationally 147 

unfeasible (Reitan et al. 2022), but we can move the analysis up to the site-level (arguments 148 

given in SI). Here, we use the negative binomial for an overdispersed version of the Poisson 149 

distribution for count data. We assume that the expected number of individuals at a site scales 150 

with the number of subsamples in the site, just as for subsample count data.  151 

Extension (ii): Species constants are replaced by random effects 152 

In Reitan et al. 2022, data for only three focal species were available. However, most 153 

communities are more species-rich, even when considering common species, as is the 154 

community we are considering. Because only three species had to be modelled, they were 155 

each given a constant. With more species, we turn these constants into random effects since 156 

the data are rich enough for inference on the distribution of species-dependent quantities. By 157 

adapting the distribution of these quantities to the data rather than giving each species its own 158 
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prior distribution, the model is less sensitive to biases and uncertainty assumptions in the 159 

specification of priors. 160 

Extension (iii): Individuals assignable to at least genus but not to species 161 

Cheilostome bryozoans, like some other calcified marine taxa, can be assigned to their species 162 

with high confidence based on morphology (Jackson and Cheetham 1990), when preservation 163 

is good and post-mortem damage is minimum. However, preservation and damage can reduce 164 

the possibility for assigning an individual to a lower taxonomic level (e.g. species or even 165 

genus), a situation common in paleoecology. However, if the individual can be identified to 166 

genus but not species-level, it still gives information for occupancy modelling. Imagine there 167 

are 3 species in a region, species A1, A2 and B, where B belong to a separate genus while A1 168 

and A2 are in the same genus. Then, detecting 100 A1, 100 A2, 200 unidentified individuals 169 

belonging to genus A and 100 individuals to B, should suggest there were really 200 A1 and 170 

200 A2 individuals and thus that the abundance of A1 relative to B was 2 to 1 rather than 1 to 171 

1. 172 

We thus need to multiply the estimated abundance-given-occupancy with the probability of 173 

non-identification to species-level, in order to get the apparent abundance-given-occupancy 174 

for the identified individuals. Note that this is only possible for individual count data, not 175 

subsample count data.  176 

Extension (iv): Modelling regional occupancy 177 

In some cases, there were no detections in any of the sites in a given formation for a species 178 

that is otherwise quite detectable in other formations. This suggests that it could be absent 179 

from the region at that time because that species had not migrated to the region yet; have 180 

permanently or temporarily migrated out of the area; not have originated yet; or have gone 181 

extinct.  182 
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Because site-occupancy is required for site-detections, and regional occupancy (in a 183 

formation) is needed for any occupied sites, we now have a deeper hierarchy of explanations: 184 

• Species detected at a site: both site and regional occupancy are required. 185 

• Zero species detections at a given site, but some detection at other sites in the 186 

formation (regional occupancy): Either 1) no detection though there is occupancy at 187 

the site (at unmeasured or non-preserved subsamples) or 2) absence at the given site 188 

(most parsimonious). 189 

• Zero detection in any of the sites in a formation: Either 1) no detections though there 190 

is undetected occupancy at some sites and thus regional occupancy, 2) absence in all 191 

the sampled sites but presence at unmeasured sites, hence regional occupancy or 3) 192 

regional absence (most parsimonious). 193 

Extension (v): External information concerning regional occupancy 194 

In our dataset, and commonly so in other paleoecological datasets, some species that are quite 195 

detectable in some formations have no detections in others. Here, we could consider 196 

additional data sources (e.g. collected for other purposes or previously documented) external 197 

to the occupancy dataset to inform time-interval specific regional occupancy. If external data 198 

with certainty tells us that a certain species is in the region at a particular time, we can set 199 

regional occupancy to one for that species; where the external does not tell us that the species 200 

is present, we can allow for non-zero probability of regional absence. 201 

Likelihood components 202 

As mentioned in Extension (i), we use the negative binomial distribution to calculate the 203 

likelihood for the number of individuals of species s in a specific site given occupancy, 204 

𝑦𝑦",$~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1(𝜇𝜇",$, 𝜅𝜅), where 𝜇𝜇",$ is the expected value and 𝜅𝜅 is the overdispersion 205 

parameter. This is not the standard way of parametrizing the negative binomial distribution, so 206 
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we designate it “negbinom1” in eq. (3) and (4) (compare with eq. (7)). We assume the same 207 

overdispersion for all species and formation as Reitan et al. 2022 suggested that 208 

overdispersion could not be distinguished among species. We also separate the expected value 209 

per subsample, 𝜆𝜆!("),$, from 𝑇𝑇". The probability distribution of a single data point in an 210 

occupied site is then:  211 

𝑃𝑃0123"0456D𝑦𝑦",$|𝑇𝑇"𝜆𝜆!("),$, 𝜅𝜅F = G
𝑦𝑦",$ + 1/𝜅𝜅 − 1

𝑦𝑦",$
J ((!()),#7)8)

+),#

(69(!()),#7)8)
+),#,'/.

