
P
os
te
d
on

24
A
p
r
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
23
29
23
.3
08
48
80
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Multi-feature based Function Embedding Network for Binary Code

Similarity

XIANGYU LI1, GUOHAO WU1, ZIHUI GUO1, and HONGLIANG LIANG1

1Beijing University of Posts and Telecommunications

April 24, 2023

Abstract

Binary similarity detection determines whether two given binary code snippets are similar or not, usually on function granularity.

This task is challenging due to different compilation optimizations and CPU architectures. Recently, deep-learning methods

have made great achievements in this field, although most of them use artificially selected features or ignore some important

semantic information like code literals or function signatures during feature processing. In addition, random samples and pair

loss function are used in similarity training, which only covers limited similarity relations between functions. In this paper, a new

framework MFEN-Sim is proposed to detect similar binary functions. The framework contains three stages: feature extraction

and normalization, mutli-feature based function feature embedding network (MFEN) and similarity learning network. Multiple

features including assembly instructions, CFG structures and function code literals are extracted from binary functions. Then

these features are fed into MFEN composed of three modules: function semantic and structure embedding module, function

signature prediction module, and function code literal embedding module. The three modules generate embeddings representing

the function semantic and structural features, the function signature prediction features and the function code literal features.

Finally, MFEN-Sim utilizes a similarity training network based on contrastive learning to make MFEN recognize more similarity

relations between functions. MFEN-Sim is evaluated on 281,601 functions in 144 binaries and 17 CVEs in real-world software.

Experimental results show that our work outperforms state-of-the-art systems (i.e., Gemini, FIT and SAFE) by 7.1%, 9.9%

and 8.2% on AUC metric in cross-architecture, optimization-level similarity detection, and achieves higher recall than baselines

in searching vulnerabilities in real-world applications.

1

Multi-feature based Function Embedding Network for Binary
Code Similarity
XIANGYU LI, GUOHAO WU, ZIHUI GUO AND HONGLIANG LIANG, TSIS Lab., Beijing
University of Posts and Telecommunications, China

Binary similarity detection determines whether two given binary code snippets are similar or not, usually on
function granularity. This task is challenging due to different compilation optimizations and CPU architectures.
Recently, deep-learning methods have made great achievements in this field, although most of them use
artificially selected features or ignore some important semantic information like code literals or function
signatures during feature processing. In addition, random samples and pair loss function are used in similarity
training, which only covers limited similarity relations between functions.

In this paper, a new framework MFEN-Sim is proposed to detect similar binary functions. The framework
contains three stages: feature extraction and normalization, mutli-feature based function feature embedding
network (MFEN) and similarity learning network. Multiple features including assembly instructions, CFG
structures and function code literals are extracted from binary functions. Then these features are fed into
MFEN composed of three modules: function semantic and structure embedding module, function signature
prediction module, and function code literal embedding module. The three modules generate embeddings
representing the function semantic and structural features, the function signature prediction features and the
function code literal features. Finally, MFEN-Sim utilizes a similarity training network based on contrastive
learning to make MFEN recognize more similarity relations between functions. MFEN-Sim is evaluated on
281,601 functions in 144 binaries and 17 CVEs in real-world software. Experimental results show that our
work outperforms state-of-the-art systems (i.e., Gemini, FIT and SAFE) by 7.1%, 9.9% and 8.2% on AUC metric
in cross-architecture, optimization-level similarity detection, and achieves higher recall than baselines in
searching vulnerabilities in real-world applications.

Additional Key Words and Phrases: Binary Code Similarity, Deep Learning, BERT, GAT, Contrastive Learning

1 INTRODUCTION
Binary code similarity detection is to decide whether two given binary code snippets are similar,
usually on the function granularity. It has many security applications: code clone detection, malware
detection, vulnerability search, etc. Code reuse is common in modern software development though
it may bring potential risks. For example, the heart-bleed bug [1] in openssl, a widely used library,
which can cause memory leak due to lacking of validation on user input, has affected a large amount
of web servers, routers and other devices on the Internet.

Moreover, the fact that most commercial software is closed source makes binary code similarity
detection necessary. However, detecting similarity in binary code is facing with twomore difficulties
than that in source code. First, a binary file is a final product out of a complicated compilation process
that involves massive transformations (e.g., optimizations), such as function inlining, instruction
replacement and dead code elimination, which eventually discards a majority of high-level program
semantics. Second, even the same source code can be compiled into different binaries due to different
CPU architectures and compilation optimizations.

In order to detect similarity in binary code, many approaches leverage static analysis [6–8, 12, 13,
21, 25, 31, 38] and dynamic analysis techniques [2, 5, 17, 18, 27, 29, 30, 34, 36], and have achieved
good results. However, static analysis methods usually rely on manually selected features or rules,
and use complex graph matching algorithm to detect similar functions, which is not effective or
computationally inefficient. While dynamic analysis methods often require to run the target binary

Author’s address: Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang, TSIS Lab., Beijing University of Posts and
Telecommunications, Beijing, China, (pyterware,guohaowu,guozihui,hliang)@bupt.edu.cn.

2 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

code, record and analyze its execution trace, which is not efficient or difficult even not possible for
some cases like firmware.

Recently, several studies [10, 11, 24, 28, 35, 37, 39] apply deep learning in binary analysis. They
leverage control flow graphs or assembly instructions as input, and use neural network to learn
semantic embeddings which are then used to detect binary code similarity across architectures
and/or optimization levels. These methods have improved the detection accuracy and efficiency,
though they are still facing the following problems:

First, code literals such as strings and constants in programs are important semantic information
because their values don’t change after compilation. However, previous approaches ignore these
values and thus drop the semantic information in code literals. For example, Gemini [35] only uses
the number of strings and constants as part of features, while word embedding based approaches
[11, 24, 28, 39] replace strings or constants with special tokens to avoid the out-of-vocabulary
(OOV) issue.

Second, the function signature of a program is an important feature for representing the function
semantics and able to improve the performance of binary code similarity detection [22], however,
previous works didn’t design methods to extract the information in function signatures.

Third, prior approaches[24, 28, 35] leverage supervised metric learning algorithm, which relies
on the randomly sampled triplets, i.e., (function1, function2, label), and the pair loss function.
However, the sampled triplets and the pair loss function only cover limited function similarity
relations, which is not effective and may result in over-fitting.

In this paper, we propose a new framework called MFEN-Sim to detect similarity in binary code
on the function granularity. MFEN-Sim contains three stages: feature extraction and normalization,
multi-feature based function embedding network (MFEN) and similarity learning network. As
the framework’s core part, MFEN is composed of three modules: function semantic and structure
embedding module, function signature prediction module, and function code literal embedding
module. We extract features from assembly instructions, the control flow graph (CFG) structure and
code literals of a function in feature extraction and normalization stage, then feed these features
into MFEN’s modules to generate embeddings which represent the function semantic and structural
features, the function signature prediction features and function code literal features, respectively.
Finally, we train MFEN using the similarity learning network based on contrastive learning and
use the trained MFEN to measure the similarity between functions.

We evaluate MFEN-Sim on 281,601 functions in 144 binaries and 17 CVEs in real-world software.
MFEN-Sim outperforms three state-of-the-art systems (i.e., Gemini, FIT and SAFE) by 7.1%, 9.9% and
8.2% onAUCmetric on similarity detection in cross-architecture and cross-compilation-optimization
binary code, respectively. Moreover, MFEN-Sim achieves higher recall than baselines in searching
vulnerabilities in real-world applications, which demonstrates its practicability for binary analysis.

Our contributions are summarized as follows:

• A multi-feature based function embedding network (MFEN) is proposed to generate ro-
bust function embedding against diverse CPU architectures and compilation optimizations.
MFEN extracts the function semantic and structural embedding, function signature predic-
tion embedding and function code literal embedding respectively, and combines them to
construct the final function embedding.

• A similarity learning network based on contrastive learning is put forward to train MFEN.
Function batches are randomly sampled during training and MFEN is trained with the
contrastive learning loss function that considers both positive and negative function pairs
to learn more relations between functions.

