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Abstract 11 

The increasing availability of satellite imagery has supported a rapid expansion in forward-12 

looking studies seeking to track and predict how climate change will influence wild population 13 

dynamics. However, these data can also be used in retrospect to provide additional context for 14 

historical data in the absence of contemporaneous environmental measurements. We used 167 15 

Landsat-5 Thematic Mapper (TM) images spanning 13 years to identify environmental drivers of 16 

fitness and population size in a well-characterized population of banner-tailed kangaroo rats 17 

(Dipodomys spectabilis) in the southwestern United States. We found evidence of two decoupled 18 

processes that may be driving population dynamics in opposing directions over distinct time 19 

frames. Specifically, increasing mean surface temperature corresponded to increased individual 20 

fitness, where fitness is defined as the number of offspring produced by a single individual. This 21 

result contrasts with our findings for population size, where increasing surface temperature led to 22 

decreased numbers of active mounds. These relationships between surface temperature and (i) 23 

individual fitness and (ii) population size would not have been identified in the absence of 24 

remotely sensed data, indicating that such information can be used to test existing hypotheses 25 

and generate new ecological predictions regarding fitness at multiple spatial scales and degrees 26 

of sampling effort. To our knowledge, this study is the first to directly link remotely sensed 27 

environmental data to individual fitness in a nearly exhaustively sampled population, opening a 28 

new avenue for incorporating remote sensing data into eco-evolutionary studies. 29 

 

Key words: Landsat, population dynamics, monitoring, fitness  30 
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Introduction 31 

Understanding the environmental drivers of population stability and fluctuations is critical for 32 

effective natural resource management. However, developing this understanding can require 33 

information about ecosystems and land cover at scales and sampling frequencies that are 34 

impractical to collect from field efforts alone. Beginning with the launch of the Landsat 1 35 

satellite in July 1972, the National Aeronautics and Space Administration/U.S. Geological 36 

Survey Landsat Program has consistently provided medium spatial resolution satellite imagery of 37 

Earth’s surface, with free and open access since 2008 (Wulder et al., 2022). Its data products 38 

have contributed to a rapid expansion of interdisciplinary research that relies on ecological 39 

knowledge and remote sensing data to describe a variety of patterns, including tracking loss of 40 

wetland habitat, detecting shifts in forest canopy composition, and monitoring shifts in 41 

phenological cycles (Vogelmann et al., 2016). Much of this work is forward-looking, seeking to 42 

describe how natural systems evolve as climate change progresses and to construct relevant 43 

projections, but historical remote sensing data can also be used to add new dimensions to 44 

datasets lacking contemporaneous environmental measurements (e.g., Boult et al., 2018; Ndegwa 45 

Mundia & Murayama, 2009; Rossi & Leiner, 2022). Herein, we combine remote sensing and 46 

weather modeling data with previously collected demographic data to describe environmental 47 

factors influencing various components of population dynamics. 48 

 Our focal population of banner-tailed kangaroo rats (Dipodomys spectabilis) has been the 49 

subject of myriad studies, including investigations of mate choice patterns, genetic adaptation to 50 

arid environments, philopatry and dispersal, and many other eco-evolutionary dynamics (Busch 51 

et al., 2009; Jones et al., 1988; Marra et al., 2012; Waser & DeWoody, 2006).  These studies 52 

were largely based on detailed demographic and genetic sampling, including precise home 53 
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mound locations for nearly all individuals in the population and a nearly complete pedigree 54 

linking parents and offspring (Waser & Hadfield, 2011; Willoughby et al., 2019). Analysis of 55 

this pedigree has previously shown that genetic variables, including degree of individual 56 

inbreeding or relatedness between mates, explain a portion of individual fitness, but individual 57 

birth year (i.e., non-genetic or environmental factors) accounted for a relatively larger proportion 58 

of variation in individual fitness (Willoughby et al., 2019). 59 

To test which environmental characteristics contribute to these interannual differences in 60 

fitness, we used Landsat 5 Thematic Mapper (TM) images to obtain surface temperature data and 61 

three other descriptive indices via the Tasseled Cap Transformation (Tasseled Cap brightness, 62 

greenness, and wetness) (Kauth & Thomas, 1976). Tasseled Cap values can be used to describe 63 

variation in soil moisture content, ground cover type, and plant communities, with previous 64 

practical applications including assessing impacts of natural disasters, tracking shoreline 65 

changes, and charting the progress of desertification (Mostafiz & Chang, 2018; Shamsuzzoha & 66 

Ahamed, 2023; Zanchetta et al., 2016). We used these data alongside modeled precipitation and 67 

temperature data to summarize the environment of this population over thirteen years. We 68 

analyzed these data in conjuction with demographic data at three different scales representing 69 

three distinct levels of field sampling effort—(i) individual microhabitat vs. individual fitness, 70 

(ii) population-scale macrohabitat vs. population fitness, and (iii) population-scale macrohabitat 71 

vs. population size—to test the suitability of remote sensing data for describing the effects that 72 

specific environmental variables can have on population dynamics at different scales. Because 73 

populations of banner-tailed kangaroo rats have been the subjects of numerous ecological and 74 

evolutionary studies over several decades, we were able to compare the patterns observed in our 75 

results against inferences drawn from prior field-based studies. 76 
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Previous studies of D. spectabilis and other heteromyid rodents have described positive 77 

relationships between the amount of habitat openness and survival or population size, perhaps 78 

because openness facilitates easier detection of or evasion maneuvers against predators or 79 

because higher quality food sources tend to grow in such habitats (Bowers et al., 1987; Germano 80 

et al., 2001; Waser & Ayers, 2003). We therefore expected to see a positive relationship between 81 

the Tasseled Cap brightness index and individual and population fitness, as brightness can 82 

indicate the ratio of open soil to plant cover (Crist & Cicone, 1984). We also expected to see a 83 

positive effect of precipitation and the Tasseled Cap wetness index—a measure sensitive to soil 84 

and vegetative moisture, but primarily characterizing soil moisture (Crist & Cicone, 1984)—on 85 

fitness, as increasing water availability may translate into increased food resources (Brown & 86 

Zeng, 1989; Munger et al., 1983). Subsequent increases in these resources may be captured by 87 

the Tasseled Cap greenness index, a measure shown to be correlated with leaf area index and 88 

vegetation biomass (Crist & Cicone, 1984). Specifically, we expected that higher greenness 89 

measures in the rainy seasons preceding breeding would lead to increased fitness, as previous 90 

studies have found lagged positive responses in rodent biomass or abundance to increased 91 

primary productivity (Ernest et al., 2000; Hernández et al., 2005; Previtali et al., 2009; Schooley 92 

et al., 2018). Finally, we anticipated that surface and air temperature measures would be 93 

negatively correlated with fitness, as increasing surface temperature corresponds to decreasing 94 

survival for D. spectabilis populations in the Chihuahuan Desert (Moses et al., 2012).  95 

Although other studies have drawn important new ecological inferences by linking 96 

remotely sensed environmental measurements to approximations or correlates of fitness (where 97 

fitness is defined as the number of offspring produced by a single individual), such as apparent 98 

survival (Moses et al., 2012; Ward et al., 2018) or clutch size and fledging success (Regos et al., 99 
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2022; Riggio et al., 2023), ours is the first to use direct assessments of individual fitness as 100 

response variables. Specifically, the identification of parent-offspring pairs via genetic analysis 101 

allows for inclusion of adult individuals known to be alive but producing zero offspring within a 102 

year and for linking observations of specific individuals across years. Herein, we leverage this 103 

extensive demographic dataset to test our ecological predictions and, through these analyses, 104 

develop new ecological hypotheses regarding drivers of banner-tailed kangaroo rat population 105 

dynamics. Overall, we demonstrate that, in the absence of locally collected environmental data, 106 

remote sensing data can be used to draw novel inferences and generate new questions regarding 107 

fitness and population dynamics at multiple spatial scales and degrees of sampling effort. 108 

 

Methods 109 

Study system 110 

The study site is located in the Madrean Archipelago ecoregion, which comprises the Sky 111 

Islands—forested mountains interspersed among broad, flat desert scrub and grasslands. The 112 

Chiricahua Mountains lie just to the north and west of the site, which is situated around a 113 

volcanic cinder cone surrounded by flatlands approximately 35 km southwest of Portal, AZ 114 

(31°36'27"N, 109°15'48"W) (Fig. 1A). Annual precipitation patterns typically include a summer 115 

rainy season from July to August (which supplies 50% of total annual precipitation) and a 116 

second, less intense winter rainy season from December to March (Adams & Comrie, 1997). The 117 

study area is primarily desert grassland, with rare to occasional half-shrubs and forbs present 118 

