
P
os
te
d
on

15
A
p
r
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
15
53
18
.8
22
10
61
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

The H[?] optimal Control Problem of CSVIU Systems

João B. R. do Val1 and Daniel Campos1

1Universidade Estadual de Campinas

April 15, 2023

Abstract

The paper devises a H [?] -norm theory for the CSVIU (control and state variations increase uncertainty) class of stochastic

systems. This system model appeals to stochastic control problems to express the state evolution of a possibly nonlinear

dynamic system restraint to poor modeling. Contrary to other H [?] stochastic formulations that mimic deterministic models

dealing with finite energy disturbances, the focus is on the H [?] control with infinity energy disturbance signals. Thus, the

approach portrays the persistent perturbations due to the environment more naturally. In this regard, it requires a refined

connection between a suitable notion of stability and the systems’ energy or power finiteness. It delves into the control solution

employing the relations between H [?] optimization and differential games, connecting the worst-case stability analysis of CSVIU

systems with a perturbed Lyapunov type of equation. The norm characterization relies on the optimal cost induced by the

Min-Max control strategy. The rise of a pure saddle point is linked to the solvability of a modified Riccati-type equation in a

form known as a generalized game-type Riccati equation, which yields the solution of the CSVIU dynamic game. The emerging

optimal disturbance compensator produces inaction regions in the sense that, for sufficiently minor deviations from the model,

the optimal action is constant or null in the face of the uncertainty involved. A numerical example illustrates the synthesis.
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Abstract

The paper devises a 𝐻∞-norm theory for the CSVIU (control and state variations
increase uncertainty) class of stochastic systems. This system model appeals to stochas-
tic control problems to express the state evolution of a possibly nonlinear dynamic
system restraint to poor modeling. Contrary to other 𝐻∞ stochastic formulations that
mimic deterministic models dealing with finite energy disturbances, the focus is on
the 𝐻∞ control with infinity energy disturbance signals. Thus, the approach portrays
the persistent perturbations due to the environment more naturally. In this regard, it
requires a refined connection between a suitable notion of stability and the systems’
energy or power finiteness. It delves into the control solution employing the relations
between 𝐻∞ optimization and differential games, connecting the worst-case stability
analysis of CSVIU systems with a perturbed Lyapunov type of equation. The norm
characterization relies on the optimal cost induced by the min-max control strategy.
The rise of a pure saddle point is linked to the solvability of a modified Riccati-type
equation in a form known as a generalized game-type Riccati equation, which yields
the solution of the CSVIU dynamic game. The emerging optimal disturbance com-
pensator produces inaction regions in the sense that, for sufficiently minor deviations
from the model, the optimal action is constant or null in the face of the uncertainty
involved. A numerical example illustrates the synthesis.

KEYWORDS:
𝐻∞-norm control, stochastic stability, stochastic detectability, uncertainties stochastic models, stochastic
dynamic games, min-max optimal control

1 INTRODUCTION

To design a control system, one must count on a mathematical model of the process in view; thus, the model’s trustworthiness
concerning the plant is fundamental. Nevertheless, as a rule of thumb, uncertainties and inaccuracies are always present, and
developing a control agent that can act satisfactorily, even while facing adverse or unknown dynamics, can be difficult. Stochastic
systems offer well-known powerful tools to represent uncertainties and disturbances of the current system.

The principle of CSVIU, Control and State Variations Increase Uncertainty1,2,3, leads to a class of models that endure a not
sound reliable instance using stochastic tools to deal with it. The reason is either that there are fewer data to validate a model fully
or it is too complex. A control model could only be a rough caricature purposefully taken from the existing system. The CSVIU
class of stochastic models applies to control systems and filtering problems4 to convey the state evolution of a dynamic system
with just a rough model of the existing plant. This paradigm looms many significant engineering and physics problems as well as
other essential fields such as macroeconomic and finance, health (tumor growth4), and biology (maritime fishing5) problems.
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Stochastic control theory aims at the stability analysis, optimal control, and performance of a related system problem subject
to randomness. The special focus here is developing a 𝐻∞-type norm theory for CSVIU systems. Let us start by examining the
time-invariant system below, defined in a filtered probability space (Ω, , 𝑃 , {𝑘}𝑘≥0),

Θ̂ctr ∶=

⎧

⎪

⎨

⎪

⎩

𝑥(𝑘 + 1) =𝐴𝑥(𝑘) + (𝜎𝑥 + 𝜎𝑥 diag(|𝑥(𝑘)|))𝜀𝑥(𝑘)
+ 𝐵𝑢(𝑘) + (𝜎𝑢 + 𝜎𝑢 diag(|𝑢(𝑘)|))𝜀𝑢(𝑘) + 𝜎𝜔(𝑘),

𝑧(𝑘) = 𝐶𝑥(𝑘) +𝐷𝑢(𝑘) + 𝐹𝜔(𝑘), 𝑥(0) = 𝑥,
(1)

where 𝑥 = {𝑥(𝑘)}𝑘≥0, 𝑥𝑘 ∈ R𝑛 and 𝑢 = {𝑢(𝑘)}𝑘≥0, 𝑢𝑘 ∈ R𝑚 are the state and control processes; 𝑧 = {𝑧(𝑘)}𝑘≥0 is the output
process. Matrices 𝐴, 𝜎𝑥, 𝜎𝑥 ∈ R𝑛×𝑛, 𝐵, 𝜎𝑢, 𝜎𝑢 ∈ R𝑛×𝑚, 𝜎 ∈ R𝑛×𝑟, 𝐶 ∈ R𝑝×𝑛 and 𝐹 ∈ R𝑝×𝑟 are the CSVIU model system and
output matrices. Sequence 𝜔 = {𝜔(𝑘)}𝑘≥0, 𝜔(𝑘) ∈ R𝑟 is named disturbance trajectory. It is a bounded deterministic function
representing an undesirable persistent disturbance input. The 𝑛 + 𝑚-dimensional process formed by {𝜀𝑥(𝑘), 𝜀𝑢(𝑘)}𝑘≥0 is an
i.i.d. noise sequence that accounts for the imperfections of the system due to poor modeling. It is a zero mean process with
the joint covariance in the identity matrix form. The filtration {𝑘}𝑘≥0 contains the sub-𝜎-algebras 𝑘 ⊂  generated by the
random variables 𝜀𝑥(0), 𝜀𝑢(0),… , 𝜀𝑥(𝑘), 𝜀𝑢(𝑘). For 𝑥 ∈ R𝑛, diag(|𝑥|) is the 𝑛-dimensional diagonal matrix formed by taking
|𝑥| = [ |𝑥1| |𝑥2| ⋯ |𝑥𝑛| ]⊺ as its diagonal, where | ⋅ | is the absolute value.

The control process 𝑢 belongs to the set of {𝑘}-adapted 𝑚-dimensional processes in feedback form,  ∶= {𝑢 ∶ 𝑢(𝑘) =
𝑢(𝑘, 𝑥(𝑘)) ∈ R𝑚, 0 ≤ 𝑘 ≤ 𝜅} with 𝜅 finite or infinite.  forms the admissible class of controls, and 𝑘 → (𝑥𝑘, 𝑢𝑘) or 𝑘 →
(𝑧𝑘, 𝑥𝑘, 𝑢𝑘) refer to an admissible pair or triple of system Θ̂ctr .

The CSVIU model Θ̂ctr can deal with poorly known stochastic systems. To illustrate, for 𝑓 ∶ R𝑛 → R𝑛 and 𝜎 as above, say
that the actual system obeys the difference equation,

𝜁 (𝑘 + 1) = 𝑓 (𝜁 (𝑘)) + 𝜎𝜔(𝑘), (2)

for some initial condition, near a point 𝜁 . Assuming that the derivatives of 𝑓 exist near such a point, let matrix 𝐴 represent the
Jacobian of 𝑓 evaluate at 𝜁 . In this regard, set 𝑥(𝑘) ∶= 𝜁 (𝑘) − 𝜁 to write from (2) that

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) +
(

𝑓 (𝜁 ) − 𝜁
)

+
(𝜕𝑓
𝜕𝜁

|

|

|𝜁
− 𝐴

)

𝑥(𝑘) + 𝑜(|𝜁 (𝑘) − 𝜁 |2) + 𝜎𝜔(𝑘) (3)

If 𝜁 is an equilibrium point for the zero noise version of (2), the first difference on the rhs of (3) is null, whereas the second
difference also is provided that 𝑓 is precisely known. When system (2) is not well known, these terms are hardly null since the
assumed equilibrium point, and the dynamic matrix𝐴may be rough representations of the actual values of such a vector and matrix.
In addition, since (3) without the larger order terms turns into a linear approximation for (2), the simple linear representation.

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝜎𝜔(𝑘)

could be a deceiving model and falls short of a convincing portrait of the actual system. In addition to such a natural deficiency,
precision is lost as the state drifts away from the better-known point 𝜁 . The declining trust in the model due to the residuals
pointed out above is accounted into the model Θ̂ctr through the additional noise terms associated with the sequence {𝜀𝑥(𝑘)}𝑘≥0.
They are model motivated and differ from the “natural” or original perturbation {𝜔(𝑘)}𝑘≥0.

The term 𝜎𝑥𝜀𝑥(𝑘) accounts for the error due to the linear approximation residue, the offset 𝑓 (𝜁 ) − 𝜁 . On the other hand,
�̄�𝑥 diag(|𝑥𝑡|)𝜀𝑥(𝑘) considers the impact due to the adoption of an inaccurate representation of the dynamic system matrix 𝐴 vis-a-
vis the existing system. It also attempts to account for second and higher-order terms, as each state vector component displaces
from the reference point 𝜁 (or 𝑥 = 0). The deviations depending on the componentwise distances |𝜁𝑖(𝑘) − 𝜁 | = |𝑥𝑖(𝑥)|, 𝑖 =
1,… , 𝑛 appears in system (1) in the term diag(|𝑥|). These terms induce increasing variance in proportion to the square of such
displacements to arouse uncertainty. Mutatis mutandis, the same reasoning applies to the system’s control dependent terms Θ̂ctr .

The 𝐻∞-norm criterion evaluates the robustness of the system’s stability. It measures the system’s capacity to behave well
while facing disturbances. Various current publications have clarified the growing interest in extending the 𝐻∞-norm theory to
stochastic systems and filtering. The representation of uncertainties of poorly known systems through stochastic perturbations is
not uncommon in the control literature. For example, the stochastic multiplicative disturbance theory (SMD)6,7 portrays the
deviation of the linearized model from the system’s nominal model via state and control-dependent noise terms.

Nevertheless, when it comes to the 𝐻∞ problem, previous works assume 𝓁2 finite-energy exogenous distur-
bances8,9,10,11,12,13,14,15, regardless of deterministic or stochastic approaches. They all presuppose a disturbance dependent-noise
or a state-multiplicative disturbance that vanishes when the system reaches equilibrium10,16,13,17,18, or deal with the finite horizon
case19,20. Compared with other literature on system models, a noticeable feature of the CSVIU method is that infinite-energy 𝓁2
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disturbance signals are accounted for in an infinite horizon approach. More naturally, it portrays the persistent perturbations a plant
may face due to the environment. Although this representation of the disturbance appears less artificial, it requires an elaborate
connection between the appropriate notion of stability and the finiteness of systems energy. Stability analysis appears in Section 2.

Energy and Cost measures
The systems’ performance demands a quantitative treatment; still, due to the persistent nature of the disturbance, the usual

notions of norms for signal and systems do not apply to system Θ̂ctr . We introduce some 𝓁2 energy measurements appropriate for
stochastic signals and present the intended induced cost measure.

Consider the 𝑛-dimensional stochastic process 𝑘 → 𝑦(𝑘), 𝑘 ≥ 0 adapted to the previously introduced filtration {𝑘}𝑘≥0. For
some 𝑄 ⪰ 0 and 𝜅 > 0, define the 𝓁2(Ω, , 𝑃 ) mean energy measurement,

𝜅
2,𝑄(𝑦) ∶= 𝐸𝑥

[

𝜅
∑

𝑘=0
‖𝑦(𝑘)‖2𝑄

|

|

|

𝑥(0) = 0
]

, 𝑦(0) = 0, (4a)

where the expectation 𝐸
[

⋅ |𝑥(0)
]

stands for 𝐸
[

⋅ |0
]

, and ‖𝑦‖2𝑄 = ⟨𝑦,𝑄𝑦⟩ is a 𝑄-weighted square norm of 𝑦 for some 𝑄 ≻ 0
(⋅ ≻ 0 indicates positive definiteness). Define also the 𝑄-mean power measure of 𝑦(·), given by

̂2,𝑄(𝑦) = lim sup
𝜅→∞

1
𝜅
𝜅
2,𝑄(𝑦), 𝑦(0) = 0, (4b)

The measurements lim𝜅→∞ 𝜅
2,𝑄(𝑦) and ̂2,𝑄(𝑦) stand as possible stochastic 𝐻2-norms3,6.

An average performance mean measure is appropriate to deal with stochastic systems under persistent disturbance. In this
paper, the disturbance 𝜔 comes as deterministic signal that has finite 𝑄-mean power, namely, ̂2,𝑄(𝜔) < ∞ for each 𝑄 ≻ 0. For
the pertinent 𝐻∞-norm problem, given 𝛾 > 0, a stochastic 𝐻∞-norm problem is induced from quadratic functionals. Set the
finite time horizon 𝐻∞-measure as,

𝙹𝜅∞(𝑦) ∶= 𝜅
2,𝑄(𝑦) − 𝛾2𝜅

2,𝑄(𝜔), 𝛾 =

(

𝜅
2,𝑄(𝑦)

𝜅
2,𝑄(𝜔)

)1∕2

, and 𝛾∗ = sup
0<𝜅

2,𝑄(𝜔)<∞
𝛾 , (5)

for some 𝜅 > 0, in which 𝛾 is the energy gain and 𝛾∗ is the norm of the system. Hence, the norm 𝛾∗ gives the maximum factor by
which the system magnifies the 𝑄-mean power of any input. Define also a corresponding infinite horizon cost,

𝔓∞(𝑦) ∶= lim sup
𝜅→∞

1
𝜅
𝙹𝜅∞(𝑦), 𝑦(0) = 0, (6)

whenever finite. The cost functional in (6) is a Cèsaro’s summation form employed as a stochastic norm in6,3. In particular, if we
set 𝑦 = 𝑧, the measure in (6) accounts for the effect of input 𝜔 on the output 𝑧 with emphasis on the asymptotic behavior of state
and output processes.

The norm 𝛾∗ is also called the “Min-Max attenuation bound”. In truth, this refers to the well-known Dynamic Game Theory,
which introduces the prospect of differential games into the context of optimal controls. In general, it is of interest to obtain
the value 𝛾∗ ≥ 0 under which the upper value of the associated game with cost function 𝔓∞ is bounded above by zero, and the
corresponding control law that achieves such an upper value. This chore motivates this paper, and given some gain 𝛾 ≥ 𝛾∗, we
seek a stabilizing controller and sufficient conditions for it to exist.

As stated in21, the hallmark of the theory of dynamic games resides in three chief features: the multiple agents involved in
the game, the search for an optimal behavior of the agents, and the long-standing consequences of decisions. In addition, the
formulation of 𝐻∞ optimal control problems from a game-theoretical approach allows us to include in this list “the resilience
concerning variability in the environment".

The framing of differential games applies here to the CSVIU model, and the structure of the quadratic functional (5) enables
the evaluation of an optimal control policy or, equivalently, an optimal disturbance compensation control from the solution of a
saddle point problem. A first characterization for the 𝐻∞ norm of CSVIU systems arises from this construct:

Definition 1. The 𝐻∞ norm is the gain 𝛾 > 0 that nullifies the Min-Max optimal cost min𝑢 max𝜔 𝔓∞(𝑧).

It is undeniable that a stability sense is essential in dealing with dynamic systems, and the following definition accommodates
the 𝑄-mean power measure in (4b) to a stability notion that fits stochastic systems subject to persistent disturbance excitations.
Let us consider Θ̂ the uncontrolled version of system Θ̂ctr , namely, for Θ̂, the matrices 𝐵, 𝜎𝑢, �̄�𝑢 and 𝐷 are null. With that, the
notion of stochastic stability and stabilizability reads as follows.
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Definition 2. i) System Θ̂ is stochastic stable if the measurement ̂2,𝑄(𝑥) ≤ 𝑐 < ∞, ∀𝑥(0) = 𝑥0 ∈ R𝑛 and 𝑄 ≻ 0.
ii) System Θ̂ctr is stochastic stabilizable if there exists 𝑢 ∈  that turns Θ̂ctr into a stochastic stable system.

Since the stability notion stands for the worst-case scenario induced by disturbance 𝜔, one can say of Definition 2 that Θ̂ is
stable (or Θ̂ctr is stabilizable) with respect to 𝜔.