Multi-feature based Function Embedding Network for Binary Code Similarity 3

BERT

BERT

CodeBert

Control Flow Graph

Multi-feature based Function Embedding Network

Function Code
Literals

decompile

Binary File

Function

GAT

Prediction
Heads

concat

Function Semantic and Structure
Embedding Module

Function Signature Predictor Module

Function Code Literal
Embedding Module

Train

Feature Extraction And Normalization
Similarity Learning Network

Function
Semantic&
Structural

Embedding

Signature
Prediction

Embedding

Function
Code
Literal

Emebdding

Compute Similarity

MFEN

Projector

Function1 Function2

Embedding1 Embedding2

CFG Structure

normalization

Assembly
Instructions

Normalized
Assembly

Instructions

Projector

MFEN

Siamese
Architecture

Dataset

Fig. 1. Overview of MFEN-Sim

• A novel general framework MFEN-Sim is presented for binary similarity detection across
architectures and optimization levels. MFEN-Sim is evaluated on over 280,000 functions in 8
open-source projects and two vulnerability datasets with 17 CVEs. The results demonstrate
that MFEN-Sim outperforms three state-of-the-art systems, i.e., Gemini, FIT and SAFE, with
higher accuracy in similarity detection, and with higher recall in vulnerability search.

• We make our source code, benchmark, and experimental data publicly available1, in the
hope of facilitating further research in the software security field.

2 APPROACH OVERVIEW
As shown in Fig. 1, MFEN-Sim consists of three stages: 1) feature extraction and normalization, 2)
multi-feature based function embedding network (MFEN), and 3) similarity learning network.
In feature extraction and normalization, each binary file is decompiled to obtain its functions,

which are extracted to get three kinds of features, i.e., normalized assembly instructions, the CFG
structure and function code literals.

Then the output features are fed into the three modules of MFEN: function semantic and structure
embedding module, function signature prediction module and function code literal embedding
module. Specifically, for each function in a binary file, its assembly instruction sequences and CFG
structure are fed into a BERT and a graph attention network in the first module to generate the
function semantic and structure embeddings. The second module computes the signature prediction
embeddings with a BERT and multiple prediction heads. The third module utilizes a pretrained
CodeBert to generate the code literal embeddings. Through fusing these three kinds of embeddings,
the final embeddings of the input function are generated.
In similarity learning network, the MFEN is combined with a projector and trained with the

siamese architecture to maximize semantically similar function’s similarity. The trained MFEN can
be used to generate functions’ embeddings that measure the similarity of functions.

3 FEATURE EXTRACTION AND NORMALIZATION
In this stage, we extract three kinds of function features from binary files using IDA pro [19]:
the assembly instructions, the CFG structures and the function code literals including strings and
constants.

1https://github.com/PyterwareLi/mfen-sim

4 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

Table 1. Normalization Rules

Operand Usage Description Normalized Token

Immediate
value

call target function call within a binary innerfunc
function call out of a binary externfunc
recursive call self

jump jump destination jumpdst
reference string in .rodata section dispstr

statically allocated variables in .bss section dispbss
data other than string dispdata

other immediate value above the threshold imm

Pointer

indirect(string) [base+index*scale+dispstr] [base + index * scale + dispstr]
indirect(data) [base+index*scale+disp] [base + index * scale + dispdata]
direct reference or call target of immediate value innerfunc, externfunc, self, dispstr,

dispbss or dispdata

Each assembly instruction contains two parts: an operator and an (or several) operand(s). The
total number of operators is limited, while the number of operands can be very large due to different
compilation options, which may cause the out-of-vocabulary (OOV) problem. To address the OOV
problem, it is necessary to normalize certain tokens in operands, i.e., replace them with special
tokens to express the meaning of original tokens.
For example, SAFE [28] replaces memory address with MEM and immediate values with IMM.

DeepBinDiff [11] normalizes registers with their sizes, and converts all immediate values into
imme. These methods using coarse-grained normalization may lose some contextual and semantic
information. For example, all call destinations are replaced with the same notation, rendering every
call instruction identical. Unfortunately, they also apply a coarse-grained tokenization to assembly
instructions. For instance, SAFE treats a whole instruction as a word which ignores its internal
details. Though some memory access operands are formed by multiple registers and constant values,
they are treated as one token in the coarse-grained tokenization. Moreover, due to the complex and
diverse instruction formats, such coarse-grained tokenization leads to a relatively large vocabulary
size, which makes it easier to cause OOV problems in untrained software.

To strike a balance between keeping the semantics of binary code and maintaining a reasonable
vocabulary size, we adopt a fine-grained tokenization approach and a well-balanced normalization
approach on three architectures (x86, ARM, MIPS) based on the normalization rules for x86 [23].
Specifically, each instruction is first decomposed into basic tokens. For instance, an instruction
mov rax, qword [rsp+0x58] is divided into mov, rax, qword, [, rsp,+, 0x58, and]. Then
some tokens are replaced with normalized tokens according to the rules which are summarized
in Table 1. For example, an immediate number may have different usages, e.g., a constant value, a
string reference, a jump destination, or a statically-allocated variable and so on. Previous methods
drop such an implication, which will make an instruction rarely distinguishable from others. In
contrast, we replace immediate numbers with different tokens by their usage. For constants, we
use a threshold 500 to judge whether to keep their values or replace them with special tokens,
because we believe some constants can help distinguish instructions. For instance, if the threshold
is 5,000, the constant 0x58 in the above example will be replaced with its value 88, and the constant
0xFFFFFFFE in the instruction mov EAX, 0xFFFFFFFFE will be replaced with IMM. The former can
be a reference to a variable, which can be distinguished from other variable references like mov
rax [rsp+0x4], while the latter can be a constant generated by a compiler, which often appears in
assembly instructions. The threshold is also used to control the vocabulary size.

Multi-feature based Function Embedding Network for Binary Code Similarity 5

4 MULTI-FEATURE BASED FUNCTION EMBEDDING NETWORK
The multi-feature based function embedding network (MFEN) is composed of three modules: the
function semantic and structure embedding module, the function signature prediction module and
the code literal embedding module. Given a function 𝑓 , MFEN can get its semantic and structure
embedding 𝑥𝑠𝑠 , signature prediction embedding 𝑥𝑠𝑝 and function code literal embedding 𝑥𝑐𝑙 , which
are concatenated to form the function’s whole representation embedding 𝑥 𝑓 .

𝑥 𝑓 = 𝑀𝐹𝐸𝑁 (𝑓) = 𝑥𝑠𝑠 ∥𝑥𝑠𝑝 ∥𝑥𝑐𝑙 (1)

4.1 Function Semantic and Structure Embedding Module
The function semantic and structure embedding module is built with a BERT model and a GAT
model, which is used to capture the semantic features and the graph structural features of functions,
respectively.

4.1.1 Input Representation. This module takes normalized assembly instructions and CFGs of
functions as inputs. A CFG is denoted as 𝐺 =< 𝑁, 𝐸 >, where 𝑁 and 𝐸 is the set of basic blocks
and edges respectively. We define the basic block set 𝑁 =< 𝐵𝐵1, 𝐵𝐵2, ..., 𝐵𝐵𝑚 >. Each basic block is
defined as 𝐵𝐵 =< 𝐼𝑛𝑠𝑡1, 𝐼𝑛𝑠𝑡2, ..., 𝐼𝑛𝑠𝑡𝑘 >. The instruction sequence in a basic block is treated as a
sentence and all symbols in the instructions as tokens. Each edge in 𝐸 =< 𝑒1, 𝑒2, ..., 𝑒𝑛 > is defined
as a tuple (ID of source basic block, ID of target basic block). For instance, the edge from 𝐵𝐵1 to
𝐵𝐵2 is represented as (1, 2).

4.1.2 Semantic Modeling. We utilize a pretrained BERT [9] model to extract the semantic informa-
tion from assembly instructions. This model is based on a multi-layer Transformer encoder, and
designed to pretrain a deep bidirectional representation in unlabeled text through joint adjustment
of left and right context in all layers. Furthermore, the task Masked Language Model (MLM) and the
task Next Sentence Prediction (NSP) during training are used to learn the word level and sentence
level semantic information, respectively. Based on the above tasks, we design two tasks to pretrain
the model as shown in the Fig. 2.
The first task to pretrain the model is the MLM task. Fifteen percent of tokens in assembly

instruction sequence are randomly masked out. Following the settings in BERT [9], eighty percent
and ten percent of the chosen tokens are masked by [MASK] (mask-out tokens) and replaced with
other tokens in the vocabulary (corrupted tokens) respectively, while the remain ones are kept
unchanged. Then, the transformer encoders in BERT learn to predict the masked-out and corrupted
tokens, and output a probability with a softmax layer located on top of the last transformer encoder
for predicting a particular token 𝑡 = [𝑀𝐴𝑆𝐾]. This task uses a cross entropy loss function:

𝐿1 (𝜃, 𝜃1) = −
𝑀∑︁
𝑖=1

𝑙𝑜𝑔𝑃 (𝑚 =𝑚𝑖 | 𝜃, 𝜃1), 𝑚𝑖 ∈ [1, 2, . . . ,𝑉] (2)

where 𝜃 represents the parameters of the transformer encoder in BERT, 𝜃1 represents the parameters
of output layer connected on the encoder in MLM task,𝑀 is the collection of masked tokens during
training, and 𝑉 is the size of the vocabulary of the input sequences.
In each self-attention layer in BERT, an input token attends to other tokens and updates its

embedding by computing the attention weights with other tokens’ embeddings, thus each token’s
embedding encodes context-sensitive information. In other words, a token’s embedding changes
according to its location and context, which is different from a static embedding model such as
word2vec. Through this task, the BERT model can learn the semantic information of assembly
instructions.