   (3) 212 

The expected value of this distribution is 𝜇𝜇",$ = 𝜆𝜆!("),$𝑇𝑇" and the variance is 𝜆𝜆!("),$𝑇𝑇"(1 +213 

𝜅𝜅𝜆𝜆!(")$𝑇𝑇"). Thus, the closer the overdispersion is to zero, the closer the variance is to the 214 

expected value (as for the Poisson distribution).  215 

However, eq. (3) assumes occupancy. If s does not occupy the site, the expected value will be 216 

zero and the only possible outcome is 𝑦𝑦",$ = 0. Let the independent probability of site-217 

occupancy of each site belonging to a specific species s and formation f(i) be designated 218 

Ψ!("),$. Then, the distribution of 𝑦𝑦",$ unconditioned on site-occupancy will be zero-inflated: 219 

𝑃𝑃:1;4,0123"0456D𝑦𝑦",$|𝑇𝑇"𝜆𝜆!("),$, 𝜅𝜅, Ψ!("),$F = 220 

D1 − Ψ!("),$F𝐼𝐼D𝑦𝑦",$ = 0F + Ψ!("),$ G
𝑦𝑦",$ + 1/𝜅𝜅 − 1

𝑦𝑦",$
J ((!()),#7)8)

+),#

(69(!()),#7)8)
+),#,'/.

   (4) 221 

Here, 𝐼𝐼(), is the indicator function, which is one if the statement inside the parenthesis is true, 222 

and zero, if false. We assume the superspecies occupies all sites. 223 

A species can be absent from all sites in a region in the same formation, thus a non-224 

independent lack of occupancy (Extension (iv)). We represent the presence/absence of s with 225 

a continuous variable 𝜔𝜔!,$~𝑁𝑁(𝜇𝜇 = Φ'6(𝑟𝑟), 𝜎𝜎 = 1), but only for the species+formation 226 

combinations where we do not have external information that the species is present in the 227 
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region (Extension (v)). 𝑟𝑟 represents the probability of regional presence for the set of 228 

species+formation combinations and Φ() is the cumulative distribution function of the 229 

standard normal distribution. We then define a binary variable,  230 

Ω!,$ = 𝐼𝐼(𝜔𝜔!,$ > 0	or	𝐴𝐴!,$ = 1),         (5) 231 

which indicates whether the region is occupied, where 𝐴𝐴!,$ ≡232 

𝐼𝐼(external	data	sources	tell	that	species	𝑠𝑠	occupies	formation	𝑓𝑓). Since 𝜔𝜔!,$ is centered 233 

around Φ'6(𝑟𝑟), Ω!,$ = 1 with probability 𝑟𝑟 whenever 𝐴𝐴!,$ = 0. Since site-occupancy 234 

depends on regional occupancy, the expression Ω!,$Ψ!,$ replaces Ψ!,$ in the zero-inflation part 235 

of the likelihood component in eq. (4). We then let 𝑟𝑟 determine the distribution of 𝜔𝜔!,$ for 236 

cases where 𝐴𝐴!,$ = 0 and use likelihood 𝑟𝑟 for the cases where 𝐴𝐴!,$ = 1. Hence 𝑟𝑟 will 237 

represent the probability for regional occupancy in total, rather than just regional occupancy 238 

for those cases where 𝐴𝐴!,$ = 0. For each species-formation combination, the likelihood picks 239 

up a term  240 

𝐿𝐿!,$ ≡ 𝐼𝐼D𝐴𝐴!,$ = 1F𝑟𝑟 + 𝐼𝐼D𝐴𝐴!,$ = 0F𝑓𝑓<D𝜔𝜔!,$h𝜇𝜇 = Φ'6(𝑟𝑟), 𝜎𝜎 = 1F,     (6) 241 

where 𝑓𝑓<() is the probability density function of the normal distribution. 242 

With unidentified-to-species-level individuals belonging to a genus, given that there are 243 