Section 2 discusses the relation between the power measurement in (6) and system stability in Definition 2 (i). A class of
perturbed Lyapunov equations connects to the worst-case stability analysis, and the section sets up a link between the limit in (6)
and the notion of stochastic stability.

As mentioned, the paper exploits the relation between 𝐻∞ optimization and differential games to solve the 𝐻∞ state feedback
control problem. With this aim, Section 3 presents the linear-quadratic CSVIU dynamic game and solves the problem of optimal
disturbance attenuation and stabilization for the class of uncertain dynamic models in (1). Exciting advances in the optimal
control global law structure for CSVIU systems appear in3. The paper uses these findings to furnish the global disturbance
compensator solution to the 𝐻∞-optimal control problem from the general optimal saddle point of a CSVIU dynamic game. It
also characterizes the so-called “inaction regions” of the CSVIU 𝐻∞-optimal compensator.

Section 3.2 focus on the class of generalized game-type Riccati equations and their relation with the system’s energy gain
𝛾 . It provides a more handleable definition for the system’s norm relying on the Riccati equation’s solvability and defines the
Suboptimal Problem. The suboptimal norm problem has a practical appeal since it prevents the system from working close to
stability boundaries. The suboptimal setting supplies a solution 𝛾 > 𝛾∗ with 𝛾∗ > 0 being the norm of the system in Definition 1.
Section 4 presents a stochastic algorithm for computing the expected value of a random term present in the optimal control law. It
applies it to a numerical example to illustrate the use of the algorithm and the solution of a suboptimal norm problem. At the end,
Section 5 offers some conclusions.

2 ENERGY MEASUREMENTS AND STABILITY

The section deals with the worst-case system’s analysis and states sufficient conditions for the stochastic system Θ̂ to be stable
with a power gain 𝛾 . Here, one seeks to clarify the intended connection between the measure (6) and the notion of stochastic
stability in Definition 2. It further weakens the stability requirement test by introducing a stochastic detectability notion.

Notation
For a square matrix 𝑌 ∈ R𝑛×𝑛, 𝑌𝑑 ∈ R𝑛 indicates the main diagonal of 𝑌 , and the diagonal matrix Diag(𝑌 ) ∈ R𝑛×𝑛 is

made up by the main diagonal of 𝑌 , 𝑌𝑑 , and zero elsewhere. Let S𝑛 stand for the real vector space of 𝑛-dimensional symmetric
matrices endowed with the inner product ⟨𝑋, 𝑌 ⟩ = tr(𝑋𝑌 ), where tr(⋅) is the trace operator. S𝑛+ denotes the cone of positive
semidefinite matrix therein. For any 𝑌 ∈ S𝑛+, 𝑌 ≻ 0 (𝑌 ⪰ 0) designates 𝑌 as a positive (semi-) definite matrix and, if 𝑌 ,𝑍 ∈ S𝑛+,
𝑍 ⪰ 𝑌 ⇔ 𝑍 − 𝑌 ⪰ 0. Analogously, 𝑌 ≺ 0 (𝑌 ⪯ 0) denotes a negative (semi-) definite matrix. Besides, ‖𝑌 ‖ stands for any
matrix norm, and when 𝑌 is square, 𝑟𝜎(𝑌 ) is the spectral radius, and 𝜆+(𝑌 ) and 𝜆−(𝑌 ) denote its largest and smallest eigenvalues,
respectively.

For a vector 𝑣 ∈ R𝑛, define |𝑣| ∶= [ |𝑣1| |𝑣2| ⋯ |𝑣𝑛| ]⊺ and set diag(𝑣) as the diagonal matrix made up by 𝑣 in the main diagonal
and zero elsewhere. For 𝑤, 𝑣 ∈ R𝑛, ⟨𝑤, 𝑣⟩ denotes the usual inner product, 𝑤 · 𝑣 denotes the Hadamard product, and the square
(semi-)norms ‖𝑣‖2𝑌 stands for ⟨𝑣, 𝑌 𝑣⟩, in which 𝑌 ∈ S𝑛+.

Associated with the data of a CSVIU system and a positive real number 𝛾 , define the operators Υ𝛾 (𝑌 ) ∶ S𝑛+ → S𝑟, Ψ(𝑌 ) ∶
S𝑛+ → R𝑟×𝑛, Γ(𝑌 ) ∶ S𝑛+ → R𝑟×𝑚, 𝑥 ∶ S𝑛+ → S𝑛+, 𝑥 ∶ S𝑛+ → S𝑛 and 𝜑 ∶ S𝑛+ → R, given by:

Υ𝛾 (𝑌 ) = 𝜎⊺𝑌 𝜎 + 𝐹 ⊺𝐹 − 𝛾2𝐼𝑟, (7a)
Ψ(𝑌 ) = 𝜎⊺𝑌 𝐴 + 𝐹 ⊺𝐶, (7b)
Γ(𝑌 ) = 𝜎⊺𝑌 𝐵 + 𝐹 ⊺𝐷, (7c)

𝑥(𝑌 ) = Diag(𝜎⊺
𝑥𝑌 𝜎𝑥), (7d)

𝑥(𝑌 ) = Diag(𝜎⊺
𝑥𝑌 𝜎𝑥 + 𝜎⊺

𝑥𝑌 𝜎𝑥), (7e)
𝜑(𝑌 ) = tr{𝜎⊺

𝑥𝑌 𝜎𝑥}. (7f)
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In addition, when Υ𝛾 (𝑌 ) is invertible, set 𝑀𝛾 (𝑌 ) ∶ S𝑛+ → S𝑛 and 𝛾 ∶ S𝑛+ → S𝑛+ as

𝑀𝛾 (𝑌 ) = −Ψ(𝑌 )⊺Υ𝛾 (𝑌 )−1Ψ(𝑌 ), (7g)
𝛾 (𝑌 ) = 𝐴⊺𝑌 𝐴 +𝑥(𝑌 ) +𝑀𝛾 (𝑌 ). (7h)

Finally, the adjoint of 𝛾 in S𝑛 is the operator written as

⋆
𝛾 (𝑌 ) = 𝐴𝑌𝐴⊺ + Diag(𝜎𝑥𝑌 𝜎

⊺
𝑥) +𝑀𝛾 (𝑌 ). (7i)

Note that if for some 𝑌 ∈ S𝑛+ and 𝛾 > 0, Υ𝛾 (𝑌 ) ≺ 0, then −Υ𝛾 and 𝑀𝛾 are linear-positive operators, i.e., 𝑌 ⪰ 0 implies that
−Υ𝛾 (𝑌 ),𝑀𝛾 (𝑌 ) ⪰ 0. Indeed, 𝑥, 𝜑 also are and 𝛾 is linear-positive with the preceding assumption on 𝑀𝛾 . A linear-positive
operator Π is also monotone, namely, if 𝑌 ⪰ 𝑋 for 𝑌 ,𝑋 ∈ S𝑛+ then Π(𝑌 ) ⪰ Π(𝑋). We also consider the notation

𝐴cl(𝑌 ) ∶= 𝐴 − 𝜎Υ𝛾 (𝑌 )−1Ψ(𝑌 ) (7j)

A useful tool in the study of the CSVIU model is the signal vector function, namely, the vector function  ∶ R𝑛 → {−1, 0,+1}𝑛

defined for 𝑥 ∈ R𝑛 as,
(𝑥) =

[

sign(𝑥1) ⋯ sign(𝑥𝑛)
]⊺ , (8)

with the convention sign(0) = 0. Note that for any 𝑤, 𝑣 ∈ R𝑛, and 𝑌 ∈ S𝑛 the following identities hold true,

⟨𝑤, |𝑣|⟩ = ⟨(𝑣) ·𝑤, 𝑣⟩ = ⟨(𝑣), 𝑤 · 𝑣⟩, (9a)
tr{𝑌 diag(|𝑣|)} = ⟨(𝑣),Diag(𝑌 )𝑣⟩. (9b)

A control problem considers a single exogenous variable, the control variable, and a criterion to be optimized. On the other
hand, differential or difference game theory generalizes the control problem to two variables/players, presenting a non-cooperative
behavior and acting to achieve conflicting goals in a zero-sum game. Player 1, represented by the control input, tries to stabilize
the system and minimize operating costs simultaneously. Player 2, in turn, inflicts the worst disturbance to deviate the system
from its reference. If the game renders a saddle point, a finite optimal solution arises, and the game solution is coined indifferently
as min𝑢 max𝜔 or max𝜔 min𝑢 in either order. We choose to deal with the former ordering and adopt an uncontrolled and compact
representation to start for simplicity.

Let us denote 𝜎(𝑥) ∶=
[

𝜎 𝜎𝑥 + �̄�𝑥 diag(|𝑥|)
]

and 𝜁𝑘 ∶= [𝜔𝑘 𝜀𝑥𝑘]
⊺. The dynamic equation of the uncontrolled system Θ̂ in a

compact notation reads as,
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝜎(𝑥𝑘)𝜁𝑘, 𝑥0 = 𝑥 ∈ R𝑛. (10)

An extra advantage of approaching system Θ̂ first is that the stochastic stability analysis in the sequel proves useful for the
controlled system Θ̂ctr . The following lemma takes this standing.

Lemma 1. Set 𝛾 > 0, and consider sequences {𝐙𝑘},𝐙𝑘 ∈ S𝑛+, {𝑣𝑘}, 𝑣𝑘 ∈ R𝑛 and {𝑔𝑘}, 𝑔𝑘 ∈ R, 𝑘 = 0, 1,… , 𝜅 satisfying the
difference equations with final conditions,

𝐙𝑘 = 𝛾 (𝐙𝑘+1) + 𝐶⊺𝐶, 𝐙𝜅 = Φ ∈ S𝑛+, (11a)
𝑣𝑘 = 𝐴cl(𝐙𝑘+1)⊺𝑣𝑘+1 +𝑥(𝐙𝑘+1)(𝑥𝑘), 𝑣𝜅 = 𝜃 ∈ R𝑛, (11b)

𝑔𝑘 = 𝑔𝑘+1 + 𝜑(𝐙𝑘+1) −
1
4
‖𝜎⊺𝑣𝑘+1‖

2
Υ𝛾 (𝐙𝑘+1)−1

, 𝑔𝜅 = 𝜏 ≥ 0. (11c)

Provided that Υ𝛾 (𝐙𝑘) ≺ 0 for each 𝑘 = 0,… , 𝜅, then

max
𝜔

𝙹𝜅−1∞ (𝑧) = ‖𝑥‖2𝐙0
+ 𝐸

[

⟨𝑣0, 𝑥0⟩ + 𝑔0|𝑥0 = 𝑥
]

− 𝐸
[

‖𝑥𝜅‖
2
Φ + ⟨𝜃, |𝑥𝜅|⟩|𝑥0 = 𝑥

]

− 𝜏. (12)

holds, for 𝑥0 = 𝑥, where 𝜔 stands for the finite disturbance sequence {𝜔(𝑘)}𝑘=0,…,𝜅−1.

Proof. Consider the auxiliary function 𝑉 ∶ N ×R𝑛 → R depending on the sequences 𝐙, 𝑟 and 𝑔 of compatible dimension as,

𝑉 (𝑘, 𝑥) ∶= 𝑥⊺𝐙𝑘𝑥 + ⟨𝑟𝑘, |𝑥|⟩ + 𝑔𝑘, 𝑥 ∈ R𝑛, 𝜔 ∈ R𝑟.

Provided that Υ𝛾 (𝐙𝜅) = Υ𝛾 (Φ) ≺ 0, then from (7g) 𝑀𝛾 (𝐙𝜅) ⪰ 0, which in turn, implies from (7h) that 𝛾 (𝐙𝜅) ⪰ 0. Now,
from (11a) one has that 𝐙𝜅−1 ⪰ 0. Under the assumptions, an induction argument shows that 𝐙𝑘 ∈ S𝑛+, ∀0 ≤ 𝑘 ≤ 𝜅. Taking into
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account the identities in (9), the dynamic of the system Θ̂, and the representation ⟨𝑟, |𝑥|⟩ = ⟨(𝑥), 𝑟 · 𝑥⟩, one can evaluate the
variation of 𝑉 along a path 𝑘 → 𝑥𝑘. Using the compact notation in (10), the difference of successive time steps is calculated as

𝑉 (𝑘 + 1, 𝑥𝑘+1) − 𝑉 (𝑘, 𝑥𝑘) = ‖𝑥𝑘+1‖
2
𝐙𝑘+1

+ ⟨𝑠𝑘+1, 𝑟𝑘+1 · 𝑥𝑘+1⟩ + 𝑔𝑘+1 − (‖𝑥𝑘‖2𝐙𝑘
+ ⟨𝑠𝑘, 𝑟𝑘 · 𝑥𝑘⟩ + 𝑔𝑘)

= ‖𝐴𝑥𝑘‖
2
𝐙𝑘+1

+ 2(𝐴𝑥𝑘)⊺𝐙𝑘+1𝜎(𝑥𝑘)𝜁𝑘 + ‖𝜎(𝑥𝑘)𝜁𝑘‖2𝐙𝑘+1
− ‖𝑥𝑘‖

2
𝐙𝑘
+

⟨𝑠𝑘+1, 𝑟𝑘+1 ·
(

𝐴𝑥𝑘 + 𝜎(𝑥𝑘)𝜁𝑘
)

⟩ − ⟨𝑠𝑘, 𝑟𝑘 · 𝑥𝑘⟩ + 𝑔𝑘+1 − 𝑔𝑘 (13)

where we set 𝑠𝑘 = (𝑥𝑘), 𝑠𝑘+1 = (𝑥𝑘+1). One can check that,

𝐸
[

‖𝜎(𝑥𝑘)𝜁𝑘‖2𝑌 |𝑥𝑘 = 𝑥
]

= 𝜔⊺
𝑘𝜎

⊺𝑌 𝜎𝜔𝑘 + tr
{

[𝜎𝑥 + 𝜎𝑥 diag(|𝑥|)]⊺𝑌 [𝜎𝑥 + 𝜎𝑥 diag(|𝑥|)]
}

= ‖𝜎𝜔𝑘‖
2
𝑌 + ‖𝑥‖2𝑥(𝑌 )

+ tr{𝑥(𝑌 ) diag(|𝑥|)} + 𝜑(𝑌 )

= ‖𝜎𝜔𝑘‖
2
𝑌 + ‖𝑥‖2𝑥(𝑌 )

+ ⟨(𝑥),𝑥(𝑌 )𝑥⟩ + 𝜑(𝑌 )

and note that 𝑥(𝑌 )𝑥 = 𝑥𝑑 (𝑌 ) · 𝑥. Returning to (13) one can write,

𝑉 (𝑘 + 1, 𝑥𝑘+1) − 𝑉 (𝑘, 𝑥𝑘, )
= ‖𝐴𝑥𝑘‖

2
𝐙𝑘+1

+ ‖𝑥𝑘‖
2
𝑥(𝐙𝑘+1)

− ‖𝑥𝑘‖
2
𝐙𝑘

+ ⟨𝑠𝑘+1, 𝑟𝑘+1 · 𝐴𝑥𝑘⟩ + ⟨𝑠𝑘,
(

𝑥𝑑 (𝐙𝑘+1) − 𝑟𝑘
) · 𝑥𝑘⟩+

‖𝜎𝜔𝑘‖
2
𝐙𝑘+1

+ 2⟨𝜎⊺𝐙𝑘+1𝐴𝑥𝑘, 𝜔𝑘⟩ + ⟨𝑠𝑘+1, 𝑟𝑘+1 · 𝜎𝜔𝑘⟩ + 𝑔𝑘+1 + 𝜑(𝐙𝑘+1) − 𝑔𝑘 + 𝑚𝑘 (14)

where the process 𝑘 → 𝑚𝑘 is

𝑚𝑘 ∶= ⟨2𝐙𝑘+1(𝐴𝑥𝑘 + 𝜎𝜔𝑘) + 𝑟𝑘+1 · 𝑠𝑘+1, (𝜎𝑥 + �̄�𝑥 diag(|𝑥𝑘|))𝜀𝑥𝑘⟩,

comprising each term of (14) such that 𝐸[𝑚𝑘|𝑥𝑘] = 0, namely, 𝑘 → 𝑚𝑘 is a zero {𝑘}-martingale. Note that the difference in
(14) depends explicitly on 𝑥𝑘 and 𝜔𝑘 only, and we denote Δ𝑉 (𝑥𝑘, 𝜔𝑘) ∶= 𝑉 (𝑘 + 1, 𝑥𝑘+1) − 𝑉 (𝑘, 𝑥𝑘) for short. By adding and
subtracting the terms ‖𝑧𝑘‖2 − 𝛾2‖𝜔𝑘‖