6 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

Unlabeled Basic Block A and B Pair

...

...

...

...

... ...

NBBP MLM MLM

BERT

Masked Basic Block A Masked Basic Block B

...

...

...

...

... ...

Fig. 2. Semantic Modeling with BERT

The second task is the next basic block prediction (NBBP), similar to the NSP task. It concatenates
the instruction sequences of two basic blocks, and predicts whether both blocks satisfy the next-to
relation through the classification header of BERT model. The loss function is defined as follows:

𝐿2 (𝜃, 𝜃2) = −
𝑁∑︁
𝑗=1

𝑙𝑜𝑔𝑃 (𝑛 = 𝑛𝑖 | 𝜃, 𝜃2), 𝑛𝑖 ∈ [”IsNext”, ”NotNext”] (3)

where 𝜃2 represents the parameters of classifier connected to the encoder in NBBP task, and 𝑛 is
the predicted value of NBBP, which means whether the next-to relation is satisfied.
Two basic blocks are regarded as a positive sequence if they are on the same edge in a CFG,

otherwise as a negative sequence. Through this task, the model can learn the adjacent relations
between basic blocks.

By optimizing the joint loss function of the two tasks, the BERT model can learn the word-level
and basic block-level semantic information of assembly instructions.

𝐿(𝜃, 𝜃1, 𝜃2) = 𝐿1 (𝜃, 𝜃1) + 𝐿2 (𝜃, 𝜃2) (4)

4.1.3 Graph Structure Modeling. Edges in CFG represent the execution sequence between basic
blocks and reflect the execution semantics of the function. We utilize the graph attention network
(GAT) to extract the structural information from CFGs. GAT [33] is a graph neural network based
on attention mechanism like Transformer. Its basic idea is to assign different attention weights for
neighbor nodes and update the current node’s representation by the weighted sum of its neighbor
nodes with attention weights. Through the attention mechanism, GAT can adaptively allocate
attention weights to different neighbors. Furthermore, GAT allows high parallel computation and
has strong generalization ability.

Multi-feature based Function Embedding Network for Binary Code Similarity 7

Basic Block
Embedding2

Basic Block
Emebdding1

Basic Block
Embedding3CFG

... T Layers

+

BERT

Basic Block 1
Instruction
Sequence

Basic Block 2
Instruction
Sequence

Basic Block 3
Instruction
Sequence

...

GAT

concat

M heads

concat

update

Fig. 3. Graph Structure Modeling with GAT

As shown in the Fig. 3, first, each basic block’s instruction sequence in the CFG is fed into BERT
to extract the basic block embedding. Then the basic block embedding and the CFG structure are
used as the input of GAT to compute the function structure and semantic embedding. GAT has 𝑇
layers, and every time the nodes of the input CFG go through a layer, GAT passes the semantic
embedding of a node to its neighbor nodes. Through the multi-head attention mechanism, each
node can focus on neighbor nodes with more semantic information. The attention weight 𝛼 of two
adjacent basic blocks 𝑖, 𝑗 of attention head𝑚 is calculated according to the following formula:

𝛼𝑚𝑖 𝑗 =
𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝑎
[
𝑊𝑚ℎ

𝑡
𝑖 | |𝑊𝑚ℎ

𝑡
𝑗

]))∑
𝑘∈N𝑖

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎 [𝑊𝑚ℎ
𝑡
𝑖 | |𝑊𝑚ℎ

𝑡
𝑘]))

(5)

where ℎ𝑡 is the feature vector of a node at the 𝑡th layer, ℎ0 is the embedding of a basic block,𝑊𝑚

is the learnable weight matrix of 𝑚th attention head, 𝑎 is a learnable single-layer feedforward
neural network, 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 is the activation function of GAT, ∥ is concatenating vectors, and N𝑖

represents the neighbor nodes of node 𝑖 .
Then, each node’s embedding is updated based on the multi-head attention mechanism as follows:

ℎ𝑡+1𝑖 = ∥𝑀𝑚=1𝜎
©­«
∑︁
𝑗∈N𝑖

𝛼𝑚𝑖 𝑗𝑊𝑚ℎ 𝑗
ª®¬ (6)

where𝑚 denotes the𝑚th attention head, the𝑀 denotes the number of attention heads, 𝛼𝑚𝑖,𝑗 denotes
the attention weight of the 𝑚th attention head between edge 𝑖, 𝑗 ,𝑊𝑚 denotes the 𝑚th weight
matrix.

At last, the node embeddings of the CFG updated by GAT are summed as the function semantic
and structure embedding 𝑥𝑠𝑠 .

8 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

BERT

Function Instruction Sequence

...

...

...

...

... ...

Argument Number
Prediction

First Argument
Type Prediction

Second Argument
Type Prediction

Third Argument
Type Prediction

Fourth Argument
Type Prediction

concat

Fig. 4. Function Signature Prediction Module

𝑥𝑠𝑠 =

𝑛∑︁
𝑖=0

ℎ𝑇𝑖 (7)

4.2 Function Signature Prediction Module
If two functions are complied from the same source code, they should have the same function
signature, e.g., the type of each argument and return value. In other words, a function signature is
robust because compilers won’t change the function’s input/output behaviors. As such, we combine
the function signature inference [4] [22] with binary similarity detection. We design and train
a function signature predictor in MFEN to predict the argument number and argument types in
function signatures, and use it to generate function signature prediction embeddings. Because a
function may have multiple arguments, it is not appropriate to train a model for each argument to
predict its type. Furthermore, we observe that most functions (over 85%) in our dataset take less
than five arguments, hence, we use five tasks to train the function signature predictor, i.e., a task
for argument number prediction and four tasks for argument type prediction.

As shown in the Fig. 4, we train BERT with five prediction heads. For each task 𝑡 and a function
𝑓 , the function’s assembly instruction sequence is used as input of the task 𝑡 . For the argument
number prediction task, we label the function with more than nine arguments as “9+" to limit the

Multi-feature based Function Embedding Network for Binary Code Similarity 9

total number of predication classes. For the 𝑘th argument type prediction task, we use nine abstract
types as labels, i.e., char, short, int, float, enum, struct, void, void* and none (none
means there is no 𝑘th argument). These classification tasks are trained in parallel, and the cross
entropy is computed as the loss function of each task 𝑡 :

𝐿𝑡 = − 1
𝑁

𝑁∑︁
𝑖=1

𝐾𝑡∑︁
𝑐=1

𝑦𝑖𝑐 log (𝑝𝑖𝑐) (8)

where 𝑦𝑖𝑐 is the label indicating whether the 𝑖th sample belongs to the 𝑐th class, 𝑝𝑖𝑐 is the prediction
score that 𝑖th sample belongs to the 𝑐th class, and 𝑁 is the total number of input samples, 𝐾𝑡 is the
classification number of the current task 𝑡 . The model’s loss function is the sum of the loss function
of each task:

𝐿 =

𝑇𝑎𝑠𝑘𝑁𝑢𝑚∑︁
𝑡=0

𝐿𝑡 (9)

The trained model is used to generate signature prediction embedding of a function. Given a
function’s instruction sequences 𝑓𝑖𝑛𝑠𝑡𝑠 , we use the prediction score of each class in task 𝑡 to form a
feature vector:

𝑥𝑡 = PredictionHead𝑡 (𝜙BERT (𝑓𝑖𝑛𝑠𝑡𝑠)𝑐𝑙𝑠) =
(
𝑝1, . . . , 𝑝𝑐 , . . . , 𝑝𝐾𝑡

)
(10)

where 𝜙BERT is the BERT model, 𝑓𝑖𝑛𝑠𝑡𝑠 is the input function’s assembly instruction sequence,
𝜙BERT (𝑓𝑖𝑛𝑠𝑡𝑠)𝑐𝑙𝑠 is the sentence embedding outputted by BERT, PredictionHead𝑡 is the prediction
head that outputs probabilities for task 𝑡 , 𝑝𝑐 is the output probability of class 𝑐 , 𝐾𝑡 is the total class
number of task 𝑡 .