(Jones et al., 1988; Waser & Ayers, 2003). 119 
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Banner-tailed kangaroo rats rely on these plant communities for food, caching seeds in 120 

large mounds (1-3 m in diameter) constructed for food storage, reproduction, and protection 121 

from predators and harsh environmental conditions (Edelman, 2011; Kay & Whitford, 1978). 122 

Each mound is typically occupied and defended by a single individual, with the exception of 123 

females and their dependent offspring (Schroder, 1979). When the offspring are between two and 124 

seven months old, they disperse from their natal mounds to nearby vacant mounds to establish 125 

individual territories (Jones, 1984; Waser et al., 2006). Exceptions to typical dispersal patterns 126 

may occur in years of high population densities, wherein individuals are more likely to remain in 127 

their natal mound to reproduce than to disperse to a new location (Jones et al., 1988; Waser & 128 

DeWoody, 2006). Mating typically occurs between December and March with females 129 

producing 1-2 litters of 1-3 offspring per year (Jones, 1984). Individuals typically live up to four 130 

years, often producing offspring during the first mating season of their lives. 131 

Banner-tailed kangaroo rat data collection 132 

Our banner-tailed kangaroo rat demographic data was collected from a population monitored by 133 

Waser et al. from 1990 through 2007 (Sanderlin et al., 2012; Skvarla et al., 2004; Waser & 134 

Jones, 1991). Twice annually, three traps were placed around each active mound on three 135 

consecutive nights, resulting in near-exhaustive population sampling (98% median capture 136 

probability for adults; 93% for juveniles; Skvarla et al., 2004). Each captured individual was 137 

uniquely marked with ear tags and sex and mound-specific capture location were recorded. It 138 

was also noted whether the individual was a juvenile (i.e., born in that year) or an adult. Ear 139 

tagging and subsequent recapture allowed individuals to be tracked across the landscape from 140 

year to year, and pinna biopsies were taken for genetic characterization. Biopsy samples were 141 

genotyped at nine polymorphic loci (Busch et al., 2009; Waser et al., 2006) and the resulting data 142 
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were used alongside trapping records to construct a pedigree for the population (Waser & 143 

Hadfield, 2011; Willoughby et al., 2019). Briefly, Waser & Hadfield (2011) used MasterBayes to 144 

build the pedigree, with parental assignment probabilities influenced by trapping location and 145 

parent/offspring genotypes (see Willoughby et al., 2019 for details). 146 

Environmental data curation and transformation 147 

We downloaded all available Landsat 5 TM Collection 2 Level 2 images for our study site from 148 

1989-2005. Our site was covered by both paths 34 and 35 in row 38 at 30-m spatial resolution. 149 

All images were processed and analyzed in R v4.0.3 (R Core Team, 2020). Because of the small 150 

size of our site relative to the footprint of a Landsat 5 scene, each image was cropped to a 2100 151 

m x 2750 m extent using the raster package prior to further processing (Hijmans, 2022). We 152 

manually reviewed the cropped natural color image for each scene to verify absence of clouds or 153 

any other source of error. 154 

 For each of the surface reflectance bands, we applied the multiplicative scale factor 155 

(0.0000275) and additive offset (-0.2) specified in the Landsat 4-7 Collection 2 Level 2 Science 156 

Product Guide (U.S. Geological Survey, 2021, pp. 4–7). We also converted the surface 157 

temperature band to Kelvin (and later to degrees Celsius) using a multiplicative scale factor of 158 

0.00341802 and an additive offset of 149. Using the spectralIndices function in the RStoolbox 159 

package, we calculated 3 Tasseled Cap indices for all images: Tasseled Cap brightness, 160 

greenness, and wetness (Crist, 1985; Leutner et al., 2019). To check for biased values with 161 

respect to path number, we plotted the mean value of each index per scene (i.e., timepoint) over 162 

time. Across all years examined, values calculated from path 34 were consistently higher than 163 

temporally adjacent values calculated from path 35, leading us to rely exclusively on path 35 164 
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scenes for downstream analyses. We also limited the dataset to scenes collected from 1993-2005 165 

due to limited observations available in 1989-1992, leaving 167 scenes (Fig. A1; Table A1). All 166 

cell values across all years were z-transformed within each Tasseled Cap index. After observing 167 

intra- and interannual patterns for these four variables, we calculated pairwise Pearson 168 

correlation coefficients using the cor function in R. 169 

 To link the remote sensing data to specific kangaroo rat mounds, we used GPS 170 

coordinates recorded for 188 mounds to assign them to corresponding cells in the raster. For 26 171 

mounds, no GPS coordinates were available, but all mounds had been mapped during the 172 

original surveys using a custom coordinate system (units in meters) covering the study site (i.e., 173 

the position for each mound was recorded against a single reference point). Using the known 174 

coordinates for 188 mounds, we overlaid the meter-based locations for all mounds onto the raster 175 

and manually assigned the mounds lacking GPS coordinates to cells in the raster. In total, we 176 

assigned 214 mounds to raster cells (Fig. 1B). 177 

 We also obtained precipitation totals and minimum, mean, and maximum temperatures 178 

from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) at 4-km 179 

resolution (PRISM Climate Group, Oregon State University, 2009). The PRISM model 180 

incorporates a digital elevation model and other spatial datasets to calculate gridded estimates of 181 

multiple climatic parameters, while accounting for the effects of terrain on precipitation (Daly et 182 

al., 1997, 2008). We used these estimated daily precipitation totals (mm) and minimum, mean, 183 

and maximum temperatures (°C) to calculate annual and seasonal means for the population-level 184 

analysis, as a single value for each PRISM variable was available for the entire population (see 185 

below). 186 
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Data summarization and statistical analyses 187 

Individual fitness 188 

Using the parent-offspring assignments generated by Waser & Hadfield (2011), we determined 189 

how many offspring each female produced in each year (n = 476 females) and, for females 190 

producing at least one offspring, how many of those offspring survived to age one (i.e., 191 

reproductive age; n = 282 females). We used the capture data to assign each female to a primary 192 

mound location within each year. For each female, we summarized remote sensing values by 193 

considering the cell containing her mound location and the eight adjacent cells. Given that each 194 

cell is 30 m across, the maximum distance from the center of an individual’s home range in the 195 

raster to the edge is 63 m. Most banner-tailed kangaroo rats disperse < 50 m over their lifetime 196 

(i.e., the distance between their natal and home mounds is < 50 m), meaning that their raster-197 

defined home range likely contains both their natal and reproductive environments (Skvarla et 198 

al., 2004). For each year, we calculated mean index and surface temperature values in three 199 

ways: (i) season-equalized 12-month (i.e., annual) average, wherein the average index values 200 

within each meteorological season were averaged to obtain a single annual value for each index; 201 

(ii) summary rainy season averages, calculated for July-August; and (iii) winter rainy season 202 

averages, calculated for December-March. We applied a 6-month lag to the environmental data, 203 

such that: means for July in year t-1 through June in year t were used to predict the number of 204 

offspring produced in year t; and means for July in year t through June in year t + 1 were used to 205 

predict the number of offspring produced in year t surviving to year t + 1 (Fig. 2). 206 

 To check for relationships between individual microhabitat conditions and fitness, we 207 

conducted a series of Poisson and negative binomial regressions using the glm.nb function from 208 

the MASS package (Venables & Ripley, 2002) in R. The response variable was number of 209 



 11 

offspring produced with mean annual values for brightness, greenness, wetness, and surface 210 

temperature (K) as predictor variables. We used backwards stepwise regression, manually 211 

removing one predictor variable at a time and examining model coefficients and AIC values until 212 

all predictors were significant (p < 0.05). We compared the final Poisson and negative binomial 213 

regressions using a likelihood ratio test, checked the dispersion parameter for each model, and 214 

calculated generalized variance inflation factor (GVIF) values for final models with >1 predictor 215 

variable retained using the gvif function in the glmtoolbox R package to quantify the contribution 216 

of collinearity on uncertainty in each model (Hernando Vanegas et al., 2022). We repeated this 217 

process for the summer and winter rainy season means and for number of surviving offspring. To 218 

visualize the effects of predictor variables in models with multiple retained predictor variables, 219 

we used the effect_plot function in the jtools package in R, setting the non-focal predictor 220 

variable equal to its mean value. 221 

 Because some females were sampled in >1 year, we also constructed negative binomial 222 

linear mixed models with female identification number (ID) as a random variable for both 223 

number of offspring and number of offspring surviving. These models were built using the 224 

glmmTMB package in R and we followed the same backwards stepwise regression process as for 225 

the models that only included fixed effects (Brooks et al., 2017). For successful mixed models, 226 

the final models were compared against the corresponding models lacking random effects with 227 

likelihood-ratio tests as implemented in the lrtest function in R. 228 

Population fitness 229 

We used the capture data to determine the number of adult females alive in each year as well as 230 

the total number of offspring produced. From these data, we calculated the average number of 231 
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offspring produced per female and average number of offspring surviving to age 1 per female. 232 