multiple species of that genus, (shortened as “unidentified” and conversely as “identified”), 244 

the probability of the combination of identified and unidentified individuals will be the 245 

product of the distribution of the identified individuals and the distribution of the unidentified 246 

individuals given the identified ones. The identified individuals are described by eq. (4), 247 

though when taking into account the possibility of unidentified individuals, the expected value 248 

of identified individuals will be modified to 𝛾𝛾2,!𝜆𝜆!,$ where 𝛾𝛾2,! is the identification 249 
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probability of an individual. The number of unidentified individuals, 𝑈𝑈",2, given the identified 250 

individuals, 𝐼𝐼",2, then follows the negative binomial distribution (see SI for details): 251 

 	𝑃𝑃D𝑈𝑈",2h𝐼𝐼",2F = G
𝑈𝑈",2 + 𝐼𝐼",2

𝑈𝑈",2
J 𝛾𝛾2,!(")

=),/96(1 − 𝛾𝛾2,!("))>),/      (7)  252 

 253 

Final likelihood expression 254 

Since informally Pr(identified	and	unidentified) =255 

Pr(unidentified|identified) Pr	(identified), the likelihood becomes a product of these two 256 

contributions: 257 

𝐿𝐿 = lmm𝐿𝐿!,$ m 𝑃𝑃:1;4,0123"0456D𝑦𝑦",$|𝑇𝑇"𝛾𝛾2($),!(")𝜆𝜆!("),$, 𝜅𝜅, Ω!("),$Ψ!("),$F
"|!(")@!

A

!

B

$@6

n 258 

D∏ ∏ ∏ 𝑃𝑃D𝑈𝑈",$h𝐼𝐼",2F#$"D1$
"@6$∈2 	2F>G F        (8) 259 

where 𝑈𝑈𝑈𝑈 is the set of genera that has unidentified individuals. Note that we now let the 260 

expected number of identified individuals for each species scale with identifiability 261 

probability of the genus it belongs to, 𝛾𝛾2,!("). We set 𝛾𝛾2,! = 1 for each genus where there is no 262 

possibility for unidentified individuals (see Data).  263 

The likelihood depends on the state of the random effects, both the common formation-264 

dependent random effects for site-occupancy and abundance-given-occupancy respectively, 265 

𝑣𝑣! and 𝑢𝑢!, as well as the species- and formation-dependent random effects for site-occupancy 266 

and abundance-given-occupancy respectively, 𝛿𝛿!,$ and 𝜀𝜀!,$. The site-occupancy and 267 

abundance-given-occupancy component in the likelihood express (eq. 9) are thus 268 

𝜆𝜆!,$(𝜃𝜃) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽$ + 𝑢𝑢!(") + 𝜀𝜀!("),$)        (9a) 269 
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Ψ",$(𝜃𝜃) = 𝐼𝐼(𝑠𝑠 = 𝑆𝑆) + 𝐼𝐼(𝑠𝑠 < 𝑆𝑆)logit'6D𝛼𝛼$ + 𝑣𝑣!(") + 𝛿𝛿!("),$F    (9b) 270 

𝜃𝜃 is the parameter set (random variables and top parameters, see Fig. 1). Here, both 271 

abundance-given-occupancy and site-occupancy itself are decomposed into a species-272 

dependent, a species+formation-dependent and a purely formation-dependent random 273 

variable, parallel to the original model (eq. 1a). The expression for relative abundance (see eq. 274 

2) is also retained. 275 

Random effects 276 

The random effects for species-dependent dynamics and common dynamics (eq. 1b) are 277 

likewise retained in the new model.  278 

𝑢𝑢! ∼ 𝑁𝑁(0, 𝜎𝜎HI), 𝑣𝑣! ∼ 𝑁𝑁(0, 𝜎𝜎JI), 𝛿𝛿!,$ ∼ 𝑁𝑁D0, 𝜎𝜎K,$I F, 𝜀𝜀!,$ ∼ 𝑁𝑁D0, 𝜎𝜎L,$I F   (10) 279 

However, we also include new random effects for the species-dependent constants,  280 

𝛼𝛼$~𝑁𝑁(𝜇𝜇M, 𝜎𝜎MI), 𝛽𝛽$~𝑁𝑁(𝜇𝜇N, 𝜎𝜎NI)          (11a) 281 

𝜎𝜎K,$~𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇K, 𝜎𝜎KI), 𝜀𝜀K,$~𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇L, 𝜎𝜎LI),  for 𝑠𝑠 < 𝑆𝑆 (superspecies exempted)  (11b) 282 

where the original species-dependent constants effects (eq. 11a) and the size of the dynamics 283 