Then we generate the signature prediction embedding 𝑥𝑠𝑝 with the five vectors:

𝑥𝑠𝑝 = (𝑥1∥𝑥2∥𝑥3∥𝑥4∥𝑥5)𝑊1 (11)

where𝑊1 is a linear transformation matrix, and ∥ is concatenating vectors.

4.3 Function Code Literal Embedding Module
We use code literals, i.e., string and constant values, as additional features because binary functions
compiled from the same source code may still share the same strings and constants.

We take the strings and constants extracted from a function as two sequences and concatenate
them as one sequence, and feed it into a pretrained CodeBert [14] to obtain the function’s code
literal embedding 𝑥𝑐𝑙 , as shown in the Fig. 5. CodeBert is pretrained with source code and natural
languages, thus the extracted strings and constants can be fed into the CodeBert directly.

𝑥𝑐𝑙 = 𝜙CodeBert (𝑓𝑠𝑐)<𝑠>𝑊2 (12)

where 𝜙CodeBert is CodeBert model, 𝑓𝑠𝑐 is the sequence of string and constant, 𝜙CodeBert (𝑓𝑠𝑐)<𝑠> is
the sentence embedding outputted by CodeBert,𝑊2 is a linear transformation matrix.

5 SIMILARITY LEARNING NETWORK
To learn similarities between functions, we propose a similarity learning network based on con-
trastive learning [3, 16]. The similarity learning network is based on the Siamese architecture and
contains the following main components, as shown in Fig. 6.

Data Generation. To learn the similarity relations between functions, we generate syntactically
diverse but semantic similar or equivalent functions with different optimization levels and target
CPU architectures. Specifically, we compile the same source code with different optimization levels
and target CPU architectures to make sure that the compiled functions have similar or equivalent

10 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

String Sequence Const Sequence

Function Code Literal Feature

...

...

...

...

... ...

CodeBert

...

...

...

...

... ...

Fig. 5. Function Code Literal Embedding Module

semantic but different syntax in assembly instruction. These functions provide informative diversity
in helping the model to capture function’s semantic information.
Encoder. The encoder extracts the representation vectors from input function features. The

multi-feature based function embedding network (section 4) is used as the encoder. The similarity
learning network has two identical encoders that share parameters.

Given a function 𝑓 , the encoder can get its function embedding 𝑥 𝑓 (section 4).

𝑥 𝑓 = Encoder(𝑓) = 𝑀𝐹𝐸𝑁 (𝑓) (13)

Projector. We use a multi-layer perceptron (MLP) with two layers as the projector. Then we
pass the function representation embedding 𝑥 𝑓 through the projector to get the final embedding 𝑧𝑓 .

𝑧𝑓 = MLP(𝑥 𝑓) =𝑊3𝜎 (𝑊4𝑥 𝑓) (14)

where 𝜎 represents the activation function, i.e., ReLU in this paper.𝑊3 and𝑊4 are linear transfor-
mation matrices. The two projectors in Fig. 6 also share parameters.
Batch Sampler and Loss Function. We random sample 𝑁 functions that compiled from

different source codes, and for each sampled function, we further sample another function that
compiled from the same source code but with a different compilation option, such as a different
optimization level or CPU architecture, resulting in a mini-batch of 2𝑁 binary functions. We treat
functions compiled from the same source code as the positive pairs and sample negative function
pairs from the mini-batch. Given each function, we treat other 2(𝑁 − 1) functions compiled from
different source code within the mini-batch as negative samples. We calculate the cosine distance

Multi-feature based Function Embedding Network for Binary Code Similarity 11

Function Source
Code

MFEN MFEN

MLP MLP

Maximize Similarity

Representation

Encoder

Projector

compiled with
different

optimization levels
& architectures

Fig. 6. Similarity Learning Network

between the final embeddings of two functions and take it as their similarity. The loss function for
each function pair (𝑖, 𝑗) is:

𝑙𝑖, 𝑗 = −𝑙𝑜𝑔
𝑒𝑥𝑝

(
𝑐𝑜𝑠

(
𝑧𝑖 , 𝑧 𝑗

)
/𝜏
)∑2𝑁

𝑘=1,𝑘≠𝑖 𝑒𝑥𝑝
(
𝑐𝑜𝑠

(
𝑧𝑖 , 𝑧 𝑗

)
/𝜏
) (15)

where 𝜏 denotes a temperature parameter to adjust the range of cosine similarity.
This loss is computed across all function pairs in the mini-batch and is averaged to get the final

loss 𝑙𝑖 . As a result, 𝑙𝑖 makes those functions compiled from the same source code as close as possible,
and other functions as far as possible. So the trained model can make the distances between similar
functions lower than dissimilar functions.

The trained MFEN can be used to calculate the similarity between functions as follows and judge
whether two functions are similar.

Sim(𝑓𝑖 , 𝑓𝑗) = 𝑐𝑜𝑠 (MFEN(𝑥𝑖),MFEN(𝑥 𝑗)) =
𝑥𝑇𝑖 𝑥 𝑗

|𝑥𝑖 | |𝑥 𝑗 |
(16)

6 EVALUATION
6.1 Implementation and Setup
We leverage IDA pro 7.5 [19] and a build-in IDA pro plugin IDApython [20] to implement the
feature extraction and normalization, and we implement MFEN and the similarity learning network
using PyTorch 1.8.1 [32] in Python. We ran all experiments on a Linux server running Ubuntu
18.04, with an Intel Xeon 6126 CPU at 2.60GHz with 48 virtual cores, 128 GB RAM and a Nivdia
RTX 3090 GPU.

12 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

Table 2. The details of datasets

Training Set

Software Bin.
Functions

x86 ARM MIPS Total
O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3

binutils 336 35374 26742 26479 26056 34315 25365 25019 24905 35851 28202 27445 26800 342553
coreutils 2520 15575 10361 10873 12027 15355 10330 10505 11592 15438 10993 11527 13520 148096
findutils 144 1762 1190 1190 1305 1757 1165 1165 1282 1758 1234 1230 1282 16418
Total 3000 52711 38293 38542 39388 51427 36860 36686 37779 53047 40429 40202 41703 507067

Evaluation Set

Software Bin.
Functions

x86 ARM MIPS Total
O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3

openssl 12 6085 5601 5607 5425 6024 5545 5547 5362 5995 5517 5519 5334 67561
busybox 12 4241 2938 2709 2757 4253 2942 2715 2763 4250 2941 2711 2759 37979
sqlite 12 2190 1523 1380 1183 2285 1616 1475 1280 2199 1531 1392 1197 19251
zlib 12 152 137 132 119 158 143 138 125 154 139 135 121 1653
gmp 12 790 701 698 673 781 691 688 662 769 678 675 650 8456
curl 12 1006 736 734 662 1010 742 736 668 1006 737 733 665 9435
putty 60 11356 7893 7865 7424 11288 7863 7858 7419 11266 7846 7838 7398 103314

Imagemagick 12 4455 2370 2385 2308 4365 2367 2378 2308 4261 2268 2278 2209 33952
Total 144 30275 21899 21510 20551 30164 21909 21535 20587 29900 21657 21281 20333 281601

6.2 Evaluation Setting
6.2.1 Datasets. To evaluate our approach, we collected eleven widely-used open source software
projects, i.e., coreutils-8.29, binutils-2.3.0, finduitls-4.6.0, curl-7.71.1, gmp-6.2.1, ImageMagick-7.0.10,
openssl-1.0.1f, busybox-1.32, putty-0.76, zlib-1.2.11 and sqlite-3.34.0. To make the evaluation gener-
alized and diverse, the first three projects were compiled by gcc-8.2.0 and clang-7.0 as the training
set, and the rest projects were compiled by gcc-7.5.0 as the evaluation set. Moreover, all software
projects were compiled with four optimization levels (i.e., O0, O1, O2, O3) and for three CPU
architectures (i.e., x86, ARM and MIPS). In this way, for each executable file in each software project,
we obtain 24 different binaries in the training set and 12 different binaries in the evaluation set
respectively.

We filtered out those small functions that have less than 5 basic blocks or assembly instructions
like [12, 13] as these functions contain little semantic information and graph structural information.
Finally, we have 507,067 functions for training and 281,061 functions for evaluation, as Table 2
shows. The work and baselines are trained on the training set and evaluated on the evaluation set.