To define the set of cells to be analyzed within each year, we began by identifying active mounds 233 

(i.e., mounds where a female was captured) within each year. We defined the total set of active 234 

cells as all cells containing an active mound plus the eight cells adjacent to each active cell. For 235 

each year, we calculated landscape-level means for each remote sensing index and the PRISM 236 

variables as we did for the individual data (i.e., annually and for the summer and winter rainy 237 

seasons) and again applied a 6-month lag (Fig. 2). 238 

 We conducted a series of linear regressions to identify relationships between 239 

macrohabitat conditions and population-level fitness by testing each combination of a single 240 

environmental predictor variable and response variable separately. Two summer rainy season 241 

variables (wetness and brightness) were found to be significant predictors for average number of 242 

offspring surviving to age 1 (p < 0.05). Because neither model met the homoskedasticity 243 

assumption, we permuted the y-values and calculated model coefficients 1,000 times per model 244 

to generate permuted p-values. 245 

Population size 246 

Again using capture data, we calculated the number of mounds with resident individuals within 247 

each year. We assumed that if a mound was occupied, an experienced surveyor of the site could 248 

reasonably identify occupied mounds as active based on signs left by residents (e.g., specific 249 

characteristic patterns left by banner-tailed kangaroo rat locomotion, recently excavated soil at 250 

mound entrances). We applied the same predictor variables and statistical approaches as for the 251 

population fitness data, using annual and summer and winter rainy season means from July in 252 

year t-1 through June in year t to predict the number of active mounds in year t. After 253 
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constructing the initial linear regressions, we were left with a single significant predictor variable 254 

(mean annual surface temperature; p < 0.05) and again permuted the y-values and calculated 255 

model coefficients 1,000 times to generate p-values.  256 

 To confirm that number of active mounds is a reasonable proxy for population size, we 257 

constructed linear models to relate number of active mounds to number of adult females and 258 

census population size using the capture data. We also tested for relationships between both 259 

number of active mounds and number of adult females and fitness rates (number of offspring and 260 

number of surviving offspring per female) to determine whether fitness rates could be the result 261 

of density-dependent population processes. Finally, to account for the effect of population size in 262 

year t - 1 on population size in year t, we repeated our statistical approach using (i) absolute 263 

change in population size from year t - 1 to year t and (ii) proportional change in population size 264 

from year t - 1 to year t as response variables (i.e., (𝑁!"#$	& − 𝑁!"#$	&'()/(𝑁!"#$	&'()). 265 

 266 

Results 267 

We analyzed 167 Landsat 5 TM scenes spanning 13 years (July 1993 – June 2005), calculating 268 

surface temperature (°C) and scaled and centered Tasseled Cap greenness, wetness, and 269 

brightness indices for each. For surface temperature, patterns matched expectations with 270 

maximum temperatures observed during June/July and minima during December/January and 271 

with little variation across cells analyzed at each time point as indicated by small standard 272 

deviations around mean values (Fig. 3D). For Tasseled Cap greenness, intra-annual patterns 273 

largely did not follow our expectation of increased values during or after rainy seasons (Fig. 3A). 274 

For example, higher greenness values were observed for the summer rainy season in only 4 of 13 275 



 14 

years analyzed. Brightness and wetness appeared to be strongly correlated with one another, with 276 

both indices perhaps decreasing a bit during the cooler months and increasing during the warmer 277 

months (Fig. 3B,C). After observing the similarities between these two variables, we calculated 278 

and confirmed strong correlation between wetness and brightness (Pearson’s r = 0.89; Fig. A2).  279 

For individual fitness, we found that mean annual brightness and surface temperature for 280 

the area immediately surrounding a female’s home location had positive effects on number of 281 

offspring produced (Table 1; Fig. 4; Fig. 5A; Fig. A3; see Table A2 for all tested models). 282 

Summer rainy season mean brightness and winter rainy season mean wetness and surface 283 

temperature also positively affected number of offspring produced (Fig 5B). With respect to the 284 

number of offspring surviving to age 1, mean annual surface temperature and mean summer 285 

rainy season brightness were positive predictors (Table 1; Fig. 5C; see Table A3 for all tested 286 

models). For both number of offspring and number of surviving offspring, greenness was not 287 

included in any of the final models. For the two individual fitness models with multiple predictor 288 

variables retained, GVIF values were close to 1 and therefore did not indicate an outsized 289 

contributed of collinearity to model uncertainty (maximum value was 1.05). 290 

Including female ID as a random effect did not affect the results for number of offspring 291 

with respect to the identity or significance of retained predictor variables when compared to the 292 

negative binomial models that only included fixed effects (tested models presented in Table A4). 293 

Likelihood-ratio tests comparing mixed-effects models to models excluding female ID as a 294 

random effect were non-significant. For number of offspring surviving, we could not construct 295 

reasonable models that included female ID due to convergence issues. These issues were likely 296 

due to the over-representation of individuals with only one year of observations (186 of 282 297 

females were only observed in one year). For these reasons, we restrict further consideration and 298 
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discussion to the results of the models that only include fixed effects for both number of 299 

offspring and number of offspring surviving. 300 

There were only two statistically significant relationships linking environmental variables 301 

and population fitness: summer rainy season brightness (Table 2) and wetness (Table 3), when 302 

averaged across the active landscape, were positively associated with average number of 303 

offspring surviving to age 1 per female (Fig. A4). Despite summer rainy season wetness 304 

positively predicting average number of surviving offspring, total precipitation as modeled by 305 

PRISM was not correlated with fitness. 306 

With respect to population size, only mean annual surface temperature was a significant 307 

predictor variable (Table 4; Fig 5D). The direction of this relationship was negative, unlike the 308 

positive relationships described between surface temperature and individual fitness. In 309 

comparing number of active mounds against number of adult females and census population 310 

sizes, we found significant and strong statistical relationships (Fig. A5), suggesting that simply 311 

surveying the number of active mounds in an area occupied by banner-tailed kangaroo rats 312 

would produce a close estimate of population size. Neither number of adult females nor number 313 

of active mounds were significantly associated with fitness rates (Fig. A6), suggesting that 314 

fitness is not detectably influenced by population density. We also did not observe any 315 

significant relationships between environmental variables and absolute or proportional change in 316 

population size from year t - 1 to year t. Although previous years’ population sizes certainly 317 

influence contemporary population size, we were not able to capture these effects in our 318 

analyses. 319 
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Discussion 320 

For two variables—Tasseled Cap brightness and wetness—our results matched our expectations 321 

that were based on previously published relationships between kangaroo rat demographic 322 

measures and environmental conditions. In each individual-level model where brightness was 323 

retained as a significant predictor and at the population level, brightness positively affected 324 

fitness. This is consistent with previous studies that explicitly tested the relationship between 325 

habitat openness (i.e., plant density or shrub cover) and kangaroo rat abundance (Bowers et al., 326 

1987; Waser & Ayers, 2003). However, these studies primarily focused on the effect of shrub 327 

density on kangaroo rat populations, whereas the majority of plants at our study site are grasses. 328 

Therefore, brightness as measured in our study may be providing a summary of favorable 329 

conditions distinct from what was explicitly tested in previous studies of habitat openness and 330 

kangaroo rat abundance. Mean winter and summar rainy season wetness values were also 331 

positively associated with individual and population fitness, respectively. This mirrors results of 332 

previous studies that have demonstrated a positive relationship between precipitation and rodent 333 

abundances in dry environments (Cárdenas et al., 2021), although mechanistic links between 334 

precipitation and rodent abundances are often complex (Ernest et al., 2000; Thibault et al., 2010; 335 

Thibault & Brown, 2008). Positive effects of precipitation on kangaroo rat survival or abundance 336 

could be mediated via decreased water stress on individuals or through increased availability of 337 

food resources that rely on rainy season precipitation to produce seeds. However, values for 338 

wetness and brightness were strongly correlated in our dataset (Pearson’s r  = 0.89; Fig. 3B,C; 339 

Fig. A2), making it difficult to definitively interpret changes in either index. This is likely due to 340 

the high ratio of bare soil:vegetation cover at our site, with little variation across the cells being 341 

compared (Crist, 1985). The strength of this correlation does vary across the year (summer rainy 342 
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season Pearson’s r = 0.57; winter rainy season Pearson’s r =  0.92), indicating that these two 343 

indices likely capture distinct soil characteristics, but we cannot explicitly define those 344 

characteristics without ground-truthed data. 345 

 Across all time intervals and scales, Tasseled Cap greenness was never retained as a 346 

significant predictor of fitness or population size. We expected greenness to increase during or 347 

immediately following the rainy seasons in each year, and this appears to have been the case for 348 

some years but not all (Fig. 3). The uninformative nature of this particular index for our study 349 

site is likely related to semiarid shrub and grassland characteristics. In such ecosystems, spatial 350 

patterns of vegetative land cover are highly heterogeneous with respect to both plant community 351 

composition and density (Huenneke et al., 2001), and typically comprise dormant (i.e., non-352 

photosynthetic) vegetative cover for large portions of the year (D. Browning et al., 2017; Okin, 353 