(eq. 11b) are now both random factors. Note that the size of the superspecies dynamics for 284 

abundance-given-occupancy, 𝜎𝜎L,B, is not part of this equation but is instead a top parameter. 285 

As the superspecies is an aggregate of many different species, it can be expected to be less 286 

dynamic than any single species. The information content of the superspecies is much be 287 

greater than for any other species. We hence exclude it in eq. 11 to avoid swamping of 288 

random effect parameters for species dynamics.  289 
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Since we have one identifiability probability for each combination of formation and genera 290 

with unidentified colonies, we let it be a random factor, just like the other components in our 291 

model that describes dynamics: 292 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙D𝛾𝛾2,!F~𝑁𝑁(𝜇𝜇O, 𝜎𝜎OI).                   (12)  293 

Top parameters and prior distributions 294 

With our current parametrization, the top parameters are  295 

𝜃𝜃D4P = y𝜇𝜇M, 𝜎𝜎M, 𝜇𝜇N, 𝜎𝜎N, 𝜇𝜇K, 𝜎𝜎K, 𝜇𝜇L, 𝜎𝜎L, 𝜎𝜎H, 𝜎𝜎J, 𝜎𝜎L,B, 𝑟𝑟, 𝜅𝜅, 𝜇𝜇O, 𝜎𝜎Oz.     (13) 296 

Note that this parameter set does not increase with an increasing number of species, so the 297 

number of top parameters is always 15. For comparison, the Reitan et al. 2022 model had 5×S 298 

top parameters, which for our dataset, S=21, would have translated to 105 top parameters. 299 

Even so, there was no way of dealing with the genera that has unidentified individuals in that 300 

model. For details of our choice of prior distributions and the robustness of our model to our 301 

choice of prior, see SI.  302 

 303 
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 304 

Figure 1: A schematic view of the new model. This overview shows the hierarchical relationships between data, the core 305 
components of the occupancy model, random effects and top parameters. The arrows show dependencies. Shapes with white 306 
background are associated with abundance-given-occupancy or base data (individual and subsample counts, excluding data 307 
associated with taxon identifiability probability). Shapes with black backgrounds are associated with occupancy (solid black 308 
for site-dependent occupancy and gradient black for regional occupancy). Shapes with grey backgrounds are associated with 309 
overdispersion. Lastly, shapes with dotted backgrounds are associated with taxon identifiability probabilities. Round shapes 310 
are parameters/random effects, rectangles are concepts expressed as functions and triangles are data. How the regional 311 
occupancy random effects, 𝜔𝜔!,#, determines the regional occupancy states are not shown here (but see eqs. 5, 6 and 8). The 312 
functions 𝜆𝜆!,#(𝜃𝜃) and 𝛹𝛹$,#(𝜃𝜃) are expressed in eq. 9. Note also 𝐼𝐼$,% is a sum of the species data, 𝑦𝑦$,%,  for each genus with 313 
unidentified colonies, shown as a separate entity because this aggregate is used in a separate part of the likelihood. 314 

 315 

Simulation 1: New model performance 316 

To explore the performance of the new model, specifically to examine the accuracy of the 317 

inference of not just relative abundance but site-occupancy, regional occupancy and 318 

abundance-given-occupancy using individual counts, we set up simulations. We also 319 

incorporated all the extensions, namely unidentified individuals, regional occupancy and extra 320 

sources pertaining to regional occupancy, in order to test whether the model was able to 321 

handle these challenges. See SI for details. 322 
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Simulation 2: Are individual counts better than subsample counts? 323 

We use a different set of simulations to test if individual counts perform measurably better 324 

than subsample count data (Extension (i)). Here, our simulated datasets had a specified site-325 

occupancy probability and abundance-given-occupancy, which gives the relative abundance. 326 

We sampled simulated data on the subsample level and then aggregated these to site-level in 327 

the form of both individual counts and subsample presence counts. We also wanted to see 328 

how well relative abundance estimated from simple ratios worked (i.e. “raw estimates” as 329 

opposed to model estimates). We used the occupancy model from Reitan et al. 2022 for the 330 

subsample presence counts data and the new model described here for the individual counts. 331 