6.2.2 Baselines. We compare our approach with three state-of-the-art approaches, i.e., Gemini,
SAFE and FIT, because they are also deep learning based approaches and open source.

Gemini [35] uses a modified graph embedding network structure2vec to compute the embeddings
of attribute CFGs of functions, in which each basic block is represented by eight features selected
manually.
SAFE [28] utilizes word2vec and bi-RNN with a self-attention mechanism to generate function

embeddings. It only uses assembly instructions as input without considering CFGs of functions.
FIT [24] considers the function level statistical features, the basic block level statistical fea-

tures and the assembly instructions. It utilizes word2vec and structure2vec to generate function
embeddings.

6.2.3 Metrics. In order to evaluate the performance of each approach, we use the following metrics:

Multi-feature based Function Embedding Network for Binary Code Similarity 13

Precision. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), where the True Positive (TP) represents the number of
correctly identified similar function pairs, the False Positive (FP) refers to the number of dissimilar
function pairs which are wrongly identified as similar.
Recall. 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), where the False Negative (FN) refers to the number of similar

function pairs which are wrongly identified as dissimilar.
F1. 𝐹1 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙). It is a weighted average of Precision and

Recall and takes value in [0,1].
AUC. The area under the curve (AUC) is calculated on the receiver operating characteristics

(ROC), which measures the probability that similar pairs are assigned higher similarity scores than
dissimilar pairs. It does not require decision thresholds like precision, recall, or F1 measures, and
hence is a better metric to evaluate learning models.
Inference time. The time to compute the similarity for 1000 functions. Note that it doesn’t

include the time to disassemble binaries, which is same for all methods.
In the evaluation, we calculate the precision, recall and F1 under the best threshold obtained

from the ROC.

6.2.4 Parameter Setting. For most of the parameters, we follow the recommendations from the liter-
ature [9, 33], we set a BERTwith hidden_dim=512, attention_head=8, hidden_layer=4,max_length=512
for semantic modeling, and a GAT with hidden_dim=512, layer=2, head=8 for graph structure mod-
eling, for the sake of efficiency and training costs. Moreover, we used a trial-and-error procedure
to adjust output dimension of each module in MFEN as 512 (thus the total one of MFEN is 1536)
and the temperature parameter in similarity learning network as 0.05. We use the Adam optimizer
and set learning rate 1 × 10−5 for similarity learning to avoid over-fitting.

6.3 Cross compilation optimization level
In this experiment, wemeasure the performance ofMFEN-Sim and baselines under cross compilation
optimization levels (O0-O3) on the evaluation dataset. The function pairs in the evaluation dataset
come from different optimization levels but have the same architectures. The evaluation results are
shown in Table 3.
Experimental results show that the features and deep learning models MFEN-Sim adopts are

more robust against compiler optimizations than Gemini, FIT and SAFE on untrained projects.
On average, MFEN-Sim outperforms Gemini by 4.0%, FIT by 5.2% and SAFE by on 3.2% on AUC
respectively, Gemini by 5.5%, FIT by 6.9% and SAFE by 4.2% on F1 respectively. The reasons behind
is that compared with these baseline tools, MFEN-Sim can extract more features (i.e., function
signatures and function code literal) and has better learning ability, i.e., the pre-trained BERT and
CodeBert in MFEN-Sim excel at capturing long-distance dependency in basic block sequences and
learn the proper representation of function.

6.4 Cross CPU architecture
In this section, we evaluate the performance of MFEN-Sim and baselines to detect similarity in
binaries with different architectures (i.e., x86, ARM, MIPS). The function pairs in the evaluation
dataset come from different architectures but have the same optimization levels.
As Table 4 shows, MFEN-Sim outperforms Gemini, FIT and SAFE on all projects in cross-

architecture cases. On average, MFEN-Sim outperforms Gemini by 5.5% on AUC, by 5.0% on F1,
outperforms FIT by 11.3% on AUC, by 14.4% on F1 and outperforms SAFE by 6.8% on AUC, by 9.2%
on F1.
The evaluation results show that MFEN-Sim’s pre-trained BERT can approximately learn func-

tion semantics explicitly and generalize to match semantically similar functions with different

14 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

Table 3. Evaluation results on function pairs across optimization levels (O0-O3)

Software Tool AUC Precision Recall F1

openssl

Gemini 0.926 0.886 0.863 0.874
FIT 0.921 0.876 0.845 0.860
SAFE 0.933 0.887 0.867 0.877

MFEN-Sim 0.968 0.925 0.918 0.921

busybox

Gemini 0.952 0.896 0.878 0.887
FIT 0.947 0.897 0.870 0.884
SAFE 0.940 0.877 0.850 0.863

MFEN-Sim 0.976 0.925 0.921 0.923

sqlite

Gemini 0.891 0.818 0.801 0.809
FIT 0.899 0.833 0.811 0.822
SAFE 0.913 0.861 0.836 0.848

MFEN-Sim 0.965 0.912 0.898 0.905

zlib

Gemini 0.905 0.847 0.818 0.832
FIT 0.876 0.813 0.788 0.800
SAFE 0.944 0.897 0.887 0.892

MFEN-Sim 0.952 0.911 0.898 0.917

gmp

Gemini 0.942 0.890 0.857 0.873
FIT 0.925 0.868 0.818 0.842
SAFE 0.963 0.913 0.895 0.904

MFEN-Sim 0.972 0.922 0.911 0.917

curl

Gemini 0.923 0.859 0.846 0.853
FIT 0.917 0.859 0.831 0.845
SAFE 0.935 0.882 0.865 0.873

MFEN-Sim 0.978 0.935 0.924 0.930

putty

Gemini 0.936 0.886 0.857 0.872
FIT 0.932 0.888 0.850 0.868
SAFE 0.920 0.869 0.847 0.858

MFEN-Sim 0.964 0.914 0.902 0.908

ImageMagick

Gemini 0.955 0.901 0.888 0.894
FIT 0.920 0.872 0.849 0.860
SAFE 0.952 0.898 0.874 0.886

MFEN-Sim 0.979 0.935 0.922 0.929

Average

Gemini 0.929 0.873 0.851 0.862
FIT 0.917 0.863 0.833 0.848
SAFE 0.937 0.885 0.865 0.875

MFEN-Sim 0.969 0.923 0.912 0.917

architectures, while Gemini, SAFE and FIT may lose part of instruction semantics and dependency
information. So MFEN-Sim is robust against different CPU architectures in untrained projects.

Multi-feature based Function Embedding Network for Binary Code Similarity 15

Table 4. Evaluation results on function pairs across architecture (x86, ARM, MIPS)

Software Tool AUC Precision Recall F1

openssl

Gemini 0.947 0.898 0.867 0.883
FIT 0.910 0.850 0.816 0.833
SAFE 0.946 0.888 0.864 0.876

MFEN-Sim 0.987 0.951 0.944 0.948

busybox

Gemini 0.939 0.884 0.860 0.872
FIT 0.841 0.786 0.749 0.767
SAFE 0.870 0.798 0.781 0.790

MFEN-Sim 0.989 0.953 0.942 0.947

sqlite

Gemini 0.947 0.889 0.862 0.875
FIT 0.922 0.847 0.822 0.834
SAFE 0.900 0.845 0.818 0.831

MFEN-Sim 0.989 0.957 0.948 0.952

zlib

Gemini 0.938 0.867 0.823 0.845
FIT 0.909 0.845 0.822 0.834
SAFE 0.954 0.902 0.881 0.891

MFEN-Sim 0.973 0.915 0.896 0.905

gmp

Gemini 0.821 0.771 0.760 0.765
FIT 0.722 0.668 0.623 0.645
SAFE 0.885 0.818 0.797 0.808

MFEN-Sim 0.949 0.889 0.875 0.882

curl

Gemini 0.932 0.870 0.845 0.857
FIT 0.906 0.833 0.804 0.819
SAFE 0.941 0.883 0.865 0.874

MFEN-Sim 0.988 0.955 0.943 0.949

putty

Gemini 0.955 0.903 0.862 0.882
FIT 0.932 0.888 0.850 0.868
SAFE 0.907 0.841 0.827 0.834

MFEN-Sim 0.990 0.959 0.948 0.953

ImageMagick

Gemini 0.915 0.853 0.841 0.847
FIT 0.845 0.777 0.765 0.771
SAFE 0.894 0.832 0.809 0.834