2010; Yang & Guo, 2014). Regardless of season, areas with sparse vegetative cover may not 354 

reach greenness thresholds required for detection of vegetation in satellite data (Peng et al., 355 

2021). In other words, the low density of green vegetation at our study site may not be sufficient 356 

to prompt an increase in Tasseled Cap greenness values on a per-cell basis, even when the plant 357 

community has reached maximum greenness. Further investigation would require either higher 358 

resolution data than is publicly available (e.g., (Bankert et al., 2021; D. M. Browning et al., 359 

2019)) or ground-truthed data to calibrate conversions of spectral data to per-pixel vegetation 360 

fractions (Smith et al., 1990) on a temporal scale capable of capturing the often rapid changes in 361 

photosynthetic activity observed in desert plants (Reed et al., 1994). Without such information 362 

from the focal system, it may not possible to reliably ascertain aspects of shrub or grassland 363 

phenology using multispectral data alone (Allnutt et al., 2002).  364 
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 Whereas the Tasseled Cap indices may require additional data to contextualize their 365 

values for a specific location, the Landsat surface temperature band provides a direct measure of 366 

a simple physical characteristic. At the individual level, the positive relationships we identified 367 

between surface temperature and individual fitness appear to directly contradict other findings in 368 

this species (Moses et al., 2012). However, when we analyzed the effect of surface temperature 369 

on population size, the direction of this relationship matched previous results describing negative 370 

effects of increased temperature on kangaroo rat survival. The apparent mismatch between these 371 

two sets of results could be mediated by decoupled processes acting over distinct time frames to 372 

increase both individual fitness and subsequent overall mortality in the population. Specifically, 373 

the positive effect of surface temperature on individual fitness is partially driven by higher winter 374 

temperatures (as was found for the number of offspring response variable), and warmer winters 375 

correspond to lower thermoregulatory costs for kangaroo rats (Edelman, 2011; Hinds & 376 

MacMillen, 1985). These reduced costs could help the kangaroo rats’ seed caches to last longer, 377 

allowing females to produce greater numbers of litters in a single season. Whereas higher winter 378 

temperatures may correspond to greater numbers of offspring produced, higher summer 379 

temperatures may lead to higher rates of mortality. Although we did not detect a significant 380 

relationship between summer rainy season surface temperature and population size, hotter 381 

summers could perhaps decrease plant productivity, leading kangaroo rats to quickly exhaust 382 

their seed caches and spend more time gathering food at night, thereby also increasing their risk 383 

of predation. Additional environmental data (e.g., accurate measurements of plant community 384 

composition, abundance, and phenology) could provide greater context for interpreting the 385 

influence of surface temperature on population dynamics, but satellite-measured surface 386 

temperature alone may remain a critical and accessible measure of habitat suitability or 387 
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population dynamics for many species as climate change progresses, including species of 388 

conservation concern and pest species (Albright et al., 2011; Bateman et al., 2023; Blum et al., 389 

2015; Geppert et al., 2023; Moses et al., 2012; Shimada et al., 2021). 390 

Although four of our final models included surface temperature as a predictor variable, 391 

PRISM temperature estimates were never retained as significant predictors of fitness or 392 

population size, nor were PRISM precipitation estimates. One possible explanation is that 393 

PRISM estimates may not closely approximate the true values for our study site, which covers 394 

roughly 6% of a single PRISM grid cell. PRISM models account for elevation and topography, 395 

but precipitation is highly spatially variable in the Chihuahuan Desert, even over short distances 396 

(Petrie et al., 2014), making it difficult to assess the accuracy of PRISM estimates over very 397 

small areas. Additionally, large precipitation events can contribute the majority of annual rainfall 398 

in wet years (Petrie et al., 2014), and extreme weather events could influence kangaroo rat fitness 399 

or survival more strongly than the seasonal or annual averages (e.g., due to food resource 400 

spoilage (Valone et al., 1995)) we included in our analyses. Spatial variability in air temperatures 401 

may also impede detection of relationships between the modeled PRISM temperatures, but a 402 

more likely explanation is that surface temperature values are simply more representative of the 403 

environment kangaroo rats experience than air temperature estimates, further highlighting the 404 

utility of remotely sensed surface temperature measurements in this and similar habitats. 405 

 For all of the environmental variables we tested, we also checked whether these variables 406 

were predictive of either absolute or proportional change in population size from one year to the 407 

next. Population size in the preceding year certainly influences contemporary population size, 408 

but we did not detect any relationships between environmental variables and either measure of 409 

change in population size. It may be that surface temperature—the only variable significantly 410 



 20 

associated with population size—is also correlated with some unmeasured aspect of the 411 

environment that limits population carrying capacity rather than rate of change in population 412 

size. We did find that number of active mounds is reliably predictive of population size, as has 413 

been previously described for this population over a different set of sampling years (Cross & 414 

Waser, 2000). Although visual surveys of the site would not provide information on individual 415 

fitness, they could provide close estimates of population size with far less effort than extensive 416 

trapping schemes. Future studies of this or other D. spectabilis populations could rely on more 417 

extensive ground-truthed remote sensing data and active mound surveys to gain additional 418 

insights into drivers of population size while minimizing the number of person hours required to 419 

collect data. 420 

 

Conclusions 421 

Through our analysis of remote sensing and modeled climate data, we were able to identify 422 

potential ecological drivers of fitness and population size. Although most of our tested variables 423 

(i.e., the Tasseled Cap indices) will require pairing with ground-truthed data from the site to 424 

confirm, our results and conservative interpretations were consistent with previous findings from 425 

our focal population and other systems. The contrasting results for surface temperature across 426 

sampling scales demonstrate that, while conducting relatively lower effort mound surveys likely 427 

captures demographic trends well enough to identify abiotic determinants of population size, the 428 

additional resolution provided by linking parents and offspring via genetic sampling allows for 429 

detection of counterintuitive relationships that could influence long-term population stability.   430 
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Table 1. Summaries of the best negative binomial models describing individual fitness, with predictor variable values averaged over 
the time interval indicated. 

Fitness measure Time interval Variable Estimate SE z-value p-value 
Number of offspring Annual Intercept -0.7191 0.6523 -1.102 0.2703 
(n = 476)  Brightness 0.3590 0.1566 2.292 0.0219 
  Surface temperature 0.0382 0.0187 2.042 0.0412 
 Summer rainy Intercept 0.7084 0.1168 6.065 1.32 x 10-9 
  Brightness 0.4664 0.1430 3.263 0.0011 
 Winter rainy Intercept -0.4845 0.4136 -1.172 0.2414 
  Wetness 0.2070 0.0973 2.128 0.0334 
  Surface temperature 0.0524 0.0120 2.628 0.0086 
Number of surviving offspring Annual Intercept -3.2547 0.7081 -4.596 4.3 x 10-6 

(n = 282)  Surface temperature 0.0896 0.0201 4.457 8.3 x 10-6 

 Summer rainy Intercept 0.1346 0.1395 0.965 0.3346 
  Brightness 0.3752 0.1804 2.080 0.0375 
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Table 2. Summary of the first linear regression model describing population fitness and 
permuted p-values. The response variable is average number of offspring surviving to age 1 per 
adult female. The adjusted R2 for this model was 0.47. 

Variable Estimate SE t-value Permuted p-value 
Intercept 1.215 0.210 5.790 < 0.001 
Summer rainy season brightness 0.824 0.262 3.151 0.006 

 
 
 
 
 
 
 
 
 
Table 3. Summary of the second linear regression model describing population fitness and 
permuted p-values. The response variable is average number of offspring surviving to age 1 per 
adult female. The adjusted R2 for this model was 0.35. 

Variable Estimate SE t-value Permuted p-value 
Intercept 1.155 0.237 4.866 0.010 
Summer rainy season wetness 0.633 0.251 2.518 0.010 

 
 
 
 
 
 
 
 
 
Table 4. Summary of the linear regression model with number of active mounds as the response 
variable. P-values were derived from permutation tests. The adjusted R2 for this model was 0.22. 

Variable Estimate SE t-value Permuted p-value 
Intercept 380.383 126.632 3.004 0.018 
Annual surface temperature -7.644 3.688 -2.073 0.018 

 

 

 



 29 

Figure captions 

Figure 1. A) Map of the area surrounding the study site, which is situated in Arizona near the 

New Mexico and Mexico borders. The site is located just southeast of the Chiricahua Mountains. 

B) Map of the study site with all mounds included in this study marked with points. The mounds 

are located on primarily flat areas surrounding a cinder cone. 