2, one gets that

Δ𝑉 (𝑥𝑘, 𝜔𝑘) = ⟨𝑥𝑘,
(

𝐴⊺𝐙𝑘+1𝐴 +𝑥(𝐙𝑘+1) + 𝐶⊺𝐶 − 𝐙𝑘
)

𝑥𝑘⟩ + ⟨𝐴⊺𝑣𝑘+1 +𝑥(𝐙𝑘+1)𝑠𝑘 − 𝑣𝑘, 𝑥𝑘⟩+
⟨𝑠𝑘+1, 𝑟𝑘+1 · 𝐴𝑥𝑘⟩ + ⟨𝑠𝑘,

(

𝑥𝑑 (𝐙𝑘+1) − 𝑟𝑘
) · 𝑥𝑘⟩ + ‖𝜔𝑘‖

2
(𝜎⊺𝐙𝑘+1𝜎+𝐹 ⊺𝐹−𝛾2𝐼𝑟)

+

2⟨(𝐹 ⊺𝐶 + 𝜎⊺𝐙𝑘+1𝐴)𝑥𝑘, 𝜔𝑘⟩ + ⟨𝑠𝑘+1, 𝑟𝑘+1 · 𝜎𝜔𝑘⟩ + 𝑔𝑘+1 + 𝜑(𝐙𝑘+1) − 𝑔𝑘 + 𝑚𝑘 − (‖𝑧𝑘‖2 − 𝛾2‖𝜔𝑘‖
2) (15)

In addition, setting 𝑣𝑘 ∶= 𝑠𝑘 · 𝑟𝑘 and 𝑣𝑘+1 ∶= 𝑠𝑘+1 · 𝑟𝑘+1, it comes as

Δ𝑉 (𝑥𝑘, 𝜔𝑘) + (‖𝑧𝑘‖2 − 𝛾2‖𝜔𝑘‖
2) = ‖𝑥𝑘‖

2
(𝐴⊺𝐙𝑘+1𝐴+𝑥(𝐙𝑘+1)+𝐶⊺𝐶−𝐙𝑘)

+ ⟨𝐴⊺𝑣𝑘+1 +𝑥(𝐙𝑘+1)𝑠𝑘 − 𝑣𝑘, 𝑥𝑘⟩ + ‖𝜔𝑘‖
2
Υ𝛾 (𝐙𝑘+1)

+

⟨2Ψ(𝐙𝑘+1)𝑥𝑘 + 𝜎⊺𝑣𝑘+1, 𝜔𝑘⟩ + 𝑔𝑘+1 + 𝜑(𝐙𝑘+1) − 𝑔𝑘 + 𝑚𝑘

= ‖𝑥𝑘‖
2
(𝐴⊺𝐙𝑘+1𝐴+𝑥(𝐙𝑘+1)+𝐶⊺𝐶−𝐙𝑘)

+ ⟨𝐴⊺𝑣𝑘+1 +𝑥(𝐙𝑘+1)𝑠𝑘 − 𝑣𝑘, 𝑥𝑘⟩+

‖𝜔𝑘 − 𝜔0
𝑘‖

2
Υ𝛾 (𝐙𝑘+1)

− ‖𝜔0
𝑘‖

2
Υ𝛾 (𝐙𝑘+1)

+ 𝑔𝑘+1 + 𝜑(𝐙𝑘+1) − 𝑔𝑘 + 𝑚𝑘 (16)

where 𝜔0
𝑘 ∶= −Υ𝛾 (𝐙𝑘+1)−1

(

Ψ(𝐙𝑘+1)𝑥𝑘 +
1
2
𝜎⊺𝑣𝑘+1

)

. Now, we evaluate an upper bound for the one step variation Δ𝑉 (𝑥𝑘, 𝜔𝑘)
concerning the disturbance value 𝜔𝑘. Since, from the assumptions, Υ𝛾 (𝐙𝑘+1) ≺ 0, we get from eqs. (11) that

Δ𝑉 (𝑥𝑘, 𝜔𝑘) + (‖𝑧𝑘‖2 − 𝛾2‖𝜔𝑘‖
2) ≤

⟨𝑥𝑘,
(

𝐴⊺𝐙𝑘+1𝐴 +𝑥(𝐙𝑘+1) + 𝐶⊺𝐶 − 𝐙𝑘
)

𝑥𝑘⟩ + ⟨𝐴⊺𝑣𝑘+1 +𝑥(𝐙𝑘+1)𝑠𝑘 − 𝑣𝑘, 𝑥𝑘⟩+
𝑔𝑘+1 − ‖𝜔0

𝑘‖
2
Υ𝛾 (𝐙𝑘+1)

+ 𝜑(𝐙𝑘+1) − 𝑔𝑘 + 𝑚𝑘 =

⟨𝑥𝑘,
(

𝛾 (𝐙𝑘+1) + 𝐶⊺𝐶 − 𝐙𝑘
)

𝑥𝑘⟩ + ⟨𝐴cl(𝐙𝑘+1)⊺𝑣𝑘+1 +𝑥(𝐙𝑘+1)𝑠𝑘 − 𝑣𝑘, 𝑥𝑘⟩+

𝑔𝑘+1 + 𝜑(𝐙𝑘+1) −
1
4
‖𝜎⊺𝑣𝑘+1‖

2
Υ𝛾 (𝐙𝑘+1)−1

− 𝑔𝑘 + 𝑚𝑘 (17)

Thus, if the sequences {𝐙𝑘, 𝑣𝑘, 𝑔𝑘}𝑘=0,…,𝜅 satisfy (11), one readily gets

Δ𝑉 (𝑥𝑘, 𝜔𝑘) ≤ −(‖𝑧𝑘‖2 − 𝛾2‖𝜔𝑘‖
2) + 𝑚𝑘

and the equality is attained whenever 𝜔𝑘 = 𝜔0
𝑘. Hence,

𝐸[Δ𝑉 (𝑥𝑘, 𝜔0
𝑘)|𝑥𝑘] = −𝐸[‖𝑧𝑘‖2 − 𝛾2‖𝜔0

𝑘‖
2
|𝑥𝑘],
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and writing a telescoping sum with such a general term, taking into account that Θ̂ forms a Markovian process, one gets that

𝙹𝜅−1∞ (𝑧) = 𝜅−1
2,𝐼 (𝑧) − 𝛾2𝜅−1

2,𝐼 (𝜔) ≤
𝜅−1
∑

𝑘=0
𝐸[‖𝑧𝑘‖2 − 𝛾2‖𝜔0

𝑘‖
2
|𝑥0] = 𝐸[𝑉 (0, 𝑥0, 𝜔0

0) − 𝑉 (𝜅, 𝑥𝜅 , 𝜔0
𝜅)|𝑥0]

= 𝐸
[

‖𝑥0‖
2
𝐙0

+ ⟨𝑣0, 𝑥0⟩ + 𝑔0|𝑥0
]

− 𝐸
[

‖𝑥𝜅‖
2
Φ + ⟨𝜃, |𝑥𝜅|⟩ + 𝜏|𝑥0

]

(18)

Equality is attained above by the proper sequence {𝜔0
𝑘}𝑘=0,…,𝜅−1. Thus, (12) holds true.

2.1 Stability of Worst-case Disturbance
The maximization in Lemma 1 sets up the worst disturbance input under the assumption of the negative definiteness of the

sequences {Υ𝛾 (𝐙𝑘)}𝑘=0,…,𝜅 . A disturbance input is prone to create instability, and the present approach allows us to develop
worst-case stability conditions for the class of systems in (1).

This section deals with the stability notion in Definition 2 and provides sufficient conditions based on the worst possible
disturbance scenario. Stability should precede system performance (norm evaluations), but a stochastic detectability notion can
lightly but tightly connect the former to the latter, which is pursued here. On this footing, consider the family of matrix equations
of type,

(𝐼 − 𝛾 )(𝑌 ) = 𝑄 (19)
for some 𝑄 ⪰ 0. These equations play a vital role in the worst-case analysis, essential in establishing conditions for stochastic
recurrence in terms of some Lyapunov perturbed equations and are studied in connection with positive operators in ordered
Banach spaces, e.g.,22,23,6,7.

Proposition 1 (prop. 3.13). The following statements are equivalent

i) 𝛾 is an inverse-positive operator,

ii) 𝛾 is 𝑑-stable,

iii) There exists 𝐙 ≻ 0 such that (𝐼 − 𝛾 )(𝐙) ≻ 0,

iv) 𝐴 is 𝑑-stable relative to 𝑥 +𝑀𝛾 ,

v) All eigenvalues of 𝐴 lay in the open unit disk and 𝑟𝜎
(

(𝐼 −A)−1(𝑥 +𝑀𝛾 )
)

< 1, where A(𝑌 ) ∶= 𝐴⊺𝑌 𝐴 for 𝑌 ∈ R𝑛×𝑛.

If all eigenvalues of 𝐴cl(𝑌 ) lay in the open unit disk, then any of conditions (i)–(v) is equivalent to stochastic stability of Θ̂.

Proof. The proof follows from Proposition 3.13, by setting 𝛼 = 1 and replacing the operator 𝛼=1 ≡ A +𝑥 by 𝛾 .

Remark 1. Note that the requirement on the spectral radius of 𝐴cl(𝑌 ) is neither necessary nor sufficient for (19) to hold, or bears
no connection with the conditions (i)–(v) in Proposition 1. It is associated with the 𝓁1 part of the CSVIU dynamics and ensuing
costs but not related to the quadratic (or 𝓁2) cost part that attaches with the more usual type of Lyapunov condition (19).

The following lemma provides sufficient conditions for stability of the system Θ̂ according to Definition 2, taking into account
the disturbance input 𝜔.

Lemma 2. If for 𝑄 = 𝐶⊺𝐶 ≻ 0 there is 𝐙 ≻ 0, the solution of (19), with 𝑟𝜎(𝐴cl(𝐙)) < 1 and Υ𝛾 (𝐙) ≺ 0. Then the system in (10)
is stochastically stable.

Proof. Note that 𝐙 ≻ 0, the solution of (19), is also the unique nonnegative stationary solution of the matrix difference in (11a).
In connection, set in Lemma 1 𝐙𝜅 = 𝐙, 𝑣𝜅 = 0 and 𝑔𝜅 = 0, and it yields, for any 𝑥0 = 𝑥 that

‖𝑥‖2𝐙 + 𝐸𝑥

[

⟨𝑣(𝜅)0 , 𝑥⟩ + 𝑔(𝜅)0

]

= max
𝜔

𝙹𝜅−1∞ (𝑧) + 𝐸𝑥
[

‖𝑥𝜅‖
2
𝐙
]

(20)

where we add the horizon 𝜅 as superscript, and 𝑣(𝜅)0 , 𝑔(𝜅)0 are respectively,

𝑣(𝜅)𝑘 =
𝜅−1
∑

𝓁=𝑘

(

𝐴cl(𝐙)⊺
)𝓁 𝑥(𝐙)(𝑥𝓁), 𝑔(𝜅)𝑘 =

𝜅
∑

𝓁=𝑘+1

(

𝜑(𝐙) − 1
4
‖𝜎⊺𝑣(𝜅)𝓁 ‖

2
Υ𝛾 (𝐙)−1

)

(21)
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evaluated at 𝑘 = 0. Note that 𝑣(𝜅)𝑘 , 𝑘 = 0,… , 𝜅 are well-defined random vectors for each 𝑥0 and 𝜅; moreover, lim𝜅→∞ |𝑣(𝜅)𝑘 | ≤ �̄�,
where, from the assumption,

�̄� ∶= 𝑟𝜎
(

(

𝐼 − 𝐴cl(𝐙)⊺
)−1

)

|

|

|

𝑥𝑑 (𝐙)
|

|

|

. (22)

Now, denote �̄�𝜅∞(𝑧) ∶= max𝜔 𝙹𝜅∞(𝑧), and from (20) and (21),

�̄�𝜅∞(𝑧) + 𝐸𝑥[‖𝑥𝜅+1‖𝐙] = ‖𝑥‖2𝐙 +
⟨

𝐸𝑥[𝑣
(𝜅+1)
0 ], 𝑥

⟩

+
𝜅+1
∑

𝑘=1

(

𝜑(𝐙) − 1
4
𝐸𝑥

[

‖𝜎⊺𝑣(𝜅)𝑘 ‖

2
Υ𝛾 (𝐙)−1

]

)

,

and it readily follows that

lim sup
𝜅→∞

1
𝜅
�̄�𝜅∞(𝑧) ≤ lim sup

𝜅→∞

1
𝜅

(

‖𝑥 + 1
2
𝐙−1�̄�‖2𝐙 + 𝜅

(

𝜑(𝐙) + ‖�̄�‖2

4
‖𝜎⊺

‖

2
Υ𝛾 (𝐙)−1

))

≤ 𝜑(𝐙) + ‖�̄�‖2

4
‖𝜎⊺

‖

2
Υ𝛾 (𝐙)−1

and since for any number 𝜖 > 0,

�̄�𝜅∞(𝑧) ≥ (1 − 𝜖)�̄�𝜅∞(𝐶𝑥) + (1 − 𝜖−1)�̄�𝜅∞(𝐹𝜔) ≥ 𝜆−(1 − 𝜖)�̄�𝜅∞(𝑥) + (1 − 𝜖−1)�̄�𝜅∞(𝐹𝜔)

where 𝜆− stands for the smallest eigenvalue of 𝐶⊺𝐶 , one can write that

lim sup
𝜅→∞

1
𝜅
�̄�𝜅∞(𝑥) ≤

1
𝜆−(1 − 𝜖)

[

𝜑(𝐙) + ‖�̄�‖2

4
‖𝜎⊺

‖

2
Υ𝛾 (𝐙)−1

+ lim sup
𝜅→∞

1
𝜅
(𝜖−1 − 1)�̄�𝜅∞(𝐹𝜔)

]

and the last term in the rhs is finite by assumption. Identify 𝑐 < ∞ in Definition 2 with the rhs above, which shows that Θ̂ is
stochastically stable despite the worst disturbance input 𝜔.

2.1.1 Stochastic Detectability
Stochastic stability conditions stated in Corollary 2 relies on a strictly positive solution from the perturbed Lyapunov equation

in (19). Detectability notions weaken the positive definite scenario to a positive semidefinite solution ensuring stochastic stability.
They allow a broader framework for the Lyapunov analysis.

Definition 3. System Θ̂ is (𝐶,𝐴, �̄�𝑥,𝑀𝛾 ) detectable if 𝑋𝐶⊺ ≠ 0 holds true for every nonzero eigenvector 𝑋 ⪰ 0 of ⋆
𝛾

corresponding to the eigenvalue |𝜆| ≥ 1.
This notion is called (𝐶,𝛾 )-detectable for short.

The detectability notion in Definition 3 is analogous to the concept of exact detectability for SMD systems, in which a
Hautus test is crucial for the detectability of these stochastic systems, see24,25,26. The proof of the following proposition is a
straightforward conclusion from the Lemma 3.7 of22 and Proposition 1.

Proposition 2. Suppose that,
(𝐼 − 𝛾 )(𝑌 ) = 𝐶⊺𝐶

has a solution 𝐙 ⪰ 0. If Θ̂ is (𝐶,𝛾 )-detectable and if, all eigenvalues of 𝐴cl(𝐙) lies in the open unit disk, then Θ̂ is stochastically
stable.

Under the assumption of detectability, the following corollary connects the finiteness of cost 𝔓∞(𝑧) with the corresponding
stochastic stability notion.

Corollary 1 (Detectability and Stochastic Stability). Suppose that system Θ̂ is (𝐶,𝛾 )-detectable for some 𝛾 > 0. Then,

i) System Θ̂ is stochastically stable if (19) with 𝑄 = 𝐶⊺𝐶 has a solution 𝐙 ⪰ 0, and 𝑟𝜎(𝐴cl(𝐙)) < 1;

ii) If Θ̂ is stochastically stable then ̂2,𝑄(𝑥(⋅)) < ∞ for 𝑄 = 𝐶⊺𝐶 and for any 𝑥(0) = 𝑥, 𝔓∞(𝑧) < ∞, given by

𝔓∞(𝑧) = 𝜑(𝐙) − lim inf
𝜅→∞

1
4𝜅

𝜅+1
∑

𝑘=1
𝐸𝑥

[

‖𝜎⊺𝑣(∞)
𝑘 ‖

2
Υ𝛾 (𝐙)−1

]

in regarding to equations (21).