MFEN-Sim 0.975 0.928 0.913 0.921

Average

Gemini 0.925 0.866 0.839 0.852
FIT 0.867 0.804 0.772 0.788
SAFE 0.912 0.851 0.830 0.840

MFEN-Sim 0.980 0.938 0.926 0.932

6.5 Cross compilation optimization level and Cross CPU architecture
Functions may be compiled with any compilation optimization level and on any architecture. In this
experiment, we evaluate the performance of MFEN-Sim and baselines under different compilation
optimizations and architectures on the evaluation dataset. The function pairs in the evaluation

16 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

Table 5. Evaluation results on function pairs across architecture (x86, ARM, MIPS) and optimization levels
(O0-O3)

Software Tool AUC Precision Recall F1

openssl

Gemini 0.914 0.852 0.810 0.831
FIT 0.905 0.863 0.786 0.823
SAFE 0.902 0.843 0.825 0.834

MFEN-Sim 0.962 0.913 0.900 0.906

busybox

Gemini 0.908 0.853 0.825 0.839
FIT 0.853 0.804 0.757 0.780
SAFE 0.851 0.781 0.765 0.773

MFEN-Sim 0.969 0.919 0.904 0.911

sqlite

Gemini 0.885 0.829 0.799 0.814
FIT 0.887 0.831 0.791 0.811
SAFE 0.850 0.784 0.765 0.774

MFEN-Sim 0.957 0.898 0.885 0.892

zlib

Gemini 0.882 0.838 0.810 0.824
FIT 0.876 0.824 0.782 0.803
SAFE 0.912 0.865 0.846 0.856

MFEN-Sim 0.952 0.901 0.888 0.894

gmp

Gemini 0.764 0.719 0.694 0.706
FIT 0.742 0.697 0.642 0.668
SAFE 0.840 0.776 0.757 0.766

MFEN-Sim 0.931 0.869 0.853 0.861

curl

Gemini 0.908 0.853 0.826 0.839
FIT 0.895 0.842 0.799 0.820
SAFE 0.899 0.835 0.818 0.827

MFEN-Sim 0.969 0.922 0.906 0.914

putty

Gemini 0.916 0.863 0.810 0.836
FIT 0.826 0.774 0.722 0.747
SAFE 0.845 0.778 0.763 0.770

MFEN-Sim 0.958 0.905 0.891 0.898

ImageMagick

Gemini 0.911 0.859 0.830 0.844
FIT 0.875 0.833 0.792 0.812
SAFE 0.902 0.838 0.825 0.831

MFEN-Sim 0.959 0.899 0.886 0.892

Average

Gemini 0.886 0.835 0.804 0.819
FIT 0.858 0.807 0.762 0.784
SAFE 0.875 0.813 0.795 0.804

MFEN-Sim 0.957 0.903 0.889 0.896

dataset come from both different optimization levels (i.e., O0, O1, O2, O3) and different architectures
(i.e., x86, ARM, MIPS). Table 5 shows the evaluation results. MFEN-Sim still outperforms Gemini,
FIT and SAFE on all projects. On average, MFEN-Sim is better than Gemini by 7.1% on AUC, by

Multi-feature based Function Embedding Network for Binary Code Similarity 17

Table 6. Ablation study results

AUC Precision Recall F1 Inference time
Gemini 0.886 0.835 0.804 0.819 3.8s
FIT 0.858 0.807 0.762 0.784 4.3s
SAFE 0.875 0.813 0.795 0.804 2.9s
MFEN-pl-ss 0.919 0.850 0.847 0.848 4.7s
MFEN-pl-ss-cl 0.928 0.856 0.852 0.854 5.8s
MFEN-pl-ss-sp 0.935 0.863 0.857 0.860 6.3s
MFEN-pl-all 0.941 0.873 0.866 0.870 7.2s
MFEN-Sim 0.957 0.903 0.889 0.896 7.8s

7.7% on F1, better than FIT by 9.9% on AUC, by 11.2% on F1, and better than SAFE by 8.2% on
AUC, by 9.2% on F1. The evaluation results indict that MFEN-Sim is robust against different CPU
architectures and different optimization levels in untrained projects.

6.6 Ablation study
In this section, we evaluate the contribution of each important component in MFEN-Sim for binary
code similarity detection. We conducted experiments in the case of cross-optimization level and
cross-architecture using the same experimental setting as in section 6.2. We compare MFEN-Sim
with its following variants.

MFEN-pl-all. We discard the similarity learning network and train MFEN with metric learning
algorithm like Gemini, FIT and SAFE. For each binary function, we randomly select a positive
function compiled from the same source code and a negative function compiled from different
source code. The pair loss function is:

𝑙 =

𝑖=𝐾∑︁
𝑖=1

(𝑐𝑜𝑠 (𝑓𝑖 , 𝑓
′
𝑖) − 𝑦𝑖)

2 (17)

where𝑦𝑖 is the label indicating similar (+1) or dissimilar (-1), and 𝑓 ′
𝑖 is the selected binary function

for 𝑓𝑖 to form a function pair.
MFEN-pl-ss. We only leverage the function semantic and structure embedding as the final

function embedding and train the model with the metric learning algorithm.
MFEN-pl-ss-cl. We use the function semantic and structure embedding and the function code

literal embedding to generate the final function embedding, and train the model with the metric
learning algorithm.
MFEN-pl-ss-sp. We exploit the function semantic and structure embedding and the signature

prediction embedding to generate the final function embedding, and train the model with the metric
learning algorithm.

As shown in Table 6, the function signature prediction embedding module can improve 1.6% on
AUC, 1.2% on F1, while the function code literal embedding module can improve 0.9% on AUC, 0.6%
on F1. With both modules, the performance is improved 2.2% on AUC and 2.2% on F1, because code
literals and function signatures are important features for representing function semantics, and
extracted by the BERT and CodeBert models in MFEN-Sim. Furthermore, the similarity learning
network improves 1.7% on AUC, 2.6% on F1, which is better than that of training with the metric
learning algorithm, because by using contrastive learning MFEN-Sim considers both positive and
negative pairs to learn more function relations and reduce the probability of overfitting.

18 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

Table 7. CVEs in the first dataset

CVE-ID Description Target Function #Vul. Fun.
2014-0160 data leak dtls1_process_heartbeat 12
2014-3508 data leak OBJ_obj2txt 12
2014-3566 data leak ssl_cipher_list_to_bytes 12
2014-3572 data leak ssl3_get_key_exchange 12
2015-0292 DoS EVP_DecodeUpdate 12
2016-0705 DoS dsa_priv_decode 12
2016-0798 DoS SRP_VBASE_get_by_user 12
2016-2182 DoS BN_bn2dec 12
2016-2842 DoS doapr_outch 12
2016-6303 DoS MDC2_Update 12

6.7 Efficiency
In this section, we evaluate the efficiency of MFEN-sim and other baselines under different compi-
lation optimizations and architectures. We recorded inference time for each approach and reported
the average values in Table 6. SAFE is the fastest among all the approaches, Gemini and FIT use a
modified graph embedding network structure2vec to compute the embeddings of attribute CFGs of
functions which incurs a little overhead. MFEN-Sim and its variants have larger inference time as
they extract function features using BERT and CodeBert. The more components MFEN-sim has, the
better its effectiveness, while the larger its inference time. In a word, there is a trade-off between
the effectiveness and efficiency for MFEN-sim.

7 VULNERABILITY SEARCH
In this section, we apply MFEN-Sim to vulnerability search to evaluate its practicality in finding the
reuse of vulnerable functions in two datasets. Given a query function 𝑞, vulnerability search is to
find those similar ones in target functions. In other words, we treat it as a rank problem instead of
only giving the similarity score between 𝑞 and another function, thus we use 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 to evaluate
each approach’s performance:

𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 =
𝑇𝑃@𝑘
𝑁

(18)

where 𝑘 represents first 𝑘 candidate functions, 𝑇𝑃@𝑘 is the number of the target functions in 𝑘
candidate functions, 𝑁 is the total number of target functions. So a higher 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 means that an
approach has a better performance.
The first dataset is built on the openssl-1.0.1f in Table 2, which contains total 67,561 functions.

Ten CVEs in openssl-1.0.1f are selected and each CVE corresponds to 12 vulnerable functions due
to our 12 compilation combinations, as Table7 shows. For each vulnerable function, we try to find
similar functions from all functions in openssl-1.0.1f and calculate 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 . Finally, we average
the 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 of all vulnerable functions to measure the performance of MFEN-Sim and baselines.
The maximum value of 𝑘 is set to 200 as in SAFE [28].