Figure 2. Schematic showing temporal alignments between the predictor and response variables 

tested in the study. For example: annual means used to predict the number of offspring produced 

in year t were calculated from environmental data collected from July, year t-1 through June, 

year t, whereas winter rainy season means were calculated from data collected from December, 

year t-1 through March, year t. Although not indicated in this figure, PRISM data were only used 

as predictor variables for population fitness and number of active mounds (i.e., not for measures 

of individual fitness). Summer and winter rainy season results are indicated by ‘S’ and ‘W’, 

respectively. 

Figure 3. Mean values of Tasseled Cap indices (A-C) and surface temperature (D) across days of 

the year. Means were calculated using all cells that were occupied in at least one year over the 

course of the study plus all cells directly adjacent to those occupied cells. Note that the x-axes are 

offset such that the axis begins with July 1 and ends with June 30. White lines connect dates 

from July 1 in each year through June 30 in the subsequent year. Vertices for shaded polygons 

encompass one standard deviation around each mean. The points to the right of the dashed line 

indicate annual and rainy season mean values within each year. 

Figure 4. Schematic summarizing the statistically significant relationships identified between 

environmental variables and fitness or population size. ‘S’ and ‘W’ indicate summer and winter 
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rainy season results, respectively. The sign in each colored polygon indicates the direction of the 

relationship (i.e., the only negative relationship identified was between mean annual surface 

temperature and number of active mounds). Polygon color indicates environmental predictor 

variable with outline pattern indicating the scale at which variables were tested (i.e., individual 

and population fitness and population size). 

Figure 5. A-C) Significant positive relationships between surface temperature and measures of 

individual fitness. Panels A and B present the effects of mean annual and mean winter rainy 

season surface temperatures, respectively, on number of offspring produced by individual 

females while setting the non-focal predictor variable in each negative binomial model equal to 

its mean value. Panel C presents the final negative binomial model predicting number of 

surviving offspring with mean annual surface temperature. D) Linear regression describing 

negative effect of mean annual surface temperature on population size, as measured by number 

of active mounds. For all panels, shaded polygons represent 95% confidence intervals. Statistical 

results for models are presented in Tables 1-4 and Tables A2. 
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Appendix 
 
Table A1. Metadata for final list of Landsat 5 TM Collection 2 Level 2 scenes (path 35, row 38) used in analyses (n = 167). Time is provided in 
Mountain Standard Time (local to the study site). 