Remark 2. Lemma 2 states sufficient conditions for stochastic stability by requiring stability of Θ̂ with respect to the disturbance
𝜔. Nevertheless, if system (10) is detectable, Corollary 1 (i) weakens the requirements for stochastic stability of Θ̂, and the
finiteness of the cost 𝔓∞(𝑧) is tied to the stability of the system by Corollary 1 (ii).
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3 CSVIU LINEAR-QUADRATIC DYNAMIC GAME

To design a control system means to project a control mechanism capable of keeping 𝑧 small despite disturbance 𝜔. In this
sense, we seek a stabilizing control 𝑢 that aims to compensate for the unpredictable behavior consequences of the disturbance 𝜔.

This section considers a two-person stochastic zero-sum game. The minimizing player is the control input 𝑢 ∈  , and the
maximizing player is the disturbance 𝜔 ∈  . Both  and  are regarded to be compact sets. To ensure a pure strategy saddle
point solution, let  and  be convex sets. A Markovian strategy suffices for both players to attain the respective optimal
performances. The payoff functional 𝐽 (𝑢, 𝜔) ∶= 𝐽 𝑘

∞ in (5) is continuous in the pair (𝑢, 𝜔) ∈  ×  and we take advantage of its
strictly convexity-concavity property to obtain the original optimal saddle point solution for the CSVIU dynamic game.

In addition to operators in (7), let us define 𝑢 ∶ S𝑛+ → S𝑛+, 𝑢 ∶ S𝑛+ → S𝑛, and 𝜑1 ∶ S𝑛+ → R for any 𝑌 ∈ S𝑛+, such that,

𝑢(𝑌 ) = Diag(𝜎⊺
𝑢𝑌 𝜎𝑢), (23a)

𝑢(𝑌 ) = Diag(𝜎⊺
𝑢𝑌 𝜎𝑢 + 𝜎⊺

𝑢𝑌 𝜎𝑢), (23b)
𝜑1(𝑌 ) = tr{𝑌 (𝜎𝑥𝜎⊺

𝑥 + 𝜎𝑢𝜎
⊺
𝑢 )}, (23c)

Except for 𝑢, the operators in (23) are linear-positive operators. Define also Σ ∶ R𝑛×𝑛 → R𝑚×𝑛, Λ ∶ R𝑛×𝑛 → R𝑚×𝑚, and when
Υ𝛾 is invertible, Δ(𝑌 ) ∶ R𝑛×𝑛 → R𝑚×𝑚, with

Σ(𝑌 ) = 𝐵⊺𝑌 𝐴 +𝐷⊺𝐶, (24a)
Λ(𝑌 ) = 𝐵⊺𝑌 𝐵 +𝑢(𝑌 ) +𝐷⊺𝐷, (24b)
Δ(𝑌 ) = Λ(𝑌 ) − Γ(𝑌 )⊺Υ𝛾 (𝑌 )−1Γ(𝑌 ). (24c)

When Υ𝛾 and Δ are invertible, consider additionally Ric ∶ R𝑛×𝑛 → R𝑛×𝑛 such that

Ric(𝑌 ) =𝛾 (𝑌 ) − Σcl(𝑌 )⊺Δ(𝑌 )−1Σcl(𝑌 ) + 𝐶⊺𝐶, (25)

where Σcl refers to the matrix
Σcl(𝑌 ) ∶= Σ(𝑌 ) − Γ(𝑌 )⊺Υ𝛾 (𝑌 )−1Ψ(𝑌 ). (26)

In addition to the notation 𝐴cl(𝑌 ) = 𝐴 − 𝜎Υ𝛾 (𝑌 )−1Ψ(𝑌 ), consider also 𝐵cl(𝑌 ) ∶= 𝐵 − 𝜎Υ𝛾 (𝑌 )−1Γ(𝑌 ).

3.1 Optimal saddle point solution
To alleviate expressions, we adopt the compact notation,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝜎𝑢(𝑥𝑘, 𝑢𝑘)𝜁0,𝑘
𝑧𝑘 = 𝐶𝑥𝑘 +𝐷𝑢𝑘 + 𝐹𝜔(𝑘), 𝑘 ≥ 0,

(27)

for the controlled CSVIU system Θ̂ctr in (1). Here, the standard noise vector is 𝜁0,𝑘 =
[

𝜔(𝑘) 𝜀𝑥(𝑘) 𝜀𝑢(𝑘)
]⊺ with standard deviation

matrix 𝜎𝑢(𝑥, 𝑢) =
[

𝜎 𝜎𝑥 + �̄�𝑥 diag(|𝑥|) 𝜎𝑢 + �̄�𝑢 diag(|𝑢|)
]

. Besides, let us take into account some sequences {𝐗𝑘},𝐗𝑘 ∈
S𝑛+, {𝔯𝑘}, 𝔯𝑘 ∈ R𝑛 and {𝔤𝑘}, 𝔤𝑘 ≥ 0, 𝑘 = 0, 1,… to introduce the function 𝑊 ∶ N ×R𝑛 → R,

𝑊 (𝑘, 𝑥) ∶= 𝑥⊺𝐗𝑘𝑥 + ⟨𝔯𝑘, |𝑥|⟩ + 𝔤𝑘, 𝑥 ∈ R𝑛. (28)

Lemma 3. Set some 𝛾 > 0 and consider sequences {𝐗𝑘},𝐗𝑘 ∈ S𝑛+, {𝔯𝑘}, 𝔯𝑘 ∈ R𝑛 and {𝔤𝑘}, 𝔤𝑘 ∈ R, 𝑘 = 0, 1,… , 𝜅. Provided
that Υ𝛾 (𝐗𝑘) ≺ 0 for each 𝑘 = 0,… , 𝜅, then

𝑊 (𝑘 + 1, 𝑥𝑘+1) −𝑊 (𝑘, 𝑥𝑘) + [‖𝑧𝑘‖2 − 𝛾2‖𝜔𝑘‖
2] ≤

‖𝐴𝑥𝑘‖
2
𝐗𝑘+1

+ ‖𝑥𝑘‖
2
𝑥(𝐗𝑘+1)

+ ‖𝑥𝑘‖
2
𝐶⊺𝐶 − ‖𝑥𝑘‖

2
𝐗𝑘+1

+ ⟨𝐴⊺𝜂𝑘+1 +𝑥(𝐗𝑘+1)𝑠𝑘 − 𝜂𝑘, 𝑥𝑘⟩ + max
𝜔

[

‖𝜔 − 𝜔0
𝑘‖

2
Υ𝛾 (𝐗𝑘+1)

]

+

‖𝑢𝑘‖
2
Λ(𝐗𝑘+1)

+ ⟨2Σ(𝐗𝑘+1)𝑥𝑘 + 𝐵⊺𝜂𝑘+1 +𝑢(𝐗𝑘+1)𝑠𝑢𝑘, 𝑢𝑘⟩ − ‖𝜔0
𝑘‖

2
Υ𝛾 (𝐗𝑘+1)

+ 𝔤𝑘+1 − 𝔤𝑘 + 𝜑1(𝐗𝑘+1) + 𝑚𝑘 (29)
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and

𝑊 (𝑘 + 1, 𝑥𝑘+1) −𝑊 (𝑘, 𝑥𝑘) + [‖𝑧𝑘‖2 − 𝛾2‖𝜔0
𝑘‖

2] ≥
𝑥⊺𝑘
(

Ric(𝐗𝑘+1) − 𝐗𝑘
)

𝑥𝑘 + ⟨(𝐴cl(𝐗𝑘+1) − 𝐵cl(𝐗𝑘+1)Δ(𝐗𝑘+1)−1Σcl(𝐗𝑘+1))⊺𝜂𝑘+1 +𝑥(𝐗𝑘+1)𝑠𝑘 − 𝜂𝑘, 𝑥𝑘⟩

+ min
𝑢

[

‖𝑢 − 𝑢0𝑘‖
2
Δ(𝐗𝑘+1)

−
⟨

Σcl(𝐗𝑘+1)⊺Δ(𝐗𝑘+1)−1𝑢(𝐗𝑘+1)𝑠𝑢𝑘, 𝑥𝑘
⟩

− 1
4
‖𝐵cl(𝐗𝑘+1)⊺𝜂𝑘+1 +𝑢(𝐗𝑘+1)𝑠𝑢𝑘‖

2
Δ(𝐗𝑘+1)−1

]

+ 𝔤𝑘+1 − 𝔤𝑘 + 𝜑1(𝐗𝑘+1) −
1
4
‖𝜎⊺𝜂𝑘+1‖

2
Υ𝛾 (𝐗𝑘+1)−1

+ 𝑚𝑘 (30)

where,

𝜔0
𝑘 ∶= − Υ𝛾 (𝐗𝑘+1)−1

(

Ψ(𝐗𝑘+1)𝑥𝑘 + Γ(𝐗𝑘+1)𝑢𝑘 +
1
2
𝜎⊺𝜂𝑘+1

)

, (31a)

𝑢0𝑘 ∶= − Δ(𝐗𝑘+1)−1
[

Σ(𝐗𝑘+1)𝑥𝑘 +
1
2
(

𝐵⊺𝜂𝑘+1 +𝑢(𝐗𝑘+1)𝑠𝑢𝑘
)

− Γ(𝐗𝑘+1)⊺Υ𝛾 (𝐗𝑘+1)−1
(

Ψ(𝐗𝑘+1)𝑥𝑘 +
1
2
𝜎⊺𝜂𝑘+1

)]

, (31b)

𝑠𝑘 and 𝑠𝑢𝑘 denotes (𝑥𝑘) and (𝑢𝑘), respectively, 𝜂𝑘 ∶= 𝑠𝑘 · 𝔯𝑘 and 𝜂𝑘+1 ∶= 𝑠𝑘+1 · 𝔯𝑘+1, and 𝑘 → 𝑚𝑘 is a zero {𝑘}-martingale.
Equality in (29) and (30) are attained whenever 𝜔𝑘 = 𝜔0

𝑘 and 𝑢𝑘 is set to be equal to the minimizer in (30).

The expressions in Lemma 3 are verified in Appendix A.

Remark 3. To keep in view an important feature of the optimal solution, set in (29), 𝜔 = 𝜔0
𝑘, to attain the equality. After some

algebraic manipulations, the absolute values involved in the original form can be retrieved, and one can write the one-stage
difference 𝐽𝑢 ∶ R𝑚 → R, solely as a function of the control action 𝑢𝑘 = 𝑢,

𝐽𝑢 ∶= 𝑊 (𝑘 + 1, 𝑥𝑘+1) −𝑊 (𝑘, 𝑥𝑘) + [‖𝑧𝑘‖2 − 𝛾2‖𝜔𝑘‖
2] =

‖𝐴𝑥𝑘‖
2
𝐗𝑘+1

+ ‖𝑥𝑘‖
2
𝑥(𝐗𝑘+1)

+ ‖𝑥𝑘‖
2
𝐶⊺𝐶 − ‖𝑥𝑘‖

2
𝐗𝑘+1

+ ‖𝑥𝑘‖
2
Ψ(𝐗𝑘+1)⊺Υ𝛾 (𝐗𝑘+1)−1Ψ(𝐗𝑘+1)

+

⟨𝐴cl(𝐗𝑘+1)⊺𝜂𝑘+1 +𝑥(𝐗𝑘+1)𝑠𝑘 − 𝜂𝑘, 𝑥𝑘⟩ + 𝔤𝑘+1 − 𝔤𝑘 + 𝜑1(𝐗𝑘+1) −
1
4
‖𝜎⊺𝜂𝑘+1‖

2
Υ𝛾 (𝐗𝑘+1)−1

+ 𝑚𝑘+

‖𝑢‖2Δ(𝐗𝑘+1)
+ ⟨2Σcl(𝐗𝑘+1)𝑥𝑘 + 𝐵cl(𝐗𝑘+1)⊺𝜂𝑘+1, 𝑢⟩ + ⟨𝑢𝑑 (𝐗𝑘+1), |𝑢|⟩

= ‖𝑢‖2Δ(𝐗𝑘+1)
+ ⟨2Σcl(𝐗𝑘+1)𝑥𝑘 + 𝐵cl(𝐗𝑘+1)⊺𝜂𝑘+1, 𝑢⟩ + ⟨𝑢𝑑 (𝐗𝑘+1), |𝑢|⟩ + 𝑓𝑘, (32)

in which, 𝑓𝑘 comprises the remaining terms in (29) that does not depend on control 𝑢 at time 𝑘. To ensure strict convexity of 𝐽𝑢
assume that Υ𝛾 (𝐗𝑘) ≺ 0,∀𝑘, which implies that Δ(𝐗𝑘+1) ≻ 0,∀𝑘 and recall that 𝑢 a linear-positive operator.

Stabilizing Controllers
For any 𝐺 ∈ R𝑚×𝑛, let us denote  ∶= 𝐴 + 𝐵𝐺 and  ∶= 𝐶 + 𝐷𝐺 and consider the operators 𝛾 ∶ S𝑛+ → S𝑛 and

L𝛾 ∶ S𝑛+ → S𝑛+, similar to (7g) and (7h), respectively, as,

𝛾 (𝑌 ) =
[

𝜎⊺𝑌 + 𝐹 ⊺
]⊺Υ𝛾 (𝑌 )−1

[

𝜎⊺𝑌 + 𝐹 ⊺
]

(33a)
L𝛾 (𝑌 ) = ⊺𝑌 +𝑥(𝑌 ) +𝛾 (𝑌 ) (33b)

In the following, we establish conditions under which linear feedback made up of 𝐺, 𝑘 → 𝑢𝑘 = 𝐺𝑥𝑘, to be a stabilizing
controller for system Θ̂ctr in (1), despite the worst possible disturbance.

Recall the stochastic stability analysis in Section 2 for system Θ̂. The following lemma parallels the stability results for a Θ̂ctr
system, which is stochastically stabilizable by a linear feedback control 𝐺. For the proof, see Appendix B.

Lemma 4. For any 𝐺 ∈ R𝑚×𝑛, define the sequences {𝐗𝑘}, {𝜈𝑘}, {𝔤𝑘}, 𝑘 = 0,… , 𝜅 − 1, in which,

𝐗𝑘 = L𝛾 (𝐗𝑘+1) + 𝐺⊺𝑢(𝐗𝑘+1)𝐺 + ⊺, (34a)
𝜈𝑘 =

(

𝐴cl(𝐗𝑘+1) + 𝐵cl(𝐗𝑘+1)𝐺
)⊺𝜈𝑘+1 +𝑥(𝐗𝑘+1)(𝑥𝑘) + 𝐺⊺𝑢(𝐗𝑘+1)(𝑢𝑘), (34b)

𝔤𝑘 = 𝔤𝑘+1 + 𝜑1(𝐗𝑘+1) −
1
4
‖𝜎⊺𝜈𝑘+1‖

2
Υ𝛾 (𝐗𝑘+1)−1

, (34c)

with final conditions, 𝐗𝜅 = 0, 𝜈𝜅 = 0 and 𝔤𝜅 = 0. Then, if Υ𝛾 (𝐗𝑘) ≺ 0, 𝑘 = 0,… 𝜅 − 1, for 𝑘 → 𝑢𝑘 = 𝐺𝑥𝑘,

sup
{𝜔𝑘}𝑘=0,…,𝜅−1

𝐸
[

𝜅−1
∑

𝑘=0
‖𝑧𝑘‖

2 − 𝛾2‖𝜔𝑘‖
2|
|

|

𝑥0
]

= ‖𝑥0‖
2
𝐗0

+ 𝐸[⟨𝜈0, |𝑥0|⟩ + 𝔤0|𝑥0] (35)
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Moreover, if the Θ̂ctr system is (𝐶,𝛾 )-detectable, and

(𝐼 − L𝛾 − 𝐺⊺𝑢𝐺)(𝑌 ) = ⊺, (36)

has a solution 𝐘 ⪰ 0 with Υ𝛾 (𝐘) ≺ 0 and 𝑟𝜎
(

𝐴cl(𝐘) + 𝐵cl(𝐘)𝐺
)

< 1. Then, Θ̂ctr is stochastically stabilizable and 𝑘 → 𝑢𝑘 = 𝐺𝑥𝑘
stabilizes Θ̂ctr in the sense of Definition 2 (ii).

3.2 Optimal Stabilizing Controllers
The next theorem provides conditions for the existence of an optimal stabilizing controller.