In addition, we used this set of simulations to examine the effect of different levels of 332 

observational error (i.e. missing individuals, double counting of individuals and 333 

misclassification of species). We judged how well these methods worked using the root-334 

mean-squared-error (RMSE) of the relative abundances. See SI for details. All data and code 335 

are supplied in the zip folder “RAMU-MSOM” available via the editor/Ecography office. 336 

Results 337 

Simulation 1 338 

The relative abundance estimates correspond well with the true relative abundance and 339 

respond well to regional absence (Fig. 2). The modelled relative abundance estimates had an 340 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≈ 0.016. When the existence of unidentified individuals was ignored, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≈341 

0.021. Thus, the effort to compensate for the unidentified individuals did pay off. Raw 342 

estimates had 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≈ 0.024, both when attempting to compensate for unidentified 343 

individuals (by dividing by the ratio of unidentified individuals in each genus) and when not 344 

attempting this, suggesting that it is not so easy to do this type of compensation using raw 345 

estimates. One cannot expect the latter to converge to true values with increasing data size, 346 
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though from theory alone we would expect raw estimates corrected for unidentified 347 

individuals to converge. However, with our current data volume, identifiability correction in 348 

raw estimates do not work better than those without such corrections. Even if the corrected 349 

raw estimates do converge, one would need 2.3 times as many data points (sites) to obtain 350 

errors as small as the model estimated ones, regardless of absolute data volume (assuming that 351 

the squared error is inversely proportional to the dataset size).   352 

Site-occupancy dynamics are quite well-estimated for the most abundant species (first in each 353 

simulated genus) while the least abundance species (last in each simulated genus) which 354 

likewise had a very dynamic true site-occupancy trend, were not (e.g. compare G01_S01 and 355 

G01_S04 in Fig. 3). Although the site-occupancy dynamics of species with intermediate 356 

abundance (e.g. G01_S02 and G01_S03) are also not too well-captured by the estimates, 357 

some of it is absorbed into estimated abundance-given-occupancy (SI Fig. S1). Regional 358 

occupancy probability was also sometimes estimated to be low for some species+formation 359 

combinations in particular datasets where there were no detections, even though the region 360 

was actually occupied. However, when looking at the average score over all datasets, the 361 

regional occupancy probabilities are reasonable (Fig. S2). 362 
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 363 

Figure 2: Relative abundance estimates for simulated data. Relative abundance estimates for simulated data (Simulation 364 
1) for individual species are presented in each panel. Solid black lines=true values, red lines=average estimates from 100 365 
simulations, dots=estimates for each simulated dataset, grey vertical bars=true regional absence. Note the different y-axes. 366 
The designated species names are shown on top of each panel. 367 
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 368 

Figure 3: Occupancy probability estimates for simulated data. Occupancy estimates for simulated data (Simulation 1) for 369 
individual species are presented in each panel. Solid black lines=true values, red lines=average estimates from 100 370 
simulations, dots=estimates for each simulated dataset, grey vertical bars=true regional absence. The designated species 371 
names are shown on top of each panel. 372 

Simulation 2 373 

The RMSE of the relative abundance estimates were smallest for model estimates of 374 

individual count data (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≈ 0.023). Compared to the model estimates for individual 375 

count data, the RMSE’s for raw estimates for individual count data, for model estimates for 376 

subsample count data and the raw estimates for subsample presence count data were 26%, 377 
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59% and 285% higher, respectively. We would need 59%, 153% and 1382% more data points 378 

for raw estimates on individual count data, model estimates on subsample count data and raw 379 

estimates on subsample count data, respectively, to lower the errors to the level of model 380 

estimates on individual count data. Here, we assume the standard error to be inversely 381 

proportional to the square root of the number of measurements. However, raw estimates on 382 

subsample count data cannot be expected to converge towards unbiased results when the 383 

number of data increases, as the ratio of subsamples having presence of a given species does 384 

not scale linearly with abundance-given-occupancy (Reitan et al. 2022).  385 

The observational error simulations suggested that the relationship between the various 386 

RMSEs does not substantially change when the probability of observational errors increased. 387 

(SI for details).  388 

Empirical results 389 

While this work focuses on the details of the new model and simulations for understanding 390 

the performance of the model, it was of interest to ensure that the model has empirical 391 

relevance. Very briefly, there are clear species-specific temporal dynamics (i.e. non-392 

overlapping credibility bands) in both estimated relative abundance (Fig. 4) and occupancy 393 