In Fig. 7, the results show that MFEN-Sim outperforms Gemini, FIT and SAFE. For k=50, MFEN-
Sim achieves 90.8% recall, while Gemini gets 42.6% recall, FIT gets 42.4% recall and SAFE gets 18.6%
recall. For k=200, MFEN-Sim reaches the recall of 96.3%, while the recall of Gemini, FIT and SAFE
is 58.3%, 58.9% and 31.6% respectively. The results demonstrate that MFEN-Sim can effectively

Multi-feature based Function Embedding Network for Binary Code Similarity 19

0 25 50 75 100 125 150 175 200
k

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
k

MFEN-Sim
SAFE
FIT
Gemini

Fig. 7. Recall@k on OpenSSL dataset

Table 8. CVEs in the second dataset [5]. DoS: deny of service; ACE: arbitrary code execution

CVE-ID Software Description Target Function Vul. Fun.
2011-0444 wireshark DoS, ACE snmp_usm_password_to_key_sha1 7
2014-0160 openssl data leak dtls1_process_heartbeat 13
2014-4877 wget ACE ftp_retrieve_glob 3
2014-6271 bash ACE initialize_shell_variables 6
2014-7169 bash ACE initialize_shell_variables 3
2014-9295 ntp ACE configure 7
2015-3456 QEMU DoS, ACE fdtrl_handle_drive_specification_command 6
2015-6826 ffmpeg DoS ff_rv34_decode_init_thread_copy 7

search vulnerable functions with cross architectures and optimization levels in a large number of
untrained functions.

The second dataset is a public vulnerability dataset presented in [5] This dataset contains seven
open source software with different versions, including coreutils, openssl, bash, ntpd, QEMU,
wireshark and wget. These software are compiled with 11 compilers of clang, gcc, icc families on
x86 architecture. After feature extraction, we get 3,005 functions from this dataset. This dataset
contains 8 CVEs, as Table 8 shows. Each CVE corresponds to at least 3 and at most 13 vulnerable
functions in the dataset. The average number of vulnerable functions for all CVEs is 7. In fact,
different versions of a software project are often compiled with default optimization options, and
different software projects may use different compilers, so this dataset is close to a real world
scenario of binary software analysis. We use the same settings and metrics as the experiment on
the first dataset.
Fig. 8 shows the experimental results. MFEN-sim also achieves the best result among four

approaches on this dataset. For k=50, MFEN-Sim achieves 75.8% recall, while the recall of Gemini,
FIT and SAFE is 45.5%, 47.4% and 62.1% respectively. In the case of k=200, MFEN-Sim, Gemini,

20 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

0 25 50 75 100 125 150 175 200
k

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
k

MFEN-Sim
SAFE
FIT
Gemini

Fig. 8. Recall@k on the vulnerability dataset [5]

FIT and SAFE achieves 81.7%, 55.9%, 65.6% and 79.0% recall respectively. The experimental results
show that MFEN-Sim can retrieve the vulnerable functions in real-world software. Obviously
SAFE performs better on this dataset than on the first dataset. We think that the reason may
be that SAFE only utilize a function’s assembly instructions as its input and the differences in
assembly instructions introduced by different compilers are less than that brought by different CPU
architectures and compilation optimizations.
Although MFEN-Sim outperforms all baselines on two datasets, for k=10, MFEN-Sim achieves

73.5% and 63.4% recall on two datasets respectively, and for k=200, MFEN-Sim doesn’t reach 100%
recall. That’s probably because of the limited size of the training set, and the differences between
the vulnerability set and the training set (e.g., different software, different compilers), MFEN-Sim
may not learn the similarity relations between some functions in the vulnerability set, and assigns
relatively low similarity scores to these similar functions. This may be improved by further training
on the vulnerability set, which we leave for future work.

8 LIMITATIONS
MFEN-Sim has limitations. First, it cannot cope well with the obfuscated binaries because obfusca-
tion techniques bring significant changes in binary code. Thus it’s better to leverage anti-obfuscation
techniques before applying our approach. Second, MFEN-Sim has a complicated architecture, caus-
ing more time cost. For example, it takes about 7.8s for generating 1000 function embeddings, while
SAFE takes about 2.9s. However, MFEN-Sim is flexible and its models can be modified or replaced
to balance effectiveness and efficiency. In addition, MFEN-Sim only considers internal features of a
function as inputs, considering inter-function features like function call is a future work.

9 RELATEDWORK
We discuss the related research efforts by classifying them into three groups: binary code similarity
detection based on static analysis, dynamic analysis and deep learning.

Multi-feature based Function Embedding Network for Binary Code Similarity 21

9.1 Static analysis based methods
Static approaches directly extract code features from binaries, usually syntactic features and
structural features. For example, Rendezvous [21] builds a statistical model comprising N-grams
and N-perms of instruction mnemonics, control flow sub-graphs and data constants to match
functions. Tracy [8] extracts tracelets from function control flow graphs to capture the function
execution semantics. TEDEM [31] matches the expression tree of basic blocks. Bindiff [40] adopts
expensive graph isomorphism algorithm to match the control flow graphs (CFG) of functions,
which is not suitable for large scale search. To perform the cross-architecture detection, some
studies [12, 13, 25, 38] utilize across-architecture numeric features and construct attribute control
flow graphs (ACFG). DiscovRe [12] first selects statistical features such as number of instructions,
number of constants from functions and utilizes these features to filter out candidate functions
based on KNN, then applies a graph isomorphism algorithm to match functions. Lin et al. [25] and
Zhao et al. [38] further extract function-level features and apply SVM in the pre-filtering stage to
improve the performance. Considering the cost of the graph isomorphism algorithm, Genius [13]
first generates codebook from ACFGs, and encodes ACFGs into vectors based on the codebook
to measure the similarity between functions. TikNib [22] utilizes statistical features in CFGs and
CGs, and leverages a greedy feature selection algorithm to select appropriate statistical features for
binary code similarity analysis. Some studies also utilize data flow features. Gitz [6] lifts assembly
instructions to intermediate representation and compares functions based on data-flow slices.
Frimup [7] also uses data-flow slices and a game algorithm to match functions. Static approaches
can achieve high scalability and relative high accuracy. However, the features utilized by these
approaches are easily influenced by different CPU architectures, compilers and optimizations.
MFEN-Sim is based on deep learning, which is an end-to-end methods, thus don’t need the manual
effort to select and extract features. Furthermore, MFEN can be re-trained for different purposes.

9.2 Dynamic analysis based methods
Dynamic approaches usually extract robust features based on emulations executions, such as
input/output pairs, values written to stack/heap or system calls. For example, BinGo [2] utilizes
a selective-inlining technique and partial traces extracted from CFGs for cross-architecture and
cross-OS function search. CoP [27] utilizes symbolic execution to check whether two basic blocks
have equivalent semantics, and uses the longest common subsequence algorithm to calculate the
similarity between basic block paths. Esh [5] leverages data-flow slices called strands from basic
blocks and utilizes symbolic execution to calculate the similarity between strands. Multi-MH [30]
builds assign formulas for each basic block and uses concrete input values to capture the I/O pairs
of basic blocks. IMF-SIM [34] utilizes in-memory fuzzing to obtain the execution traces of functions
from which they extract feature vectors and feed them into a machine learning model to predict
whether functions are similar. Dynamic approaches can detect semantically similar functions and
have some ability to resist the influence of optimizations and obfuscations. However, they are based
on execution or emulation techniques and hence introduce considerable performance cost.

9.3 Deep learning based methods
Some approaches use neutral networks to search similar binary code on single-architecture and
multi-architecture. These approaches learn a binary code representation that is supposed to encode
the binary code’s syntax and semantics into low dimensional vectors, thus they can compute
the similarity through these embeddings. They usually learn a model that takes the structural
information (like a function’s CFG) or instruction sequences to construct embeddings and train the
model so that the similar binary code’s embeddings are closer.