Theorem 1. Let 𝛾 > 0, suppose that Θ̂ctr is (𝐶,𝛾 )-detectable and there is a solution 𝐏 ⪰ 0 to (𝐼 −Ric)(𝑌 ) = 0 with Υ𝛾 (𝐏) ≺ 0.
In addition, assume that 𝑟𝜎(𝐴cl(𝐏) + 𝐵cl(𝐏)𝐺) < 1, where 𝐺 ∶= −Δ(𝐏)−1Σcl(𝐏). For any admissible pair 𝑘 → (𝑥𝑘, 𝑢𝑘), let us
consider the difference equations for 𝑘 → 𝜈𝑘 and 𝑘 → 𝑔𝑘, 𝑘 ≥ 0 given by

𝜈𝑘 =
(

𝐴cl(𝐏) + 𝐵cl(𝐏)𝐺
)⊺ 𝜈𝑘+1 +𝑥(𝐏)(𝑥𝑘), (37a)

𝑔𝑘 = 𝑔𝑘+1 + 𝜑1(𝐏) −
1
4
‖𝜎⊺𝜈𝑘+1‖

2
Υ𝛾 (𝐏)−1

+ 𝜌𝑘, (37b)

with the values lim𝑘→∞ 𝜈𝑘, 𝑔𝑘 finite and arbitrary. In (37b),

𝜌𝑘 ∶= min
𝑢∈R𝑚

𝜌𝑘(𝑢) (37c)

with 𝜌𝑘(𝑢) ∶=‖𝑢 − 𝑢0𝑘‖
2
Δ(𝐏) −

1
4
‖

‖

𝐵cl(𝐏)⊺𝜂𝑘+1 −𝑢(𝐏)(𝑢)‖‖
2
Δ(𝐏)−1 +

⟨

𝑢(𝐏)𝐺𝑘𝑥𝑘,(𝑢)
⟩

,

and 𝑢0𝑘 ∶= − Δ(𝐏)−1
[

Σ(𝐏)𝑥𝑘 +
1
2
(

𝐵⊺𝜂𝑘+1 +𝑢(𝐏)(𝑢)
)

− Γ(𝐏)⊺Υ𝛾 (𝐏)−1
(

Ψ(𝐏)𝑥𝑘 +
1
2
𝜎⊺𝜂𝑘+1

)]

,

(37d)

where 𝜂𝑘+1 = 𝐸[𝜈𝑘+1|𝑥𝑘]. Set �̄�𝑘 = argmin𝑢∈R𝑚 𝜌𝑘(𝑢), 𝑘 ≥ 0. Then, 𝑘 → �̄�𝑘 attains the minimum power average cost 𝔓∗
∞ ∶=

min𝑢 max𝜔 𝔓∞, given by

𝔓∗
∞ = 𝜑1(𝐏) + lim sup

𝜅→∞

1
𝜅
𝐸

[𝜅−1
∑

𝑘=0
𝜌𝑘 −

1
4
‖𝜎⊺𝜂𝑘+1‖

2
Υ𝛾 (𝐏)−1

|

|

|

𝑥0 = 0

]

(38)

Moreover, it stabilizes system Θ̂ctr in the sense of Definition 2 (ii).

Remark 4. For any pair 𝑘 → (𝑢𝑘, 𝑥𝑘), the worst case disturbance is given by �̄�𝑘 = −Υ𝛾 (𝐏)−1
(

Ψ(𝐏)𝑥𝑘 + Γ(𝐏)𝑢𝑘 +
1
2
𝜎⊺𝜂𝑘+1

)

The
maximum in 𝔓∗

∞ is attained by 𝑘 → �̄�𝑘 when (𝑢𝑘, 𝑥𝑘) = (�̄�𝑘, �̄�𝑘),∀𝑘 ≥ 0. The pair 𝑘 → (�̄�𝑘, �̄�𝑘) is said to be the optimal saddle
point solution of the stochastic game.

Proof. The first part of the proof comprises a finite-time evaluation of the cost inducing the power norms and provides bounds
for processes 𝑘 → 𝜂𝑘 and 𝑘 → 𝜌𝑘. Let us consider the sequences produced by the following set of difference equations,

𝐗𝑘−1 = Ric(𝐗𝑘), (39a)
𝑣𝑘−1 = (𝐴cl(𝐗𝑘) + 𝐵cl(𝐗𝑘)𝐺𝑘)⊺𝑣𝑘 +𝑥(𝐗𝑘)(𝑥𝑘−1), (39b)

𝔤𝑘−1 = 𝔤𝑘 + 𝜑1(𝐗𝑘) −
1
4
‖𝜎⊺𝑛𝑘‖

2
Υ𝛾 (𝐗𝑘)−1

+ 𝜚∗𝑘, 𝑘 = 1,… , 𝜅, (39c)

for 𝐗𝜅 = 0, 𝜂𝜅 = 0 and 𝔤𝜅 = 0, and where 𝑛𝑘 = 𝐸[𝑣𝑘|𝑥𝑘−1], 𝐺𝑘 = −Δ(𝐗𝑘)−1Σcl(𝐗𝑘) and 𝜚∗𝑘 = min𝑢∈R𝑚 𝜚𝑘(𝑢), with

𝜚𝑘(𝑢) ∶= ‖𝑢 − 𝑢0𝑘−1‖
2
Δ(𝐗𝑘)

− 1
4
‖

‖

𝐵cl(𝐗𝑘)⊺𝑛𝑘 +𝑢(𝐗𝑘)(𝑢)‖‖
2
Δ(𝐗𝑘)−1

+
⟨

𝑢(𝐗𝑘)𝐺𝑘𝑥𝑘−1,(𝑢)
⟩

(39d)

Here, 𝑢0𝑘−1 is as in (31b). Let us denote 𝑢∗𝑘−1 = argmin𝑢∈R𝑚 𝜚𝑘(𝑢) and 𝜔∗
𝑘 = 𝜔0

𝑘 appearing in (31a). Then, provided that Υ𝛾 (𝐗𝑘) ≺ 0
for each 𝑘, from Lemma 3 one gets that (30) holds as equality for the pair (𝑢∗𝑘, 𝜔

∗
𝑘).

Consider the feedback law and the disturbances 𝑘 → (𝑢∗𝑘, 𝜔
∗
𝑘), 𝑘 = 0,… , 𝜅 − 1 for some 𝜅 > 0. By setting 𝐗𝜅 = 0, 𝜂𝜅 = 0 and

𝔤𝜅 = 0, one has that 𝑊 (𝑥𝜅 , 𝑢∗𝜅 , 𝜔
∗
𝜅) = 0. Since the process Θ̂ctr is Markovian, taking into account (30), (39), and by creating a
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telescoping sum, the inequality,

𝙹𝜅∞(𝑧
∗) = 𝑊 (𝑥0, 𝑢∗0, 𝜔

∗
0) = 𝐸[𝑊 (𝑥0, 𝑢∗0, 𝜔

∗
0) −𝑊 (𝑥𝜅 , 𝑢∗𝜅 , 𝜔

∗
𝜅)|𝑥0]

= 𝐸
[

𝜅−1
∑

𝑘=0
𝐸
(

𝑊 (𝑥𝑘, 𝑢∗𝑘, 𝜔
∗
𝑘) −𝑊 (𝑥𝑘+1, 𝑢∗𝑘+1, 𝜔

∗
𝑘+1)|𝑥𝑘

)

|

|

|

𝑥0
]

= 𝐸
[

𝜅−1
∑

𝑘=0
‖𝑧∗𝑘‖

2 − 𝛾2‖𝜔∗
𝑘‖

2 + 𝜚∗𝑘 − 𝜚𝑘(𝑢∗𝑘)|𝑥0
]

≤ 𝐸
[

𝜅−1
∑

𝑘=0
‖𝑧𝑘‖

2 − 𝛾2‖𝜔∗
𝑘‖

2 + 𝜚𝑘(𝑢∗𝑘) − 𝜚𝑘(𝑢𝑘)|𝑥0
]

≤ 𝐸
[

𝜅−1
∑

𝑘=0
‖𝑧𝑘‖

2 − 𝛾2‖𝜔∗
𝑘‖

2
|𝑥0

]

= 𝙹𝜅∞(𝑧), (40)

holds, no matter the choice of the feedback law and the corresponding output 𝑘 → (𝑢𝑘, 𝑧𝑘), 𝑘 = 0,… , 𝜅 − 1. In other words,

𝑊 (𝑥0, 𝑢∗0, 𝜔
∗
0) ≤ 𝙹𝜅∞(𝑧), (41)

and equality is attained, provided that 𝑘 → 𝑢∗𝑘, 𝑘 = 0,… , 𝜅 − 1 is applied in the rhs evaluation.
Now, we explicitly indicate the horizon 𝜅 as 𝐗(𝜅)

𝑘 or 𝑣(𝜅)𝑘 ,∀𝑘 ≤ 𝜅 for the solutions of (39a)–(39b) with 𝐗(𝜅)
𝜅 = 0 and 𝑣(𝜅)𝜅 = 0,

respectively. From the assumptions we get that, 0 ⪯ 𝐗(𝜅)
𝑘 ↑ 𝐏 for each 𝑘 in the semipositive definite sense, as 𝜅 → ∞, where 𝐏 is

the unique solution of (𝐼 − Ric)(𝑌 ) = 0. This is exactly equivalent to say that 𝐏 ⪰ 0 satisfies (𝐼 − L𝛾 − 𝐺⊺𝑢)(𝑌 ) = ⊺ in
Lemma 4 with 𝐺 = −Δ(𝐏)−1Σcl(𝐏).

From the assumptions in the theorem, Θ̂ctr is (𝐶,𝛾 )-detectable and 𝑟𝜎(𝐴𝑐𝑙 + 𝐵𝑐𝑙𝐺) < 1. In view of Lemma 4 we conclude
that Θ̂ctr is stochastically stabilizable and 𝑘 → 𝑢𝑘 = 𝐺𝑥𝑘 stabilizes Θ̂ctr in the sense of Definition 2 (ii).

To show that the optimal control 𝑘 → �̄�𝑘 also stabilizes Θ̂ctr , consider that

𝑣(∞)
𝑘 = lim

𝜅→∞
𝑣(𝜅)𝑘 = lim

𝜅→∞

𝜅
∑

𝓁=0
(⊺)𝑛𝑥(𝐗

(𝜅)
𝑘+𝓁)(𝑥𝑘+𝓁) =

∞
∑

𝓁=0
(⊺)𝑛𝑥(𝐏)(𝑥𝑘+𝓁) = 𝜈𝑘, ∀𝑘 ≥ 0 (42)

where  = 𝐴 + 𝐵𝐺; therefore, |𝑣(∞)
𝑘 | ≤ 𝑣M where,

𝑣M = 𝑟𝜎
(

(𝐼 −⊺)−1
)

|

|

|

𝑥𝑑 (𝐏)
|

|

|

(43)

hence 𝑘 → 𝑣(∞)
𝑘 is a bounded 𝑛-valued processes. Monotone convergence of each 𝐗(𝜅)

𝑘 to 𝐏 leads to convergence of 𝑣(∞)
𝑘 to 𝜈𝑘,

and the bound |𝜈𝑘| ≤ 𝑣M applies uniformly. Hence, 𝜚𝑘(𝑢) in (39d) converges to 𝜌𝑘(𝑢) in (37d), and with that, some bounds on
𝑘 → 𝜌𝑘 can be found. For this, let us set here 𝑢𝑘 = 𝐺𝑥𝑘 = −Δ(𝐏)−1Σcl(𝐏)𝑥𝑘. Then, one can evaluate,

𝜌𝑘(𝐺𝑥𝑘) = ‖𝐺𝑥𝑘 − 𝑢0𝑘‖
2
Δ(𝐏) −

1
4
‖

‖

𝐵cl(𝐏)⊺𝜂𝑘+1 −𝑢(𝐏)(𝐺𝑥𝑘)‖‖
2
Δ(𝐏)−1 +

⟨

𝑢(𝐏)𝐺𝑥𝑘,(𝐺𝑥𝑘)
⟩

=
⟨

𝑢(𝐏)𝐺𝑥𝑘,(𝐺𝑥𝑘)
⟩

= ⟨𝑢𝑑 (𝐏), |𝐺𝑥𝑘|⟩ ≥ 0

and 𝜌𝑘(𝐺𝑥𝑘) ≥
⟨

𝑢(𝐏)𝐺𝑥𝑘,(𝑢)
⟩

, ∀𝑢 ∈ R𝑚 holds true. Now, since also |𝜂𝑘| ≤ 𝑣M,

𝜌𝑘 = 𝜌𝑘(�̄�𝑘) ≥ −1
4
‖

‖

𝐵cl(𝐏)⊺𝜂𝑘+1 +𝑢(𝐏)(�̄�𝑘)‖‖
2
Δ(𝐏)−1 +

⟨

𝑢(𝐏)𝐺𝑘𝑥𝑘,(�̄�𝑘)
⟩

≥ −1
4

(

‖𝐵cl(𝐏)⊺‖2Δ(𝐏)−1‖𝑣M‖
2
Δ(𝐏)−1 + ‖𝑢𝑑 (𝐏)‖

2
Δ(𝐏)−1

)

− 𝜌𝑘(𝐺𝑥𝑘) (44)

To get an upper bound for 𝑘 → 𝜌𝑘, let us set again 𝑢𝑘 = 𝐺𝑥𝑘. Then, from optimality, we evaluate,

𝜌𝑘 ≤ 𝜌𝑘(𝐺𝑥𝑘) = ⟨𝑢(𝐏), |𝐺𝑘𝑥𝑘|⟩ (45)

which, together with (44), shows that

|𝜌𝑘| ≤ 𝑎 + ⟨𝑢(𝐏), |𝐺𝑘𝑥𝑘|⟩ = 𝑎 + 𝜌𝑘(𝐺𝑥𝑘)

holds for some 𝑎 > 0.
For the control 𝑘 → �̄�𝑘 = argmin 𝜌𝑘(𝑢) denote 𝑘 → (�̄�𝑘, �̄�𝑘, �̄�𝑘) the control and corresponding state and output. Let also

𝑘 → (�̃�𝑘, �̃�𝑘, �̃�𝑘) be the triple produced by the control �̃�𝑘 = 𝐺�̃�𝑘, and set 𝐗𝜅 = 𝐏 and 𝜂𝜅 = 𝜂(∞)
𝜅 as in (42) to get that

lim sup 1
𝜅
𝙹𝜅∞(𝑧

∗) = lim sup 1
𝜅

(

min
𝑢

max
𝜔

𝐸
[

𝜅−1
∑

𝑘=0
‖𝑧𝑘‖

2 − 𝛾2‖𝜔𝑘‖
2
|𝑥0

]

)

= lim sup 1
𝜅

(

𝐸
[

𝜅−1
∑

𝑘=0
‖�̄�𝑘‖

2 − 𝛾2‖�̄�𝑘‖
2
|𝑥0

]

)
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and similarly to (40), by replacing 𝐗𝑘−1,𝐗𝑘 → 𝐏, 𝜚𝑘 → 𝜌𝑘, 𝜂𝑘 → 𝜂(∞)
𝑘 ,

lim sup 1
𝜅

(

min
𝑢

max
𝜔

𝐸
[

𝜅−1
∑

𝑘=0
‖𝑧𝑘‖

2 − 𝛾2‖𝜔𝑘‖
2
|𝑥0

]

)

≤ lim sup 1
𝜅

(

max
𝜔

𝐸
[

𝜅−1
∑

𝑘=0
‖�̃�𝑘‖

2 − 𝛾2‖𝜔𝑘‖
2 + 𝜌𝑘(�̄�𝑘) − 𝜌𝑘(𝐺�̃�𝑘)|𝑥0

]

)

≤ lim sup 1
𝜅
𝐸
[

𝜅−1
∑

𝑘=0
‖�̄�𝑘‖

2 − 𝛾2‖�̄�𝑘‖
2
|𝑥0

]

+ lim sup 1
𝜅
𝐸
[

𝜅−1
∑

𝑘=0
𝜌𝑘 − 𝜌𝑘(𝐺�̃�𝑘)|𝑥0

]

≤ lim sup 1
𝜅
𝙹𝜅∞(�̃�) + lim sup 1

𝜅
𝐸[

𝜅−1
∑

𝑘=0
2⟨𝑢(𝐏), |𝐺𝑘�̃�𝑘|⟩ + 𝑎] (46)

the first term in the rhs above is precisely the power norm 𝔓∞(�̃�)
|

|

|�̃�=𝐺�̃�
< ∞ for the stabilizing control �̃�𝑘, 𝑘 ≥ 0, whereas, the

second term can be bounded as

lim sup 1
𝜅
𝐸[

𝜅−1
∑

𝑘=0
2⟨𝑢(𝐏), |𝐺𝑘�̃�𝑘|⟩ + 𝑎] ≤ lim sup 1

𝜅
𝐸[

𝜅−1
∑

𝑘=0
‖𝐺�̃�𝑘‖

2 + 𝑎 + 𝑏] = ̂2,𝑄(�̃�) + 𝑎 + 𝑏 < ∞

where 𝑄 = 𝐺⊺𝐺, and we use Corollary 1(ii). Thus, the stabilizing control �̃�𝑘, 𝑘 ≥ 0 provides the ultimate evaluation, showing
that the optimal power 𝐻∞-norm, 𝔓∗

∞ is finite and that 𝑘 → �̄�𝑘 is an optimal stabilizing control.
Finally, to show (38), set again 𝐗𝜅 = 𝐏, 𝜈𝜅 = 𝑣(∞)

𝜅 as in (42) with 𝔤𝜅 = 0. Then,

𝔓∗
∞ = lim sup

𝜅→∞

1
𝜅

(

min
𝑢

max
𝜔

𝐸
[

𝜅−1
∑

𝑘=0
‖𝑧𝑘‖

2 − 𝛾2‖𝜔𝑘‖
2
|𝑥0 = 0

]

)

= lim sup
𝜅→∞

1
𝜅

(

𝐸[‖𝑥0‖𝐏 + ⟨𝜈0, 𝑥0⟩ + 𝔤(𝜅)0 ]|𝑥0 = 0]
)

=

lim sup
𝜅→∞

1
𝜅
𝐸
[

𝔤(𝜅)0
|

|

|

𝑥0 = 0
]

= 𝜑1(𝐏) + lim sup
𝜅→∞

1
𝜅
𝐸

[𝜅−1
∑

𝑘=0
𝜌𝑘 −

1
4
‖𝜎⊺𝜂𝑘+1‖

2
Υ𝛾 (𝐏)−1

|

|

|

𝑥0 = 0

]

(47)

which yields the norm expression in (38).