(Fig. 5) in our empirical dataset. The dynamics of relative abundance and occupancy are 394 

appreciably different for species within the same genera (e.g. compare Microporella 395 

speculum, M. agonistes, M. discors; compare Escharoides excavata and E. angela). Our 396 

model-estimated relative abundances are also robust to different prior widths (see SI). 397 
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 398 

Figure 4: Relative abundance estimates for the empirical dataset. Each panel shows the point estimates (black lines) and 399 
95% credibility bands (grey lines) for the 21 focal species plus the superspecies. Note the different y-axes. 400 



Occupancy model extension ms for Ecography 

 

 
 

22 

 401 

Figure 5: Occupancy estimates for the empirical dataset. Each panel shows the point estimates (black lines) and 95% 402 
credibility bands (grey lines) for the 21 focal species plus the superspecies. Light grey bars indicate no detections in that 403 
formation and no indication of presence from external sources, i.e. situations where regional absence is a real possibility. 404 
Note the different y-axes. 405 

Discussion  406 

Hierarchical site-occupancy modelling is currently still rarely applied to paleoecological 407 

datasets, yet prevailing issues of incomplete detection in paleoecology is rampant, just like in 408 

ecological studies where occupancy modelling is more commonly applied. Replicate sampling 409 

and subsampling within formations is currently not standard practice in paleoecology. We 410 
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have shown that there are measurable differences in face-value (raw ratios) and model 411 

estimates that will impact not just quantitative but also qualitative inferences. However, there 412 

is a practical need to strike a balance between the precision and accuracy of parameter 413 

estimation and the effort required for data collection. For instance, it is quicker to count 414 

subsamples containing focal species, rather than painstakingly counting individuals of those 415 

species. However, much is gained in counting individuals rather than just occupied 416 

subsamples when estimating relative abundance. In addition, individual counts are crucial 417 

when there are individuals unassignable to genera, a situation common in paleoecology. As 418 

far as we are aware, ours is the first attempt at explicitly incorporating information on 419 

individual unassignable to species while estimating relative abundance and occupancy using 420 

paleontological data. Encouragingly, not only do our simulations show that we can recover 421 

relative abundance dynamics by explicitly incorporating information on individuals identified 422 

to genus- but not species-level, we also recover relative abundance and occupancy dynamics 423 

in our empirical data (see Figs. 4 and 5, e.g. species of Microporella). 424 

There are, of course caveats to the estimates, evident from both simulations and the empirical 425 

data analyses. Most notably, dynamics are most recoverable for species that are most 426 

commonly observed (i.e. the most prevalent species) in the simulations and hence we have to 427 

assume that is the case also for the empirical dataset. That said, less prevalent species still 428 

contribute to information important for estimation of more prevalent species through 429 

parameters common to all species. How important regional occupancy modelling is depends 430 

both on the occupancy data and the “external information” available, which will vary from 431 

dataset to dataset. In any case, evidence for regional absence in our empirical system is weak 432 

in some cases (Fig. 5), as can be seen from our top parameter posterior distributions and 433 

robustness analyses (see SI). Absence is in general more difficult to infer than presence, since 434 
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some observed absences are due to detection probability rather than true absence. But absence 435 

is not impossible to estimate, as we have shown. 436 

Lest one erroneously concludes that a simpler model can be used for estimating relative 437 

abundance in a given area, let us be clear that site-occupancy modelling that teases apart 438 

occupancy and detection is a necessary component in estimating abundance. Additionally, one 439 

in general does not know whether regional absence is possible before analysing the empirical 440 

occupancy data. It is important to replicate sampling in ways that will capture variation in 441 

detection since absence of information cannot be proof of absence. In our case, we found clear 442 

indications of site absence, but not regional absence. Our model can be applied more widely 443 

in paleoecology than is perhaps apparent with our example empirical dataset. For instance, 444 

deep-sea cores can be subsampled within time-intervals, as estimated by a combination of 445 

depth information and age-models based on sedimentation rates, as can be lake sediment 446 

cores. More generally, any regional system where multiple outcrops in which sampling can be 447 

replicated will be amendable to this occupancy modelling. We recommend 448 

subsampling/replicate-sampling sites within formations/time-intervals for occupancy and 449 

abundance estimation for paleoecological systems, even when multiple sites cannot easily be 450 

sampled within formations. We also urge detailed documentation of individuals. These data, 451 

while requiring a bit more work to collect, can yield vastly better estimates of key ecological 452 

parameters.  453 

  454 
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