22 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

Gemini [35] is the first approach to combine the CFG with the graph embedding network, it treats
ACFGs as input and utilizes structure2vec with Siamese network to generate function embeddings.
Vulseeker [15] adds data dependency information to ACFGs to learn data flow information of
functions. Alpha-diff [26] utilizes CNN to learn directly from the images generated by original
function bytes. These methods use raw information or manual-selected features from binary codes
as the model’s input, which needs expert efforts.
Some studies apply NLP techniques to binary code similarity detection. Asm2vec [10] trains a

Paragraph Vector-Distributed Memory model to generate function embeddings. Innereye [39] uses
word2vec and LSTM to compare the similarity of basic blocks. DeepBinDiff [11] uses word2vec
for semantic information and text-associated DeepWalk algorithm for program-wide contextual
information, it works at basic block granularity while MFEN-Sim performs at function granularity.
SAFE [28] generates function embedding with bi-RNN and a self-attention mechanism. FIT [24]
utilizes word2vec and LSTM to generate the basic block embedding, then utilizes graph embedding
network to generate function embeddings. Yu et al. [37] build semantic-aware modeling, structural-
aware modeling and order-aware modeling with BERT, MPNN and Resnet, respectively. Koo et al.
[23] propose a well-balanced instruction normalization to minimize the out-of-vocabulary problem
and hold semantic information in assembly instructions, and utilize BERT model to generate the
semantic-aware embedding for downstream tasks like binary similarity comparison.
Most of these works are based on semantic features like assembly instructions and structure

features like CFGs, but they ignored the important semantic information in code literals and function
signatures which are used in our approach. Moreover, MFEN-Sim uses a similarity learning network
based on contrastive learning to learn more relations between functions than prior methods.

10 CONCLUSION
In this paper, we propose a novel framework MFEN-Sim for binary code similarity detection, which
contains three stages: feature extraction and normalization, multi-feature based function embedding
network and similarity learning network. Besides the semantic feature like assembly instructions
and the structure feature like CFGs, MFEN-Sim also extracts function code literal features and
function signature features. To capture these features, we propose the function semantic embedding
module based on BERT and GAT, the function signature prediction module based on BERT and
classification heads, the function code literal embedding module based on CodeBert. Furthermore,
a similarity learning network based on the contrastive learning is used to capture more similarity
relations between functions than prior methods. The evaluation results on eight open source
projects demonstrate that MFEN-Sim outperforms three state-of-the-art methods (i.e., Gemini, FIT
and SAFE) in binary similarity detection, and can achieve higher recall than baselines in the case of
searching vulnerabilities.

MFEN inMFEN-Sim can be used as a general function encoder. It can be pretrained and fine-tuned
for different downstream tasks, such as vulnerability classification, malware family classification,
and bug patch detection.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

REFERENCES
[1] 2014. The heartbleed bug, https://heartbleed.com/.
[2] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan. 2016. Bingo:

Cross-architecture cross-os binary search. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 678–689.

Multi-feature based Function Embedding Network for Binary Code Similarity 23

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive
learning of visual representations. In International conference on machine learning. PMLR, 1597–1607.

[4] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017. Neural nets can learn function type
signatures from binaries. In 26th {USENIX} Security Symposium ({USENIX} Security 17). 99–116.

[5] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical similarity of binaries. ACM SIGPLAN Notices 51, 6
(2016), 266–280.

[6] Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of binaries through re-optimization. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation. 79–94.

[7] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. Firmup: Precise static detection of common vulnerabilities in
firmware. ACM SIGPLAN Notices 53, 2 (2018), 392–404.

[8] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables. Acm Sigplan Notices 49, 6 (2014),
349–360.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

[10] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec: Boosting static representation robustness
for binary clone search against code obfuscation and compiler optimization. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 472–489.

[11] Yue Duan, Xuezixiang Li, JinghanWang, and Heng Yin. 2020. Deepbindiff: Learning program-wide code representations
for binary diffing. In Network and Distributed System Security Symposium.

[12] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE: Efficient Cross-Architecture
Identification of Bugs in Binary Code.. In NDSS, Vol. 52. 58–79.

[13] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin. 2016. Scalable graph-based bug
search for firmware images. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 480–491.

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. Codebert: A pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155 (2020).

[15] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: a semantic learning based vulnerability
seeker for cross-platform binary. In 2018 33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 896–899.

[16] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive Learning of Sentence Embeddings.
arXiv preprint arXiv:2104.08821 (2021).

[17] Yikun Hu, Hui Wang, Yuanyuan Zhang, Bodong Li, and Dawu Gu. 2019. A semantics-based hybrid approach on binary
code similarity comparison. IEEE Transactions on Software Engineering (2019).

[18] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2017. Binary code clone detection across architectures and
compiling configurations. In 2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC). IEEE,
88–98.

[19] IDA. [n. d.]. https://hex-rays.com/.
[20] IDAPython. [n. d.]. https://github.com/idapython/src.
[21] Wei Ming Khoo, Alan Mycroft, and Ross Anderson. 2013. Rendezvous: A search engine for binary code. In 2013 10th

Working Conference on Mining Software Repositories (MSR). IEEE, 329–338.
[22] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2020. Revisiting Binary Code Similarity

Analysis using Interpretable Feature Engineering and Lessons Learned. arXiv preprint arXiv:2011.10749 (2020).
[23] Hyungjoon Koo, Soyeon Park, Daejin Choi, and Taesoo Kim. 2021. Semantic-aware Binary Code Representation with

BERT. arXiv preprint arXiv:2106.05478 (2021).
[24] Hongliang Liang, Zhuosi Xie, Yixiu Chen, Hua Ning, and Jianli Wang. 2020. FIT: Inspect vulnerabilities in cross-

architecture firmware by deep learning and bipartite matching. Computers & Security 99 (2020), 102032.
[25] Hong Lin, Dongdong Zhao, Linjun Ran, Mushuai Han, Jing Tian, Jianwen Xiang, Xian Ma, and Yingshou Zhong. 2017.

Cvssa: Cross-architecture vulnerability search in firmware based on support vector machine and attributed control
flow graph. In 2017 International Conference on Dependable Systems and Their Applications (DSA). IEEE, 35–41.

[26] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei Zou. 2018. 𝛼diff: cross-version
binary code similarity detection with dnn. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. 667–678.

[27] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014. Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software plagiarism detection. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 389–400.

24 Xiangyu Li, Guohao Wu, Zihui Guo and Hongliang Liang

[28] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and Leonardo Querzoni. 2019. SAFE:
Self-attentive function embeddings for binary similarity. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 309–329.

[29] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. Binsim: Trace-based semantic binary diffing via system
call sliced segment equivalence checking. In 26th {USENIX} Security Symposium ({USENIX} Security 17). 253–270.

[30] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten Holz. 2015. Cross-architecture bug
search in binary executables. In 2015 IEEE Symposium on Security and Privacy. IEEE, 709–724.

[31] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian Rossow. 2014. Leveraging semantic
signatures for bug search in binary programs. In Proceedings of the 30th Annual Computer Security Applications
Conference. 406–415.

[32] PyTorch. [n. d.]. https://pytorch.org/.
[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph

attention networks. arXiv preprint arXiv:1710.10903 (2017).
[34] Shuai Wang and Dinghao Wu. 2017. In-memory fuzzing for binary code similarity analysis. In 2017 32nd IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE, 319–330.
[35] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017. Neural network-based graph embedding

for cross-platform binary code similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 363–376.

[36] Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu. 2018. Accurate and scalable cross-architecture
cross-os binary code search with emulation. IEEE Transactions on Software Engineering 45, 11 (2018), 1125–1149.

[37] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order matters: Semantic-aware neural
networks for binary code similarity detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
1145–1152.

[38] Dongdong Zhao, Hong Lin, Linjun Ran, Mushuai Han, Jing Tian, Liping Lu, Shengwu Xiong, and Jianwen Xiang. 2019.
CVSkSA: cross-architecture vulnerability search in firmware based on kNN-SVM and attributed control flow graph.
Software Quality Journal 27, 3 (2019), 1045–1068.

[39] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang. 2018. Neural machine translation
inspired binary code similarity comparison beyond function pairs. arXiv preprint arXiv:1808.04706 (2018).

[40] Zynamics. 2019. Bindiff, https://www.zynamics.com/bindiff.html.

	Abstract
	1 Introduction
	2 Approach Overview
	3 Feature Extraction and Normalization
	4 Multi-feature based Function Embedding Network
	4.1 Function Semantic and Structure Embedding Module
	4.2 Function Signature Prediction Module
	4.3 Function Code Literal Embedding Module

	5 Similarity Learning Network
	6 Evaluation
	6.1 Implementation and Setup
	6.2 Evaluation Setting
	6.3 Cross compilation optimization level
	6.4 Cross CPU architecture
	6.5 Cross compilation optimization level and Cross CPU architecture
	6.6 Ablation study
	6.7 Efficiency

	7 Vulnerability Search
	8 Limitations
	9 Related Work
	9.1 Static analysis based methods
	9.2 Dynamic analysis based methods
	9.3 Deep learning based methods

	10 Conclusion
	References