The Inaction Region
We first resource to Remark 3 to better understand the optimal solution. The optimal control solution at the 𝑘-th stage is

precisely the problem of minimizing the difference in (32), appropriately denoted by 𝐽𝑢, wrt the choice of 𝑢𝑘 = 𝑢,

𝐽𝑢 = ‖𝑢‖2Δ(𝐏) + ⟨2Σcl(𝐏)𝑥𝑘 + 𝐵cl(𝐏)⊺𝜂𝑘+1, 𝑢⟩ + ⟨𝑢𝑑 (𝐏), |𝑢|⟩ + 𝑓𝑘, (48)

written here again as a function of 𝐏, the solution to (𝐼 −Ric)(𝑌 ) = 0. As pointed out in the remark, with the running assumption
in force, 𝑢 → 𝐽𝔲 is a convex function in which 𝑓𝑘 denotes other terms not depending on 𝑢.

Eq. (48) exposes a distinct form than that pursued in Theorem 1, and an adequate framework of ideas and interpretations can be
brought about. One important alternative derives from the notions of generalized gradients or subgradients of convex function to
express the optimality condition simply as 0 ∈ 𝜕𝐽𝑢. Applied to (48), one gets that the optimal control at time 𝑘 is expressed by

�̄�𝑘 = Δ(𝐏)−1
(

Σcl(𝐏)𝑥𝑘 +
1
2
(𝐵cl(𝐏)⊺𝜂𝑘+1 +𝑢(𝐏)𝜉𝑘)

)

(49a)

where

𝜉𝑘 =
[

𝜉1,𝑘
⋮

𝜉𝑚,𝑘

]

∈ R𝑚 is such that 𝜉𝑖𝑘 =
⎧

⎪

⎨

⎪

⎩

+1, if �̄�𝑖,𝑘 > 0,
−1, if �̄�𝑖,𝑘 < 0,
∈ (−1,+1) if �̄�𝑖,𝑘 = 0,

𝑖 = 1, 2,… , 𝑚. (49b)

The control dynamics introduce the absolute values to model a system in which the controller strives to modulate the current
uncertainty. The impact is the emergence of a region in the state space, modulated by the nonnegative diagonal matrix 𝑢(𝐏), in
which the optimal solution is zero action. An interesting interpretation is that in the face of uncertainties, the optimal policy is not
to act if, in the optimality scale, there is no considerable deviation from the zero-state (note that the 𝐻∞-problem is a regulation
control problem). This is undoubtedly a robustness approach distinct from the usual worst-case scenario.

As a result of the minimization of function 𝐽𝑢, a partition into the state space emerges, dividing it into three distinct regions
for each control input entry. Note first that 𝜂𝑘 is solely a function of 𝑥𝑘; thus, (49) is a stationary feedback control �̄�(𝑥). Each
component �̄�𝑖(𝑥), 𝑖 = 1, 2,… , 𝑚 defines three partitions (a disjoint covering) of state space R𝑛:

0
𝑖 ∶= {𝑥 ∈ R𝑛

|�̄�𝑖(𝑥) = 0}, +
𝑖 ∶= {𝑥 ∈ R𝑛

|�̄�𝑖(𝑥) > 0}, −
𝑖 ∶= {𝑥 ∈ R𝑛

|�̄�𝑖(𝑥) < 0}.
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Note that solving (37d) would be much more intricate than (49). The optimal control resembles the classic linear quadratic
regulator solution but for an affine term of state 𝑥𝑘 and a stochastic term depending on 𝑥𝑘 through the signals 𝑘 → (𝑥𝑘) and
𝑘 → (𝑢𝑘) at each future stage 𝜅 ≥ 𝑘. The form in Theorem 1 however, allows for the study of stability and the role that a
modified deterministic Riccati equation plays.

Suppose 𝜂𝑘+1 is known. In that case, a full solution to the optimization problem in (49) is presented in3 (see Theorem 5.12),
based on a modified version of the SOR method27. Here, in Section 4, a Monte Carlo estimation method is proposed and applied
to estimate 𝜂𝑘+1.

Asymptotic solutions
The advances in3 regard the optimal solution written generally as (49). Before that, a framework of asymptotic optimal

feedback controller formed the basis for the control understanding of discrete-time CSVIU systems2 and for the Brownian
motion-driven continuous-time case1 solutions. It relies on the partitions mentioned above and gives interesting insights for
simple approximations of the optimal solution.

The intersection 0 =
⋂𝑚

𝑖=1 
0
𝑖 receives special attention, and is said to be the global inaction region, where, notably, all

control components �̄�𝑖 are null. If that region is non-empty, it surrounds the neighborhood of the equilibrium point, and the state
vector evolves in open loop while inside it.

On the other hand, let us consider regions of state space in +
𝑖 or −

𝑖 that are sufficiently distant from 0
𝑖 for each 𝑖, and

denote the optimal control signal by 𝑠𝑢 ∶= [ 𝑠1,𝑢 ⋯ 𝑠𝑚,𝑢 ]⊺ with 𝑠𝑖,𝑢 ∈ {+1,−1}, 1 ≤ 𝑖 ≤ 𝑚. For each 𝑖, we define the set
𝑠𝑢,𝑖

𝑖 = {𝑥 ∈ R𝑛 ∶ sign(�̄�𝑖(𝑥)) = 𝑠𝑢,𝑖}, and the corresponding homogeneous signals region is defined in the intersection
𝑠𝑢 = ∩𝑚

𝑖=1
𝑠𝑢,𝑖
𝑖 , for each 𝑠𝑢; clearly, the signal vector 𝑠𝑢 of �̄�(𝑥) remains constant for each 𝑥 ∈ 𝑠𝑢 .

State vector signals also have an impact on the control solution. Let us consider the open orthants sets, O𝑗 , 𝑗 = 1,…2𝑛 of R𝑛.
A point 𝑥 is said to lie in an asymptotic region of the state space if 𝑥 ∈ 𝑠𝑢 ∩O𝑗 , for some 𝑗, and 𝑥, is “sufficiently far” from any
of the signal switchings boundaries of O𝑗 and 𝑠𝑢 . With that, inside any asymptotic region, state and optimal control vectors are
nonzero with constant signals (𝑥) = 𝑠𝑥 and 𝑠𝑢, respectively.

Following the assumptions in Theorem 1, consider 𝐏 ⪰ 0 that satisfies the modified Riccati equation (𝐼 −Ric)(𝑌 ) = 0. Within
one of the asymptotic regions, the state of Θ̂ctr evolves and each of the signs, say 𝑘 → (𝑥𝑘) ≃ �̄�𝑥 and 𝑘 → (𝑢𝑘) ≃ �̄�𝑢, ∀𝑘, are
constant during a sufficiently long time period. One can approximate (see (42)),

𝜂1(𝑥0) = 𝐸
[

∞
∑

𝑘=1
(⊺)𝑘𝑥(𝐏)(𝑥𝑘)|𝑥0

]

≃ 𝔳(�̄�𝑥, �̄�𝑢) ∶= 𝐸
[

∞
∑

𝑘=1
(⊺)𝑘𝑥(𝐏)�̄�𝑥|𝑥0

]

= (𝐼 −)−⊺𝑥(𝐏)�̄�𝑥 (50)

with  = 𝐴 + 𝐵𝐺 and 𝐺 = −Δ(𝐏)−1Σcl(𝐏). That leads to an approximate saddle point valid within the asymptotic region
associated to the signals �̄�𝑥, �̄�𝑢, in which,

�̄�(𝑥) ≃ −Δ(𝐏)−1
(

Σcl(𝐏)𝑥 + 1
2
(𝐵cl(𝐏)⊺𝔳(�̄�𝑥, �̄�𝑢) +𝑢(𝐏)�̄�𝑢)

)

(51)

�̄�(𝑥, 𝑢) ≃ −Υ𝛾 (𝐏)−1
(

Ψ(𝐏)𝑥 + Γ(𝐏)𝑢 + 1
2
𝜎⊺𝔳(�̄�𝑥, �̄�𝑢)

)

(52)

A strategy to deal with the stochastic feature of the optimization in (49) is to find the inaction region and asymptotic regions with
asymptotically valid optimal controllers, to act as approximations. The key point is that for each control action 𝑢𝑖 of 𝑢 = [ 𝑢1 ⋯ 𝑢𝑚 ]⊺

an inaction region, 0
𝑖 , separates regions +

𝑖 and −
𝑖 . Some interpolation method applies to connect the asymptotic control

solutions to the inaction region.

Global saddle point solution and the inaction region
In view of the assumptions in Theorem 1 the optimal saddle point mentioned in Remark 4, 𝑘 → (�̄�𝑘, �̄�𝑘) is finite and global in

R𝑚 ×R𝑟. Then, any compact sets  and  containing (�̄�𝑘, �̄�𝑘) can be taken to apply28, Theor. 2.3 to conclude that the saddle point
solution of the game is a pure strategy solution. The following theorem adapts the results in3, Sec. 5 to the 𝐻∞ problem. The proof
is a very similar extension, thus, omitted here.

Theorem 2. (Global saddle point solution) Under the assumptions of Theorem 1 consider

�̄�𝑘 = −Δ(𝐏)−1
(

Σcl(𝐏)𝑥𝑘 +
1
2
(𝐵cl(𝐏)⊺𝜂𝑘+1 + 𝜉𝑘)

)

, (53a)

�̄�𝑘 = −Υ𝛾 (𝐏)−1
(

Ψ(𝐏)𝑥𝑘 + Γ(𝐏)�̄�𝑘 +
1
2
𝜎⊺𝜂𝑘+1

)

(53b)
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for 𝜉𝑘 = [ 𝜉1,𝑘 … 𝜉𝑚,𝑘 ]⊺ such that |𝜉𝑘| ≤ 𝑢𝑑 (𝐏), understood componentwisely, and 𝜂𝑘+1 = 𝐸[𝜈𝑘+1|𝑥𝑘] is determined by (37a),
for each 𝑘 ≥ 0. Then, 𝑘 → (�̄�𝑘, �̄�𝑘) is the optimal saddle point in Remark 4. Besides, whenever |𝜉𝑖,𝑘| < (𝑢𝑑 (𝐏))𝑖, �̄�𝑖 = 0 and
𝑥𝑘 ∈ 0

𝑖 satisfying,
|

|

|

2⟨Σcl(𝐏)𝑖, 𝑥𝑘⟩ + ⟨𝐵cl(𝐏)𝑖, 𝜂𝑘+1⟩
|

|

|

< (𝑢𝑑 (𝐏))𝑖 (54)

Remark 5. The characterization of an inaction region 0
𝑖 is given by setting �̄�𝑖,𝑘 = 0 in (53a) and noting that, 𝜉𝑖,𝑘 ∈ (−𝑐𝑖,+𝑐𝑖)

necessarily, with 𝑐𝑖 = (𝑢𝑑 (𝐏))𝑖. Hence, the inequality (54) is satisfied for each 𝑥 ∈ 0
𝑖 . The region’s boundaries 0

𝑖 seem to be
shaped as parallel hyperplanes; however, 𝜂𝑘+1 = 𝐸[𝜈𝑘+1|𝑥𝑘], thus depending on the state point 𝑥𝑘 = 𝑥.

Remark 6. The pair (�̄�𝑘, �̄�𝑘) at any stage 𝑘 ≥ 0, expresses the “global saddle point solution” of the CSVIU dynamic game. It is a
pure strategy solution, and the optimality holds globally, namely, irrelevant of the particular orthants sets O𝑗 or regions −

𝑖 ,
0
𝑖

and +
𝑖 of R𝑛, for each 𝑖 = 1,… , 𝑚 and 𝑗 = 1,… , 2𝑛.

4 A NUMERICAL EXAMPLE

This section illustrates the design of a suboptimal 𝐻∞-control problem. Recall that, due to the presence of the absolute value
function in the dynamic equation (1), the optimal feedback depends on the signal of each of the current control entries, see (49).
Concomitantly, future signal values of the state vector along the path impact the solution through the expected value 𝜂𝑘+1.

Algorithm 1 comprises an estimate for the expected value 𝜂𝑘+1 given the present state 𝑥𝑘 of the controlled CSVIU process at
some stage 𝑘, along future time stages 𝑘 + 1, 𝑘 + 2…. The akin of the optimal control input solves the subdifferential problem
framed in (49), with 𝜂𝑘+1 replaced by �̂�𝑘+1 as in Step 2, or by the estimate in Remark 7; see the Algorithm 1. The control design
presented therein applies to any Θ̂ctr system that satisfies the conditions in Theorem 1.

The optimal control and the maximum disturbance laws both rely on the conditional expectation 𝜂𝑘+1 = 𝐸[𝜈𝑘+1|𝑥𝑘], 𝑘 ≥ 0 in
which 𝑥𝑘 is the current state of the system. The vector 𝜂𝑘+1 is estimated by Algorithm 1 and

The series involved in the calculus of 𝜂𝑘+1 is truncated to not fewer than a 𝐾 stages sum, see (55). The algorithm employs
sample paths trajectories to calculate a sample 𝜂𝑘+1(𝑥

(𝑖)
𝑘 ) from signal vectors (𝑥(𝑖)𝓁 ) of a controlled realization 𝓁 → 𝑥(𝑖)𝓁 for

𝑘 ≤ 𝓁 ≤ 𝑘 +𝐾 . Recall that if 𝜂𝑘+1 and 𝑥𝑘 are known, the optimal control action 𝑢𝑘 is the result of the optimization problem in
(49), whose solution is provided by3, Theor. 5.12 for each 𝑘.

The experiment in the sequel approximates the norm 𝛾∗ of a system applying Algorithm 1. Given a suboptimal gain 𝛾 > 0,
we also consider the impact of the noise terms 𝜎𝑥𝜀𝑥 and 𝜎𝑢𝜀𝑢 on the system’s experimental gain �̂� obtained from numerical
evaluations.

Consider the following time invariant “poorly-know” system for 𝑘 ≥ 0, with single control and noise inputs,

𝑥(𝑘 + 1) =
[

0.85 −1
1.3 0.25

]

𝑥(𝑘) +
[

1
1.2

]

𝑢(𝑘) +
[

0.2
1

]

𝜔(𝑘), (57)

where 𝜔(·) is a deterministic persistent disturbance function with a bounded mean. Admitting that sharper mathematical
modeling of the actual plant is not achievable, we adopt the CSVIU approach for the reference model in (57), by including the
noise-modulating terms,

𝜎𝑥 =
[

0.22 0
0 0.18

]

, 𝜎𝑥 =
[

0.18 0
0 0.45

]

, 𝜎𝑢 =
[

0.16
0.11

]

, 𝜎𝑢 =
[

0.24
0.16

]

, (58)

to form a dynamical model system Θ̂ctr as in (1). Besides, set 𝐶 = 𝐼2, 𝐷 = 𝐵, and 𝐹 = 𝜎; with such matrix 𝐶 the system is
trivially detectable.