   Date   Time  
Product ID Scene ID Year Month Day Hour Minute Second 

LT05_L2SP_035038_19930104_20200914_02_T1 LT50350381993004AAA04 1993 1 4 10 13 33 
LT05_L2SP_035038_19930309_20200914_02_T1 LT50350381993068AAA04 1993 3 9 10 14 12 
LT05_L2SP_035038_19930325_20200914_02_T1 LT50350381993084AAA04 1993 3 25 10 14 12 
LT05_L2SP_035038_19930410_20200914_02_T1 LT50350381993100AAA04 1993 4 10 10 14 20 
LT05_L2SP_035038_19930512_20200914_02_T1 LT50350381993132AAA04 1993 5 12 10 14 31 
LT05_L2SP_035038_19930528_20200914_02_T1 LT50350381993148AAA04 1993 5 28 10 14 34 
LT05_L2SP_035038_19930613_20200914_02_T1 LT50350381993164AAA04 1993 6 13 10 14 34 
LT05_L2SP_035038_19930629_20200914_02_T1 LT50350381993180AAA04 1993 6 29 10 14 27 
LT05_L2SP_035038_19930731_20200913_02_T1 LT50350381993212AAA04 1993 7 31 10 14 26 
LT05_L2SP_035038_19930917_20200913_02_T1 LT50350381993260XXX03 1993 9 17 10 14 22 
LT05_L2SP_035038_19931003_20200913_02_T1 LT50350381993276AAA03 1993 10 3 10 14 18 
LT05_L2SP_035038_19931104_20200913_02_T1 LT50350381993308AAA04 1993 11 4 10 14 6 
LT05_L2SP_035038_19931120_20200913_02_T1 LT50350381993324XXX04 1993 11 20 10 13 58 
LT05_L2SP_035038_19931206_20200913_02_T1 LT50350381993340XXX05 1993 12 6 10 13 55 
LT05_L2SP_035038_19940107_20200913_02_T1 LT50350381994007XXX01 1994 1 7 10 13 33 
LT05_L2SP_035038_19940328_20200913_02_T1 LT50350381994087XXX02 1994 3 28 10 12 27 
LT05_L2SP_035038_19940413_20200913_02_T1 LT50350381994103XXX02 1994 4 13 10 12 7 
LT05_L2SP_035038_19940429_20200913_02_T1 LT50350381994119XXX02 1994 4 29 10 11 51 
LT05_L2SP_035038_19940515_20200913_02_T1 LT50350381994135XXX02 1994 5 15 10 11 33 
LT05_L2SP_035038_19940616_20200913_02_T1 LT50350381994167XXX02 1994 6 16 10 10 56 
LT05_L2SP_035038_19940702_20200913_02_T1 LT50350381994183XXX02 1994 7 2 10 10 32 
LT05_L2SP_035038_19940803_20200913_02_T1 LT50350381994215XXX02 1994 8 3 10 9 38 
LT05_L2SP_035038_19941022_20200912_02_T1 LT50350381994295XXX02 1994 10 22 10 7 28 
LT05_L2SP_035038_19941209_20200912_02_T1 LT50350381994343XXX02 1994 12 9 10 5 52 
LT05_L2SP_035038_19950110_20200912_02_T1 LT50350381995010XXX01 1995 1 10 10 4 47 
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LT05_L2SP_035038_19950315_20200912_02_T1 LT50350381995074AAA01 1995 3 15 10 2 15 
LT05_L2SP_035038_19950331_20200912_02_T1 LT50350381995090XXX01 1995 3 31 10 1 36 
LT05_L2SP_035038_19950502_20200912_02_T1 LT50350381995122XXX01 1995 5 2 10 0 13 
LT05_L2SP_035038_19950518_20200912_02_T1 LT50350381995138XXX02 1995 5 18 9 59 30 
LT05_L2SP_035038_19950603_20200913_02_T1 LT50350381995154XXX01 1995 6 3 9 58 45 
LT05_L2SP_035038_19950619_20200913_02_T1 LT50350381995170XXX03 1995 6 19 9 58 2 
LT05_L2SP_035038_19950705_20200912_02_T1 LT50350381995186XXX02 1995 7 5 9 57 19 
LT05_L2SP_035038_19950721_20200912_02_T1 LT50350381995202XXX02 1995 7 21 9 56 35 
LT05_L2SP_035038_19950806_20200912_02_T1 LT50350381995218AAA02 1995 8 6 9 55 51 
LT05_L2SP_035038_19950822_20200912_02_T1 LT50350381995234XXX02 1995 8 22 9 55 7 
LT05_L2SP_035038_19950923_20200912_02_T1 LT50350381995266XXX02 1995 9 23 9 53 34 
LT05_L2SP_035038_19951009_20200912_02_T1 LT50350381995282XXX03 1995 10 9 9 52 44 
LT05_L2SP_035038_19951025_20200912_02_T1 LT50350381995298AAA01 1995 10 25 9 51 50 
LT05_L2SP_035038_19951110_20200912_02_T1 LT50350381995314XXX00 1995 11 10 9 51 30 
LT05_L2SP_035038_19951212_20200911_02_T1 LT50350381995346XXX01 1995 12 12 9 52 54 
LT05_L2SP_035038_19960113_20200911_02_T1 LT50350381996013XXX01 1996 1 13 9 55 13 
LT05_L2SP_035038_19960129_20200912_02_T1 LT50350381996029AAA01 1996 1 29 9 56 20 
LT05_L2SP_035038_19960214_20200912_02_T1 LT50350381996045XXX01 1996 2 14 9 57 26 
LT05_L2SP_035038_19960317_20200911_02_T1 LT50350381996077XXX01 1996 3 17 9 59 34 
LT05_L2SP_035038_19960418_20200911_02_T1 LT50350381996109AAA02 1996 4 18 10 1 34 
LT05_L2SP_035038_19960504_20200911_02_T1 LT50350381996125AAA01 1996 5 4 10 2 31 
LT05_L2SP_035038_19960520_20200911_02_T1 LT50350381996141XXX02 1996 5 20 10 3 26 
LT05_L2SP_035038_19960605_20200911_02_T1 LT50350381996157XXX02 1996 6 5 10 4 20 
LT05_L2SP_035038_19960707_20200911_02_T1 LT50350381996189XXX03 1996 7 7 10 6 2 
LT05_L2SP_035038_19960723_20200911_02_T1 LT50350381996205AAA02 1996 7 23 10 6 53 
LT05_L2SP_035038_19961011_20200911_02_T1 LT50350381996285XXX02 1996 10 11 10 11 10 
LT05_L2SP_035038_19961112_20200911_02_T1 LT50350381996317XXX02 1996 11 12 10 12 43 
LT05_L2SP_035038_19961214_20200910_02_T1 LT50350381996349XXX02 1996 12 14 10 14 14 
LT05_L2SP_035038_19961230_20200910_02_T1 LT50350381996365AAA02 1996 12 30 10 15 0 
LT05_L2SP_035038_19970115_20200910_02_T1 LT50350381997015XXX02 1997 1 15 10 15 45 
LT05_L2SP_035038_19970131_20200910_02_T1 LT50350381997031XXX01 1997 1 31 10 16 28 
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LT05_L2SP_035038_19970216_20200910_02_T1 LT50350381997047XXX02 1997 2 16 10 17 9 
LT05_L2SP_035038_19970320_20200910_02_T1 LT50350381997079AAA02 1997 3 20 10 18 26 
LT05_L2SP_035038_19970421_20200910_02_T1 LT50350381997111XXX02 1997 4 21 10 19 35 
LT05_L2SP_035038_19970507_20200910_02_T1 LT50350381997127XXX02 1997 5 7 10 20 8 
LT05_L2SP_035038_19970523_20200910_02_T1 LT50350381997143XXX02 1997 5 23 10 20 42 
LT05_L2SP_035038_19970624_20200910_02_T1 LT50350381997175AAA02 1997 6 24 10 21 49 
LT05_L2SP_035038_19970827_20200909_02_T1 LT50350381997239AAA02 1997 8 27 10 23 55 
LT05_L2SP_035038_19970912_20200909_02_T1 LT50350381997255XXX02 1997 9 12 10 24 22 
LT05_L2SP_035038_19970928_20200909_02_T1 LT50350381997271AAA02 1997 9 28 10 24 50 
LT05_L2SP_035038_19971014_20200910_02_T1 LT50350381997287XXX02 1997 10 14 10 25 16 
LT05_L2SP_035038_19971217_20200909_02_T1 LT50350381997351AAA01 1997 12 17 10 26 52 
LT05_L2SP_035038_19980102_20200909_02_T1 LT50350381998002AAA02 1998 1 2 10 27 15 
LT05_L2SP_035038_19980118_20200909_02_T1 LT50350381998018AAA02 1998 1 18 10 27 35 
LT05_L2SP_035038_19980203_20200909_02_T1 LT50350381998034AAA01 1998 2 3 10 27 57 
LT05_L2SP_035038_19980219_20200909_02_T1 LT50350381998050AAA02 1998 2 19 10 28 16 
LT05_L2SP_035038_19980323_20200909_02_T1 LT50350381998082XXX01 1998 3 23 10 28 45 
LT05_L2SP_035038_19980408_20200909_02_T1 LT50350381998098XXX01 1998 4 8 10 28 57 
LT05_L2SP_035038_19980424_20200909_02_T1 LT50350381998114XXX02 1998 4 24 10 29 9 
LT05_L2SP_035038_19980510_20200909_02_T1 LT50350381998130AAA02 1998 5 10 10 29 24 
LT05_L2SP_035038_19980526_20200909_02_T1 LT50350381998146XXX02 1998 5 26 10 29 40 
LT05_L2SP_035038_19980627_20200909_02_T1 LT50350381998178XXX02 1998 6 27 10 30 4 
LT05_L2SP_035038_19980729_20200909_02_T1 LT50350381998210XXX02 1998 7 29 10 30 23 
LT05_L2SP_035038_19980814_20200909_02_T1 LT50350381998226XXX02 1998 8 14 10 30 30 
LT05_L2SP_035038_19981102_20200908_02_T1 LT50350381998306XXX01 1998 11 2 10 30 56 
LT05_L2SP_035038_19981118_20200908_02_T1 LT50350381998322XXX01 1998 11 18 10 31 4 
LT05_L2SP_035038_19981204_20200908_02_T1 LT50350381998338XXX02 1998 12 4 10 30 59 
LT05_L2SP_035038_19981220_20200908_02_T1 LT50350381998354AAA02 1998 12 20 10 31 4 
LT05_L2SP_035038_19990105_20200908_02_T1 LT50350381999005XXX01 1999 1 5 10 31 6 
LT05_L2SP_035038_19990206_20200908_02_T1 LT50350381999037XXX01 1999 2 6 10 31 12 
LT05_L2SP_035038_19990427_20200908_02_T1 LT50350381999117AAA02 1999 4 27 10 30 45 
LT05_L2SP_035038_19990529_20200908_02_T1 LT50350381999149AAA01 1999 5 29 10 30 11 
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LT05_L2SP_035038_19990630_20200908_02_T1 LT50350381999181AAA02 1999 6 30 10 29 50 
LT05_L2SP_035038_19990817_20200907_02_T1 LT50350381999229XXX01 1999 8 17 10 29 36 
LT05_L2SP_035038_19990918_20200907_02_T1 LT50350381999261XXX01 1999 9 18 10 28 41 
LT05_L2SP_035038_19991004_20200907_02_T1 LT50350381999277AAA02 1999 10 4 10 28 38 
LT05_L2SP_035038_19991105_20200907_02_T1 LT50350381999309XXX02 1999 11 5 10 28 5 
LT05_L2SP_035038_19991121_20200907_02_T1 LT50350381999325XXX03 1999 11 21 10 27 28 
LT05_L2SP_035038_19991223_20200907_02_T1 LT50350381999357XXX02 1999 12 23 10 27 7 
LT05_L2SP_035038_20000108_20200907_02_T1 LT50350382000008XXX02 2000 1 8 10 27 4 
LT05_L2SP_035038_20000328_20200907_02_T1 LT50350382000088XXX02 2000 3 28 10 26 23 
LT05_L2SP_035038_20000515_20200907_02_T1 LT50350382000136XXX00 2000 5 15 10 27 49 
LT05_L2SP_035038_20000531_20200907_02_T1 LT50350382000152XXX02 2000 5 31 10 28 5 
LT05_L2SP_035038_20000616_20200907_02_T1 LT50350382000168XXX02 2000 6 16 10 28 26 
LT05_L2SP_035038_20000718_20200906_02_T1 LT50350382000200XXX02 2000 7 18 10 29 6 
LT05_L2SP_035038_20000803_20200906_02_T1 LT50350382000216XXX02 2000 8 3 10 29 18 
LT05_L2SP_035038_20000819_20200907_02_T1 LT50350382000232XXX02 2000 8 19 10 29 45 
LT05_L2SP_035038_20000904_20200906_02_T1 LT50350382000248XXX02 2000 9 4 10 30 8 
LT05_L2SP_035038_20001123_20200906_02_T1 LT50350382000328XXX02 2000 11 23 10 31 12 
LT05_L2SP_035038_20001225_20200906_02_T1 LT50350382000360XXX03 2000 12 25 10 31 43 
LT05_L2SP_035038_20010126_20200906_02_T1 LT50350382001026XXX02 2001 1 26 10 31 57 
LT05_L2SP_035038_20010211_20200906_02_T1 LT50350382001042XXX02 2001 2 11 10 32 3 
LT05_L2SP_035038_20010315_20200906_02_T1 LT50350382001074XXX02 2001 3 15 10 32 10 
LT05_L2SP_035038_20010331_20200906_02_T1 LT50350382001090AAA02 2001 3 31 10 32 9 
LT05_L2SP_035038_20010416_20200906_02_T1 LT50350382001106XXX02 2001 4 16 10 32 1 
LT05_L2SP_035038_20010502_20200906_02_T1 LT50350382001122XXX02 2001 5 2 10 32 14 
LT05_L2SP_035038_20010806_20200906_02_T1 LT50350382001218LGS01 2001 8 6 10 32 22 
LT05_L2SP_035038_20010822_20200905_02_T1 LT50350382001234LGS01 2001 8 22 10 32 18 
LT05_L2SP_035038_20010907_20200906_02_T1 LT50350382001250LGS01 2001 9 7 10 32 12 
LT05_L2SP_035038_20010923_20200905_02_T1 LT50350382001266LGS01 2001 9 23 10 32 5 
LT05_L2SP_035038_20011025_20200905_02_T1 LT50350382001298LGS01 2001 10 25 10 31 50 
LT05_L2SP_035038_20011228_20200905_02_T1 LT50350382001362LGS01 2001 12 28 10 31 18 
LT05_L2SP_035038_20020113_20200905_02_T1 LT50350382002013EDC01 2002 1 13 10 31 6 
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LT05_L2SP_035038_20020214_20200905_02_T1 LT50350382002045LGS01 2002 2 14 10 30 36 
LT05_L2SP_035038_20020302_20200905_02_T1 LT50350382002061LGS01 2002 3 2 10 30 17 
LT05_L2SP_035038_20020521_20200905_02_T1 LT50350382002141LGS01 2002 5 21 10 28 49 
LT05_L2SP_035038_20020606_20200905_02_T1 LT50350382002157LGS01 2002 6 6 10 28 32 
LT05_L2SP_035038_20020622_20200905_02_T1 LT50350382002173LGS03 2002 6 22 10 28 5 
LT05_L2SP_035038_20020724_20200905_02_T1 LT50350382002205LGS01 2002 7 24 10 27 23 
LT05_L2SP_035038_20020825_20200905_02_T1 LT50350382002237LGS01 2002 8 25 10 26 22 
LT05_L2SP_035038_20020926_20200905_02_T1 LT50350382002269LGS01 2002 9 26 10 25 37 
LT05_L2SP_035038_20021113_20200905_02_T1 LT50350382002317EDC01 2002 11 13 10 24 0 
LT05_L2SP_035038_20021231_20200905_02_T1 LT50350382002365LGS01 2002 12 31 10 24 6 
LT05_L2SP_035038_20030116_20200905_02_T1 LT50350382003016LGS01 2003 1 16 10 24 27 
LT05_L2SP_035038_20030201_20200905_02_T1 LT50350382003032LGS01 2003 2 1 10 24 48 
LT05_L2SP_035038_20030217_20200904_02_T1 LT50350382003048LGS01 2003 2 17 10 25 8 
LT05_L2SP_035038_20030406_20200904_02_T1 LT50350382003096LGS01 2003 4 6 10 26 24 
LT05_L2SP_035038_20030422_20200905_02_T1 LT50350382003112LGS01 2003 4 22 10 26 48 
LT05_L2SP_035038_20030508_20200905_02_T1 LT50350382003128LGS01 2003 5 8 10 27 8 
LT05_L2SP_035038_20030625_20200905_02_T1 LT50350382003176LGS01 2003 6 25 10 28 5 
LT05_L2SP_035038_20030711_20200905_02_T1 LT50350382003192PAC02 2003 7 11 10 28 23 
LT05_L2SP_035038_20030727_20200904_02_T1 LT50350382003208PAC02 2003 7 27 10 28 41 
LT05_L2SP_035038_20030913_20200904_02_T1 LT50350382003256PAC02 2003 9 13 10 29 32 
LT05_L2SP_035038_20030929_20200904_02_T1 LT50350382003272PAC02 2003 9 29 10 29 43 
LT05_L2SP_035038_20031015_20200904_02_T1 LT50350382003288PAC02 2003 10 15 10 29 56 
LT05_L2SP_035038_20031116_20200904_02_T1 LT50350382003320LGS01 2003 11 16 10 30 21 
LT05_L2SP_035038_20031218_20200904_02_T1 LT50350382003352PAC02 2003 12 18 10 30 40 
LT05_L2SP_035038_20040103_20200904_02_T1 LT50350382004003LGS01 2004 1 3 10 30 48 
LT05_L2SP_035038_20040119_20200904_02_T1 LT50350382004019LGS01 2004 1 19 10 30 50 
LT05_L2SP_035038_20040220_20200903_02_T1 LT50350382004051LGS01 2004 2 20 10 30 59 
LT05_L2SP_035038_20040307_20200903_02_T1 LT50350382004067PAC02 2004 3 7 10 31 4 
LT05_L2SP_035038_20040424_20200903_02_T1 LT50350382004115PAC02 2004 4 24 10 32 0 
LT05_L2SP_035038_20040510_20200903_02_T1 LT50350382004131PAC04 2004 5 10 10 32 28 
LT05_L2SP_035038_20040611_20200903_02_T1 LT50350382004163PAC02 2004 6 11 10 33 22 
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LT05_L2SP_035038_20040627_20200903_02_T1 LT50350382004179EDC00 2004 6 27 10 33 51 
LT05_L2SP_035038_20040729_20200903_02_T1 LT50350382004211EDC00 2004 7 29 10 34 41 
LT05_L2SP_035038_20040830_20200903_02_T1 LT50350382004243EDC00 2004 8 30 10 35 28 
LT05_L2SP_035038_20040915_20200903_02_T1 LT50350382004259EDC00 2004 9 15 10 35 53 
LT05_L2SP_035038_20041102_20200903_02_T1 LT50350382004307EDC00 2004 11 2 10 36 55 
LT05_L2SP_035038_20041220_20200902_02_T1 LT50350382004355EDC00 2004 12 20 10 37 50 
LT05_L2SP_035038_20050310_20200902_02_T1 LT50350382005069EDC00 2005 3 10 10 38 57 
LT05_L2SP_035038_20050411_20200902_02_T1 LT50350382005101EDC00 2005 4 11 10 39 9 
LT05_L2SP_035038_20050427_20200902_02_T1 LT50350382005117EDC00 2005 4 27 10 39 13 
LT05_L2SP_035038_20050513_20200902_02_T1 LT50350382005133EDC00 2005 5 13 10 39 19 
LT05_L2SP_035038_20050614_20200902_02_T1 LT50350382005165EDC00 2005 6 14 10 39 35 
LT05_L2SP_035038_20050630_20200902_02_T1 LT50350382005181EDC00 2005 6 30 10 39 39 
LT05_L2SP_035038_20050716_20200902_02_T1 LT50350382005197EDC00 2005 7 16 10 39 49 
LT05_L2SP_035038_20050801_20200902_02_T1 LT50350382005213EDC00 2005 8 1 10 39 59 
LT05_L2SP_035038_20050918_20200901_02_T1 LT50350382005261PAC01 2005 9 18 10 40 10 
LT05_L2SP_035038_20051020_20200901_02_T1 LT50350382005293PAC01 2005 10 20 10 40 5 
LT05_L2SP_035038_20051105_20200901_02_T1 LT50350382005309PAC01 2005 11 5 10 40 12 
LT05_L2SP_035038_20051121_20201008_02_T1 LT50350382005325PAC01 2005 11 21 10 40 36 
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Table A2. Summary of all models tested using backwards stepwise regression for each regression type (P = Poisson, NB = negative binomial) and 
time interval. For all models in the table, the response variable was individual fitness as measured by number of offspring produced. The final 
model selected for each time interval is bolded. In all cases, negative binomial was a better fit than Poisson with the same predictor variables, 
according to a likelihood ratio test for each final model.   