Let 𝛾∗ be the ∞-norm of the system Θ̂ctr for the optimal ∞-problem introduced in (5). A reasonable alternative to the norm
𝛾∗ is a “close to optimal” norm, and let 𝛿 be a small positive number, the admissible error precision to 𝛾∗. In the first part of
the experiment, we set 𝛿 = 10−2; starting with some large enough number 𝛾 > 0, we decrease 𝛾 of 𝛿 steps until finding the
value 𝛾1 = 2.23. It is the smallest positive scalar within the 𝛿 precision that makes simultaneously, (𝐼 − Ric)(𝑌 ) = 0 solvable
and 𝑟𝜎() < 1, with  as in Algorithm 1. The control problem resulting from setting 𝛾2 = 3 is also considered for sensitivity
analysis. We get the following matrices as the solution of the Riccati equation,

𝐏𝛾1 =
[

1.5493 −0.5468
−0.5468 4.0877

]

, 𝐏𝛾2 =
[

1.5101 −0.5681
−0.5681 3.7601

]

. (59)
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Algorithm 1 Estimating the vector 𝜂𝑘+1 = 𝐸[𝜈𝑘+1|𝑥𝑘] to solve the optimization problem in (49)

Find 𝐏 ≻ 0 that solves (𝐼 − Ric)(𝑌 ) = 0 for a detectable system Θ̂ctr . Denote  = 𝐴 + 𝐵𝐺 with 𝐺 = −Δ(𝐏)−1Σcl(𝐏) and
verify whether 𝑟𝜎() < 1. The present state of system Θ̂ctr is set as 𝑥 ∈ R𝑛.
Step 0. Adopt 𝑥0 = 𝑥 and (𝑥(𝑖)0 ) = (𝑥0) for each 𝑖. For 𝑖 = 1, start a Monte Carlo sequence from a realization of Θ̂ctr with the
feedback 𝑢(1)𝑘 = 𝐺𝑥(1)𝑘 on an interval 0 ≤ 𝑘 ≤ 𝜅+𝐾 , providing an initial choice of signal vectors 𝑠(1)𝑘 ∶= (𝑥(1)𝑘 ), 0 ≤ 𝑘 ≤ 𝜅+𝐾 .
A set of samples is determined as

𝜂𝑘+1(𝑥
(𝑖)
𝑘 ) =

𝜅+𝐾
∑

𝓁=𝑘+1
(⊺)𝓁−𝑘𝑥(𝐏)(𝑥

(𝑖)
𝓁 ), 0 ≤ 𝑘 ≤ 𝐾 (55)

with 𝑖 = 1.
Substep 1a. Set 𝑘 = 0 and apply 𝜂𝑘+1(𝑥

(𝑖)
𝑘 ) as it were the true 𝜂𝑘+1 and solve the optimization problem in (49) according

to3, Theor. 5.12.
Substep 1b. Simulate the one-step time evolution of system Θ̂ctr with such control to get a sample 𝑥(𝑖)𝑘+1, if necessary, replace
the signal vector (𝑥(𝑖)𝑘+1). Solve the optimization problem in (49) for 𝑘 + 1 with 𝑥(𝑖)𝑘+1 and 𝜂𝑘+2(𝑥

(𝑖)
𝑘+1) in (55). Set 𝑘 = 𝑘 + 1

and repeat this substep up to 𝑘 = 𝐾 .
Substep 1c. Create the signal vector sequence 𝑠𝑖+1𝑘 , 0 ≤ 𝑘 ≤ 𝐾 + 𝜅 by keeping 𝑠𝑖+10 = (𝑥0), setting 𝑠𝑖+1𝑘 = (𝑥(𝑖)𝑘 ), 1 ≤ 𝑘 ≤ 𝐾
from the previously substep updated values, and complete the remaining values by adopting 𝑠(𝑖+1)𝑘 =  (𝑖+1)(𝑥𝐾 ), 𝐾 < 𝑘 ≤ 𝜅+𝐾 .
If 𝑖 < 𝐼 , set 𝑖 = 𝑖 + 1 and return to Substep 1a.
Step 2. After a number of repetitions 𝐼 , discard the first 𝜄 samples and define the estimate

�̂�1(𝑥) =
𝜅+𝐾
∑

𝑘=1

[

(

(⊺)𝑘𝑥(𝐏)
) 1
𝐼 − 𝜄

𝐼
∑

𝑖=𝜄+1
𝑠(𝑖)𝑘

]

(56)

Solve the optimization problem in (49) for 𝑥 and �̂�1(𝑥) and apply the solution as an approximation to the optimal control at
𝑥0 = 𝑥.
Step 3. At any successive state, 𝑥𝓁 ,𝓁 > 1, repeat the procedure with 𝑥𝓁 in place of 𝑥0.

Remark 7. The number 𝐾 is a finite horizon approximation for the solution; the maximum length is 𝜅 +𝐾 when 𝑘 = 0. It can
be chosen to attain the required precision regarding the numerical relevance of the spectral radius 𝑟𝜎(𝐾 ).

A variation of the method to speed up possible convergence is to promote partial averages after discarding the first 𝜄
samples. In this case, the expression of 𝜂𝑘+1(𝑥

(𝑖)
𝑘 ) in (55) is substituted in Substeps 1a and 1b by

𝜂𝑘+1(𝑥
(𝑖)
𝑘 ) =

𝜅+𝐾
∑

𝓁=𝑘+1

[

(

(⊺)𝓁−𝑘𝑥(𝐏)
) 1
𝑖 − 𝜄

𝑖
∑

𝑗=𝜄+1
(𝑥(𝑗)𝓁 )

]

, 0 ≤ 𝑘 ≤ 𝐾.

and Step 2 would be simply to adopt �̂�1(𝑥) = 𝜂1(𝑥
(𝑖)
0 ) with 𝑖 = 𝐼 , as above.

Note that 𝐏𝛾1 ≻ 𝐏𝛾2 and eig(𝛾1) = 0.0502 ± 0.6062𝑖, and eig(𝛾2) = 0.0425 ± 0.6045𝑖 are the corresponding eigenvalues of .
Choosing the gain 𝛾1, after successive powers

(

𝛾1

)𝜅 , 𝜅 ≥ 0 the sequence approaches the zero matrix for some 𝜅 large enough.
We set 𝜅 = 12 and 𝐾 = 50, and for an initial condition 𝑥0 = [10 10]⊤, Fig. 1 presents an optimal control realization (∗) and
the respective maximum disturbance (◦) for the CSVIU system Θ̂ctr assembled in (57)–(58). Fig. 2 shows the corresponding
controlled state trajectory.

Now, for the ∞-norm estimation, set the initial state 𝑥0 = 0 ≡ [0 0]⊺ and a time horizon of 𝑇 = 50. We estimate the norm as,

�̂� ∶=
[(

𝑇
2,𝐼 (𝑧) − 𝐽 𝑇

∞(𝑧)
)

∕𝑇
2,𝐼 (𝜔)

]1∕2, (60)

in which, the two average measures,

𝑇
2,𝐼 (𝑧) = 𝐸𝑥

[

𝑇
∑

𝑘=0
‖𝑧𝑘‖

2|
|

|

𝑥(0) = 0
]

, and 𝑇
2,𝐼 (𝜔) = 𝐸𝑥

[

𝑇
∑

𝑘=0
‖𝜔𝑘‖

2|
|

|

𝑥(0) = 0
]

,
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are estimated by Monte Carlo simulations, and the scalar �̂� is the system’s performance obtained numerically. We ran eight
Monte Carlo experiments, and Tables 1 and 2 present the results. Simulations 1–5 employ decreasing integer values of 𝛾 , whereas
simulations 6–8 refine the precision of 𝛾 . The experiments suggest that decreasing 𝛾 also decreases the deviation of the system’s
experimental gain. Note that, as the 𝛾 approaches the norm 𝛾∗ of Θ̂ctr , the estimation error |𝛾 − �̂�| of the energy gain of the
system tends to zero.

The numerical experiments were repeated, this time replacing the matrices 𝜎𝑥 and 𝜎𝑢 in (58) by matrices 10−2𝜎𝑥 and 10−2𝜎𝑢,
respectively. Table 2 furnishes the results, and the estimation error |𝛾 − �̂�| is null in all the cases due to the minor influence of the
noise terms 10−2𝜎𝑥𝜀𝑥 and 10−2𝜎𝑢𝜀𝑢 on the nominal system.

5 CONCLUSION

This paper formulates and solves the 𝐻∞-control problem for discrete-time CSVIU systems. Among the significant features of
this class of stochastic systems, we stress its ability to account for an infinite energy disturbance signal in an infinite horizon
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TABLE 1 Numerical results from eight Monte Carlo experiments.

Experiment 𝛿 𝛾 𝐽 𝑇
∞(𝑧) 𝑇

2,𝐼 (𝑧) 𝑇
2,𝐼 (𝜔) �̂� |𝛾 − �̂�|

1 - 7 29.6149 29.9791 0.0074 7.0154 0.0154
2 - 6 30.9623 31.4846 0.0145 6.0017 0.0017
3 - 5 27.6991 28.3994 0.0280 5.0011 0.0011
4 - 4 30.4845 31.6952 0.0757 3.9992 0.0008
5 - 3 29.8476 32.1277 0.2533 3.0003 0.0003
6 - 2.5 28.3880 32.1417 0.6006 2.5000 0
7 1 ⋅ 10−2 2.23 33.5676 39.2997 1.1527 2.2300 0
8 1 ⋅ 10−4 2.2297 35.0355 41.1868 1.2373 2.2297 0

TABLE 2 Monte Carlo experiments, for 10−2𝜎𝑥, 10−2𝜎𝑢

Experiment 𝛿 𝛾 𝐽 𝑇
∞(𝑧) 𝑇

2,𝐼 (𝑧) 𝑇
2,𝐼 (𝜔) �̂� |𝛾 − �̂�|

1 - 7 0.0026 0.0027 7.0709e-07 7.0000 0
2 - 6 0.0029 0.0030 1.3963e-06 6.0000 0
3 - 5 0.0036 0.0037 3.5527e-06 5.0000 0
4 - 4 0.0029 0.0031 7.7426e-06 4.0000 0
5 - 3 0.0030 0.0032 2.5276e-05 3.0000 0
6 - 2.5 0.0032 0.0036 6.5541e-05 2.5000 0
7 1 ⋅ 10−2 2.23 0.0032 0.0038 1.1155e-04 2.2300 0
8 1 ⋅ 10−4 2.2297 0.0035 0.0041 1.2328e-04 2.2297 0

approach and underline the inaction region in the state space induced by the optimal solution. In such a behavior resides a novel
form of attaining robustness.

Stability conditions under worst-case disturbances are derived. It turns out that stability holds provided that the solution of
a perturbed Lyapunov-type equation exists and a detectability notion holds. Differential game machinery is the underpinning
technique in the core to sufficient conditions for an optimal stabilizing compensator. The CSVIU dynamic game gives rise to a
modified Riccati equation, and the existence of such a controller (as well as the optimal saddle point solution) relies partly on the
solvability of this equation. Together with a spectral radius test of an associate matrix, they epitomize the results.

The optimal solution is explored by inspecting the ensuing static minimization and referring to a method with assured
convergence. The paper then points out the inaction regions and the idea of asymptotic solutions. To complete the characterization,
it frames the solution to the saddle point of the underlying stochastic game, in which the min–max induced cost 𝔓∗

∞ connects
directly to the norm definition and the 𝐻∞ performance of the CSVIU system. The article also provides a critical Monte Carlo
method that allows the solution computation at any state value of system Θ̂ctr . An example illustrates the method.
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APPENDIX

A PROOF OF LEMMA 3

Similarly to the proof of Lemma 1, one can evaluate the variation of (28) for some admissible control 𝑘 → 𝑢𝑘 along successive
time steps of the state variable 𝑘 → 𝑥𝑘 for the dynamical system Θ̂ctr . Denote the auxiliary function 𝑊 ∶ R×R𝑛 → R depending
on the sequences 𝐗, 𝔯 and 𝔤, which applies to the triple 𝑘 → (𝑥𝑘, 𝑢𝑘, 𝜔𝑘) as 𝑊 (𝑘, 𝑥) ∶= 𝑥⊺𝐗𝑘𝑥 + ⟨𝔯𝑘, |𝑥|⟩ + 𝔤𝑘. We write
⟨𝔯, |𝑥|⟩ = ⟨(𝑥), 𝔯 · 𝑥⟩ to evaluate,

𝑊 (𝑘 + 1, 𝑥𝑘+1) −𝑊 (𝑘, 𝑥𝑘) = ‖𝑥𝑘+1‖
2
𝐗𝑘+1

+ ⟨𝑠𝑘+1, 𝔯𝑘+1 · 𝑥𝑘+1⟩ + 𝔤𝑘+1 − (‖𝑥𝑘‖2𝐗𝑘
+ ⟨𝑠𝑘, 𝔯𝑘 · 𝑥𝑘⟩ + 𝔤𝑘)

= ‖𝐴𝑥𝑘 + 𝐵𝑢𝑘‖
2
𝐗𝑘+1

+ 2(𝐴𝑥𝑘 + 𝐵𝑢𝑘)⊺𝐗𝑘+1𝜎𝑢(𝑥𝑘, 𝑢𝑘)𝜁0,𝑘 + ‖𝜎𝑢(𝑥𝑘, 𝑢𝑘)𝜁0,𝑘‖2𝐗𝑘+1
− ‖𝑥𝑘‖

2
𝐗𝑘

+ ⟨𝑠𝑘+1, 𝔯𝑘+1 · (𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝜎𝑢(𝑥𝑘, 𝑢𝑘)𝜁0,𝑘)⟩ − ⟨𝑠𝑘, 𝔯𝑘 · 𝑥𝑘⟩ + 𝔤𝑘+1 − 𝔤𝑘 (A1)

where the state signal vector on stages 𝑘 and 𝑘 + 1 are denoted respectively by 𝑠𝑘 and 𝑠𝑘+1. Also, there holds,

𝐸
[

‖𝜎𝑢(𝑥𝑘, 𝑢𝑘)𝜁0,𝑘‖2𝑌 |𝑥𝑘 = 𝑥, 𝑢𝑘 = 𝑢
]

= ‖𝑥‖2𝑥(𝑌 )
+ ⟨(𝑥),𝑥(𝑌 )𝑥⟩ + ‖𝑢‖2𝑢(𝑌 )

+ ⟨(𝑢),𝑢(𝑌 )𝑢⟩ + 𝜑1(𝑌 ).

Analogously, denote the control signal vector by 𝑠𝑢 ∶= (𝑢), and by adding and subtracting the terms ‖𝑧𝑘‖2 − 𝛾2‖𝜔𝑘‖
2, one gets

𝑊 (𝑘 + 1, 𝑥𝑘+1) −𝑊 (𝑘, 𝑥𝑘) = ‖𝐴𝑥𝑘‖
2
𝐗𝑘+1

+ ‖𝑥𝑘‖
2
𝑥(𝐗𝑘+1)

+ ‖𝑥𝑘‖
2
𝐶⊺𝐶 − ‖𝑥𝑘‖

2
𝐗𝑘+1

+ ⟨𝑠𝑘,𝑥(𝐗𝑘+1)𝑥𝑘⟩ − ⟨𝑠𝑘, 𝔯𝑘 · 𝑥𝑘⟩

+ ‖𝜔𝑘‖
2
Υ𝛾 (𝐗𝑘+1)

+ 2⟨𝐹 ⊺(𝐶𝑥𝑘 +𝐷𝑢𝑘), 𝜔𝑘⟩ + 2(𝐴𝑥𝑘 + 𝐵𝑢𝑘)⊺𝐗𝑘+1𝜎𝜔𝑘 + ⟨𝑠𝑘+1 · 𝔯𝑘+1, (𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝜎𝜔𝑘)⟩

+ ‖𝑢𝑘‖
2
Λ(𝐗𝑘+1)

+ 2⟨𝐵⊺𝐗𝑘+1𝐴𝑥𝑘, 𝑢𝑘⟩ + ⟨𝑠𝑢𝑘,𝑢(𝐗𝑘+1)𝑢𝑘⟩ + 2⟨𝐷⊺𝐶𝑥𝑘, 𝑢𝑘⟩

+ 𝔤𝑘+1 − 𝔤𝑘 + 𝜑1(𝐗𝑘+1) + 𝑚𝑘 − [‖𝑧𝑘‖2 − 𝛾2‖𝜔𝑘‖
2] (A2)

where the remaining process 𝑘 → 𝑚𝑘 is given by,

𝑚𝑘 = ⟨2𝐗𝑘+1(𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝜎𝜔𝑘) + 𝑠𝑘+1 · 𝔯𝑘+1, [𝜎𝑥 + �̄�𝑥 diag(|𝑥|) 𝜎𝑢 + �̄�𝑢 diag(|𝑢|)][𝜀𝑥(𝑘) 𝜀𝑢(𝑘)]⊺⟩

http://dx.doi.org/10.1080/01630563.2014.895765
http://dx.doi.org/10.1016/j.automatica.2019.108660
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is a zero {𝑘}-martingale. Note that the difference in (A2) depends only on 𝑥𝑘, 𝑢𝑘 and 𝜔𝑘 and to that point, let us denote
Δ𝑊 (𝑥𝑘, 𝑢𝑘, 𝜔𝑘) ∶= 𝑊 (𝑘 + 1, 𝑥𝑘+1) −𝑊 (𝑘, 𝑥𝑘). Set also 𝜂𝑘 ∶= 𝑠𝑘 · 𝔯𝑘 and 𝜂𝑘+1 ∶= 𝑠𝑘+1 · 𝔯𝑘+1. By performing some algebraic
manipulations in (A2), having in mind the assumption Υ𝛾 (𝐗𝑘) ≺ 0,∀𝑘, one gets an upper bound for the lhs below. Set 𝜔𝑘 = 𝜔,

Δ𝑊 (𝑥𝑘, 𝑢𝑘, 𝜔) + [‖𝑧𝑘‖2 − 𝛾2‖𝜔‖2] =
‖𝐴𝑥𝑘‖

2
𝐗𝑘+1

+ ‖𝑥𝑘‖
2
𝑥(𝐗𝑘+1)

+ ‖𝑥𝑘‖
2
𝐶⊺𝐶 − ‖𝑥𝑘‖

2
𝐗𝑘+1

+ ⟨𝐴⊺𝜂𝑘+1 +𝑥(𝐗𝑘+1)𝑠𝑘 − 𝜂𝑘, 𝑥𝑘⟩+

‖𝜔‖2Υ𝛾 (𝐗𝑘+1)
+ ⟨2Ψ(𝐗𝑘+1)𝑥𝑘 + 2Γ(𝐗𝑘+1)𝑢𝑘 + 𝜎⊺𝜂𝑘+1, 𝜔⟩ + ‖𝑢𝑘‖

2
Λ(𝐗𝑘+1)

+

⟨2Σ(𝐗𝑘+1)𝑥𝑘 + 𝐵⊺𝜂𝑘+1 +𝑢(𝐗𝑘+1)𝑠𝑢𝑘, 𝑢𝑘⟩ + 𝔤𝑘+1 − 𝔤𝑘 + 𝜑1(𝐗𝑘+1) + 𝑚𝑘

≤ ‖𝐴𝑥𝑘‖
2
𝐗𝑘+1

+ ‖𝑥𝑘‖
2
𝑥(𝐗𝑘+1)

+ ‖𝑥𝑘‖
2
𝐶⊺𝐶 − ‖𝑥𝑘‖

2
𝐗𝑘+1

+ ⟨𝐴⊺𝜂𝑘+1 +𝑥(𝐗𝑘+1)𝑠𝑘 − 𝜂𝑘, 𝑥𝑘⟩+

max
𝜔

‖𝜔 − 𝜔0
𝑘‖

2
Υ𝛾 (𝐗𝑘+1)

− ‖𝜔0
𝑘‖

2
Υ𝛾 (𝐗𝑘+1)

+ 𝔤𝑘+1 − 𝔤𝑘 + 𝜑1(𝐗𝑘+1) + 𝑚𝑘+

‖𝑢𝑘‖
2
Λ(𝐗𝑘+1)

+ ⟨2Σ(𝐗𝑘+1)𝑥𝑘 + 𝐵⊺𝜂𝑘+1 +𝑢(𝐗𝑘+1)𝑠𝑢𝑘, 𝑢𝑘⟩ (A3)

which shows (29) and the fact that the equality is attained if 𝜔𝑘 = 𝜔0
𝑘 in (31a).

Now, suppose that 𝜔𝑘 = 𝜔0
𝑘. One gets for some 𝑢𝑘 = 𝑢,

Δ𝑊 (𝑥𝑘, 𝑢, 𝜔0
𝑘) + [‖𝑧𝑘‖2 − 𝛾2‖𝜔0

𝑘‖
2] =

𝑥⊺𝑘
(

𝐴⊤𝐗𝑘+1𝐴 +𝑥(𝐗𝑘+1) + 𝐶⊺𝐶 − 𝐗𝑘
)

𝑥𝑘 + ⟨𝐴⊺𝜂𝑘+1 +𝑥(𝐗𝑘+1)𝑠𝑘 − 𝜂𝑘, 𝑥𝑘⟩+
‖𝑢‖2Δ(𝐗𝑘+1)

+ ⟨2Σ(𝐗𝑘+1)𝑥𝑘 + 𝐵⊺𝜂𝑘+1 +𝑢(𝐗𝑘+1)𝑠𝑢𝑘 − Γ(𝐗𝑘+1)⊺Υ𝛾 (𝐗𝑘+1)−1
(

2Ψ(𝐗𝑘+1)𝑥𝑘 + 𝜎⊺𝜂𝑘+1
)

, 𝑢⟩+

− ‖

‖

‖

Ψ(𝐗𝑘+1)𝑥𝑘 +
1
2
𝜎⊺𝜂𝑘+1

‖

‖

‖

2

Υ𝛾 (𝐗𝑘+1)−1
+ 𝔤𝑘+1 − 𝔤𝑘 + 𝜑1(𝐗𝑘+1) + 𝑚𝑘 (A4)

Now, by one-stage minimization, we get that,

Δ𝑊 (𝑥𝑘, 𝑢, 𝜔0
𝑘) + [‖𝑧𝑘‖2 − 𝛾2‖𝜔0

𝑘‖
2] ≥

𝑥⊺𝑘
(

𝐴⊤𝐗𝑘+1𝐴 +𝑥(𝐗𝑘+1) + 𝐶⊺𝐶 − 𝐗𝑘
)

𝑥𝑘 + ⟨𝐴⊺𝜂𝑘+1 +𝑥(𝐗𝑘+1)𝑠𝑘 − 𝜂𝑘, 𝑥𝑘⟩+

min
𝑢

[

‖𝑢 − 𝑢0𝑘‖
2
Δ(𝐗𝑘+1)

− ‖𝑢0𝑘‖
2
Δ(𝐗𝑘+1)

]

− ‖

‖

‖

Ψ(𝐗𝑘+1)𝑥𝑘 +
1
2
𝜎⊺𝜂𝑘+1

‖

‖

‖

2

Υ𝛾 (𝐗𝑘+1)−1
+ 𝔤𝑘+1 − 𝔤𝑘 + 𝜑1(𝐗𝑘+1) + 𝑚𝑘 (A5)

where 𝑢0𝑘 is given by (31b), which also allows us to write (30). The equality is attained if 𝑢𝑘 is chosen as the minimizer of the
expression within brackets in (A5), and the expressions in the lemma are thus shown.

B PROOF OF LEMMA 4

Let us consider the feedback control 𝑢𝑘 = 𝐺𝑥𝑘 and 𝜔𝑘 = 𝜔0
𝑘 as in Lemma 3. Denote the auxiliary function 𝑉 ∶ R𝑛×R𝑚×R𝑟 →

R depending on the sequences 𝐗, 𝜈 and 𝔤, which applies to the triple 𝑘 → (𝑥𝑘, 𝑢𝑘 = 𝐺𝑥𝑘, 𝜔0
𝑘) as,

𝑉 (𝑥𝑘, 𝐺𝑥𝑘, 𝜔
0
𝑘) ∶= 𝑥⊺𝑘𝐗𝑘𝑥𝑘 + ⟨𝜈𝑘, |𝑥𝑘|⟩ + 𝔤𝑘

and its variation Δ𝑉 (𝑥𝑘, 𝐺𝑥𝑘, 𝜔0
𝑘) ∶= 𝑉 (𝑥𝑘+1, 𝐺𝑥𝑘+1, 𝜔0

𝑘+1) − 𝑉 (𝑥𝑘, 𝐺𝑘, 𝜔0
𝑘). Denote 𝑠𝑘 = (𝑥𝑘) and 𝑠𝑢𝑘 = (𝑢𝑘). With the

choice of 𝜔0
𝑘, one gets similar to eq. (A4) in Lemma 3 that

𝐸[Δ𝑉 (𝑥𝑘, 𝑢, 𝜔0
𝑘) + [‖𝑧𝑘‖2 − 𝛾2‖𝜔0

𝑘‖
2
|𝑥𝑘] =

𝑥⊺𝑘
(

𝐴⊤𝐗𝑘+1𝐴 +𝑥(𝐗𝑘+1) + 𝐶⊺𝐶 − 𝐗𝑘
)

𝑥𝑘 + ⟨𝐴⊺𝜈𝑘+1 +𝑥(𝐗𝑘+1)𝑠𝑘 − 𝜈𝑘, 𝑥𝑘⟩+

− ‖

‖

‖

Ψ(𝐗𝑘+1)𝑥𝑘 + Γ(𝐗𝑘+1)𝑢𝑘 +
1
2
𝜎⊺𝜈𝑘+1

‖

‖

‖

2

Υ𝛾 (𝐗𝑘+1)−1
+ ‖𝑢𝑘‖

2
Λ(𝐗𝑘+1)

+ ⟨2Σ(𝐗𝑘+1)𝑥𝑘 + 𝐵⊺𝜈𝑘+1 +𝑢(𝐗𝑘+1)𝑠𝑢𝑘, 𝑢𝑘⟩+

𝔤𝑘+1 − 𝔤𝑘 + 𝜑1(𝐗𝑘+1) =

𝑥⊺𝑘
(

𝛾 (𝐗𝑘+1) + 𝐶⊺𝐶 − 𝐗𝑘+1 + 𝐺⊺Δ(𝐗𝑘+1)𝐺 + Σ(𝐗𝑘+1)⊺𝐺 + 𝐺⊺Σ(𝐗𝑘+1)−
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𝐺⊺Γ(𝐗𝑘+1)⊺Υ𝛾 (𝐗𝑘+1)−1Ψ(𝐗𝑘+1) − Ψ(𝐗𝑘+1)⊺Υ𝛾 (𝐗𝑘+1)−1Γ(𝐗𝑘+1)𝐺 − 𝐗𝑘+1

)

𝑥𝑘+

⟨

(

𝐴cl(𝐗𝑘+1) + 𝐵cl(𝐗𝑘+1)𝐺
)⊺𝜈𝑘+1 +𝑥(𝐗𝑘+1)𝑠𝑘 + 𝐺⊺𝑢(𝐗𝑘+1)𝑠𝑢𝑘 − 𝜈𝑘, 𝑥𝑘⟩+

𝔤𝑘+1 + 𝜑1(𝐗𝑘+1) −
1
4
‖𝜎⊺𝜈𝑘+1‖

2
Υ𝛾 (𝐗𝑘+1)−1

− 𝔤𝑘 (B6)

Now, from the quadratic term in 𝑥𝑘 of(B6) involving 𝐗𝑘+1, we get from the operator definitions in (7) and (24) that

𝛾 (𝑌 ) + 𝐶⊺𝐶 + 𝐺⊺Δ(𝑌 )𝐺 + Σ(𝑌 )⊺𝐺 + 𝐺⊺Σ(𝑌 ) − 𝐺⊺Γ(𝑌 )⊺Υ𝛾 (𝑌 )−1Ψ(𝑌 ) − Ψ(𝑌 )⊺Υ𝛾 (𝑌 )−1Γ(𝑌 )𝐺 =
𝐴⊺𝑌 𝐴 +𝑥(𝑌 ) + 𝐶⊺𝐶 + 𝐺⊺Λ(𝑌 )𝐺 + Σ(𝑌 )⊺𝐺 + 𝐺⊺Σ(𝑌 ) −

(

Ψ(𝑌 ) + Γ(𝑌 )𝐺
)⊺Υ𝛾 (𝑌 )−1

(

Ψ(𝑌 ) + Γ(𝑌 )𝐺
)

(B7)

where we denote 𝑌 = 𝐗𝑘+1 for symplicity. For the last quadratic symmetric term in (B7), we obtain,
(

∙
)⊺Υ𝛾 (𝑌 )−1

(

Ψ(𝑌 ) + Γ(𝑌 )𝐺
)

=
[

∙
]⊺Υ𝛾 (𝑌 )−1

[

𝜎⊺𝑌 (𝐴 + 𝐵𝐺) + 𝐹 ⊺(𝐶 +𝐷𝐺)
]

(B8)

and for the other three terms in (B7),

𝐺⊺Λ(𝑌 )𝐺 + Σ(𝑌 )⊺𝐺 + 𝐺⊺Σ(𝑌 ) = 𝐺⊺𝐵⊺𝑌 𝐵𝐺 + 𝐺⊺𝑢(𝑌 )𝐺 + 𝐺⊺𝐷⊺𝐷𝐺 + 𝐴⊺𝑌 𝐵𝐺 + 𝐺⊺𝐵⊺𝑌 𝐴 + 𝐶⊺𝐷𝐺 + 𝐺⊺𝐷⊺𝐶. (B9)

Then, one can write (B7) as

(𝐴 + 𝐵𝐺)⊺𝑌 (𝐴 + 𝐵𝐺) +𝑥(𝑌 ) −
[

∙
]⊺Υ𝛾 (𝑌 )−1

[

𝜎⊺𝑌 (𝐴 + 𝐵𝐺) + 𝐹 ⊺(𝐶 +𝐷𝐺)
]

+ 𝐺⊺𝑢(𝑌 )𝐺 + (𝐶 +𝐷𝐺)⊺(𝐶 +𝐷𝐺)
= ⊺𝑌 +𝑥(𝑌 ) −

[

∙
]⊺Υ𝛾 (𝑌 )−1

[

𝜎⊺𝑌 + 𝐹 ⊺
]

+ 𝐺⊺𝑢(𝑌 )𝐺 + ⊺ (B10)

with the notations  and  in the lemma. Given the operators defined in the lemma, the quadratic term in 𝑥𝑘 of (B6) can be
written, from the above as,

⊺𝐗𝑘+1 +𝑥(𝐗𝑘+1) +𝛾 (𝐗𝑘+1) + 𝐺⊺𝑢(𝐗𝑘+1)𝐺 + ⊺ − 𝐗𝑘 = L𝛾 (𝐗𝑘+1) + 𝐺⊺𝑢(𝐗𝑘+1)𝐺 + ⊺ − 𝐗𝑘 (B11)

where 𝛾 (⋅) and L𝛾 (⋅) are, mutatis mutandis the same operators in (7g) and (7h), respectively, replacing matrices 𝐴 and 𝐶 by
 and . Considering the set of equations (34), we conclude from (B6) that

𝐸[𝑉 (𝑥𝑘, 𝐺𝑥𝑘, 𝜔
0
𝑘) − 𝑉 (𝑥𝑘+1, 𝐺𝑥𝑘+1, 𝜔

0
𝑘+1)|𝑥𝑘] = 𝐸[‖𝑧(𝑘)‖2 − 𝛾2‖𝜔0(𝑘)‖2|𝑥𝑘]

Now, set 𝐗𝜅 = 0, 𝜈𝜅 = 0, 𝔤𝜅 = 0 and note that system Θ̂ctr with a feedback control is Markovian. Then,

𝐸[𝑥⊺0𝐗𝜅𝑥0 + ⟨𝜈0, |𝑥0|⟩ + 𝔤0|𝑥0] = 𝐸
[

𝜅−1
∑

𝑘=0
‖𝑧(𝑘)‖2 − 𝛾2‖𝜔0(𝑘)‖2||

|

𝑥0
]

In addition, to show that 𝑘 → 𝑢𝑘 = 𝐺𝑥𝑘 stabilizes Θ̂ctr in the sense of Definition 2 (ii), denote the sequences 𝐗(𝜅)
𝑘 , 𝜈(𝜅)𝑘 and 𝔤(𝜅)𝑘 ,

for 𝑘 = 0,… , 𝜅, for some horizon 𝜅 ∈ N with null values for 𝐗(𝜅)
𝜅 , 𝜈(𝜅)𝜅 and 𝔤(𝜅)𝜅 . Note that the positive semidefinite ordering

0 ⪯ 𝐗(0)
0 ⪯ 𝐗(1)

0 ⪯ ⋯ holds and, from the assumptions, the system Θ̂ctr is (𝐶,𝛾 )-detectable. Using the notation above, this
implies that the “uncontrolled” system Θ̂ given by

{

𝑥𝑘+1 = 𝑥𝑘 + 𝜎(𝑥𝑘)𝜁𝑘,
𝑧𝑘 = 𝑥𝑘 + 𝐹𝜔𝑘,

is (,L𝛾 )-detectable. If there is a solution 𝐘 ⪰ 0 to (36) with Υ𝛾 (𝐘) ≺ 0, it is the unique solution since L𝛾 (⋅) is a linear-positive
operator. Hence, we get that, 0 ⪯ 𝐗(𝜅)

𝑘 ↑ 𝐘 in the semipositive definite sense, as 𝜅 → ∞. Moreover, if 𝑟𝜎(𝐴cl + 𝐵cl𝐺) < 1, then
Corollary 1 (i) states that the system Θ̂ is stochastically stable, or equivalently that control 𝑢𝑘 = 𝐺𝑥𝑥, 𝑘 ≥ 0 is stabilizing in the
sense of Definition 2 (ii).
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