Time interval 
Regression 

type Model AIC 
Residual 

df 
Dispersion 

value 
Log-

likelihood 
Annual P I + greenness + brightness + wetness + surface temperature 2980.5 786 2.40 -1485.26 
Annual P I + brightness + wetness + surface temperature 2978.5 787 2.39 -1485.26 
Annual P I + brightness + surface temperature 2976.5 788 2.39 -1485.26 
Annual NB I + greenness + brightness + wetness + surface temperature 2634.5 786 0.96 -1311.24 
Annual NB I + greenness + brightness + surface temperature 2632.5 787 0.96 -1311.25 
Annual NB I + brightness + surface temperature 2630.5 788 0.96 -1311.27 
Summer rainy P I + greenness + brightness + wetness + surface temperature 2968.5 786 2.40 -1479.28 
Summer rainy P I + brightness + wetness + surface temperature 2966.7 787 2.40 -1479.35 
Summer rainy NB I + greenness + brightness + wetness + surface temperature 2630.0 786 0.98 -1309.00 
Summer rainy NB I + brightness + wetness + surface temperature 2628.0 787 0.98 -1309.02 
Summer rainy NB I + brightness + surface temperature 2627.6 788 0.98 -1309.80 
Summer rainy NB I + brightness 2626.7 789 0.97 -1310.36 
Winter rainy P I + greenness + brightness + wetness + surface temperature 2840.1 748 2.46 -1415.06 
Winter rainy P I + brightness + wetness + surface temperature 2838.2 749 2.46 -1415.12 
Winter rainy P I + wetness + surface temperature 2839.2 750 2.46 -1416.61 
Winter rainy NB I + greenness + brightness + wetness + surface temperature 2488.3 748 0.96 -1238.14 
Winter rainy NB I + brightness + wetness + surface temperature 2486.4 749 0.96 -1238.22 
Winter rainy NB I + wetness + surface temperature 2486.2 750 0.95 -1239.09 
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Table A3. Summary of all models tested using backwards stepwise regression for each regression type (P = Poisson, NB = negative binomial) and 
time interval. For all models in the table, the response variable was individual fitness as measured by number of offspring produced that survived 
to age 1. The final model selected for each time interval is bolded. In all cases, negative binomial was a better fit than Poisson with the same 
predictor variables, according to a likelihood ratio test for each final model.  

Time interval 
Regression 

type Model AIC 
Residual 

df 
Dispersion 

value 
Log-

likelihood 
Annual P I + greenness + brightness + wetness + surface temperature 1046.4 410 1.23 -518.20 
Annual P I + greenness + wetness + surface temperature 1044.6 411 1.23 -518.29 
Annual P I + wetness + surface temperature 1043.6 412 1.24 -518.78 
Annual P I + surface temperature 1043.1 413 1.25 -519.53 
Annual NB I + greenness + brightness + wetness + surface temperature 1042.5 410 1.06 -515.24 
Annual NB I + greenness + wetness + surface temperature 1040.6 411 1.06 -515.31 
Annual NB I + wetness + surface temperature 1039.5 412 1.06 -515.76 
Annual NB I + surface temperature 1038.8 413 1.07 -516.39 
Summer rainy P I + greenness + brightness + wetness + surface temperature 997.4 384 1.20 -493.71 
Summer rainy P I + greenness + brightness + wetness 996.1 385 1.20 -494.03 
Summer rainy P I + brightness + wetness 997.5 386 1.22 -495.74 
Summer rainy P I + brightness 997.2 387 1.22 -496.60 
Summer rainy NB I + greenness + brightness + wetness + surface temperature 989.5 384 0.98 -488.74 
Summer rainy NB I + greenness + brightness + wetness 988.0 385 0.98 -488.98 
Summer rainy NB I + brightness + wetness 988.7 386 0.98 -490.34 
Summer rainy NB I + brightness 988.0 387 0.98 -491.00 
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Table A4. Summary of all negative binomial models tested using backwards stepwise regression for each time interval with female ID included as 
a random effect. For all models in the table, the response variable was individual fitness as measured by number of offspring produced. The final 
model selected for each time interval is bolded. The corresponding model without the random variable included is provided in the row following 
each final model. For all time intervals, the final model retains the same fixed effects as in the final corresponding model without female ID 
included as a random variable. 

  

Time interval Model AIC 
Residual 

df 
Dispersion 

value 
Log-

likelihood 
Annual I + greenness + brightness + wetness + surface temperature + (1 | female ID) 2460.0 737 0.946 -1223.0 
Annual I + greenness + brightness + surface temperature + (1 | female ID) 2458.4 738 0.942 -1223.2 
Annual I + brightness + surface temperature + (1 | female ID) 2456.6 739 0.940 -1223.3 
Annual I + brightness + surface temperature 2455.5 740 0.871 -1223.7 
Summer rainy I + greenness + brightness + wetness + surface temperature + (1 | female ID) 2455.4 737 1.000 -1220.7 
Summer rainy I + brightness + wetness + surface temperature + (1 | female ID) 2453.4 738 1.000 -1220.7 
Summer rainy I + brightness + surface temperature + (1 | female ID) 2453.9 739 0.978 -1222.0 
Summer rainy I + brightness + (1 | female ID) 2453.5 740 0.953 -1222.7 
Summer rainy I + brightness 2452.6 741 0.872 -1223.3 
Winter rainy I + greenness + brightness + wetness + surface temperature + (1 | female ID) 2456.8 737 0.971 -1221.4 
Winter rainy I + brightness + wetness + surface temperature + (1 | female ID) 2454.9 738 0.972 -1221.4 
Winter rainy I + wetness + surface temperature + (1 | female ID) 2454.6 739 0.960 -1222.3 
Winter rainy I + wetness + surface temperature 2453.6 740 0.875 -1222.8 
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Figure A1. Temporal distribution of retained Landsat 5 scenes (n = 167) across rainy seasons 
and meteorological seasons used for equalizing means within each year. Note that the y-axis 
indicates offspring year, or the year in which a cohort of offspring was produced. Therefore, the 
environmental data used to predict the number of offspring produced in year t covers July 1 in 
year t - 1 through June 30 in year t (i.e., the first date included in this plot is July 1, 1992 and the 
last date included is June 30, 2005).  
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Figure A2. Correlations among remote sensing variables, with Pearson’s r presented above the diagonals. A) Points represent 10,000 
cells sampled randomly across all time points (i.e., scenes) and all cells active in at least one year (n = 408 cells). B) Points represent 
mean value of active cells within each time point (n = 167 scenes). Whereas strong correlation was noted between Tasseled Cap 
brightness and wetness, the relationships between greenness and these two indices conform to the classic “Tasseled Cap” shape. 
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Figure A3. Significant positive relationships between remote sensing measures and individual 
fitness (A-C, number of offspring; D, number of offspring surviving to age 1). For panels A and 
C, the effects of each predictor variable were calculated and are presented by setting the non-
focal predictor variable in each negative binomial model equal to its mean value. For all panels, 
shaded polygons represent 95% confidence intervals. Statistical results for models are presented 
in Tables 1, A2, and A3.     
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Figure A4. Variables identified as significant predictors of population fitness, specifically the 
average number of offspring surviving to age 1 per female: mean summer rainy season (A) 
brightness and (B) wetness. Shaded polygons indicate 95% confidence intervals calculated from 
the unpermuted linear model. P-values were calculated from 1,000 permutations. Model results 
for brightness and wetness are presented in Tables 2 and 3, respectively. 
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Figure A5. Significant positive relationships between number of active mounds and (A) census 
population size and (B) number of adult females. Number of active mounds can be reliably 
ascertained via visual survey of the study site, whereas census population size and number of 
adult females are both measured via trapping and marking individuals.  
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Figure A6. No statistically significant relationships were found between (A-B) number of adult 
females or (C-D) number of active mounds and average number of offspring per female (A,C) or 
average number of offspring surviving to age 1 per female (B,D). These patterns suggest a lack 
of density-dependent influences on individual fitness for the years included in our study. 
 

 

 

20 30 40 50 60 70 80

1.
0

1.
5

2.
0

2.
5

3.
0

Number of adult females

N
um

be
ro

fo
ffs

pr
in

g
pe

rf
em

al
e

p = 0.428
Adj. R² = −0.03

20 30 40 50 60 70 80
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2
1.

4
Number of adult females

N
um

be
ro

fo
ffs

pr
in

g
su

rv
iv

in
g

pe
rf

em
al

e

p = 0.854
Adj. R² = −0.096

60 80 100 120 140 160

1.
0

1.
5

2.
0

2.
5

3.
0

Number of active mounds

N
um

be
ro

fo
ffs

pr
in

g
pe

rf
em

al
e

p = 0.928
Adj. R² = −0.099

60 80 100 120 140 160

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Number of active mounds

N
um

be
ro

fo
ffs

pr
in

g
su

rv
iv

in
g

pe
rf

em
al

e

p = 0.464
Adj. R² = −0.04

A) B) 

C) D) 



31.0°N

31.2°N

31.4°N

31.6°N

31.8°N

32.0°N

32.2°N

110.0°W

109.5°W 109.0°W 108.5°W
lon

la
t

Arizona

Mexico
United States

New Mexico

Sonora ChihuahuaSi
er
ra
Sa
n
Lu

is

C
hi
ric
ah
ua
M
ou
nt
ai
ns

31.605°N

31.610°N

31.615°N

109.270°W 109.265°W 109.260°W

500 m

109.255°W

31.605°N

31.610°N

31.615°N

109.270°W

Figure 1.



Offspring produced
in year t

Number of active mounds
in year t

January
Year t - 1

July July JulyJanuary
Year t

January
Year t + 1

Offspring surviving to
year t + 1

Rainy season
means

Annual means

Figure 2.

Remote sensing data

PRISM data

Brightness

Wetness
Surface temperature

Greenness

Temperature
Precipitation



Summer rainy

Annual
0

2
4

6

G
re

en
ne

ss

July 1 December 1 April 1

−2
−1

0
1

2

W
et

ne
ss

July 1 December 1 April 1

−2
−1

0
1

Br
ig

ht
ne

ss

July 1 December 1 April 1

10
20

30
40

50
60

Su
rfa

ce
te

m
pe

ra
tu

re
(°

C
)

July 1 December 1 April 1
Day of year

A)

Figure 3.

B)

C)

D)

Winter rainyTime interval
means Seasons

Summer rainy
Winter rainy



Annual means

Figure 4.

Rainy season
means

Offspring produced
in year t

Number of active mounds
in year t

January
Year t - 1

Individual fitness

Population fitness

Population size

Brightness

Wetness

Surface temperature

July July JulyJanuary
Year t

January
Year t + 1

Offspring surviving to
year t + 1



100

150

3830 32 34 36
Mean annual surface
temperature (°C)

N
um

be
ro

fa
ct
ive

m
ou

nd
s

0

2

4

6

8

10

4032 36
Mean annual surface
temperature (°C)

N
um

be
ro

fo
ffs
pr
in
g

0

2

4

6

8

10

2416 20
Mean winter rainy season surface

temperature (°C)

N
um

be
ro

fo
ffs
pr
in
g

0

2

4

6

8

32 36 40
Mean annual surface
temperature (°C)

N
um

be
ro

fs
ur
vi
vi
ng

of
fs
pr
in
g

Individual female fitness ~
Mean surface temperature of home cell and 8

adjacent cells

Figure 5.

A) B) C) D)

Number of active mounds ~
Mean surface temperature of all

active and adjacent cells


